
TEMPLATES LOCATION

This cheat-sheet is not an official part of the symfony documentationhttp://andreiabohner.wordpress.com

Open-Source PHP5 MVC Framework
Agile Development

TEMPLATES

VIEW
The result of an action execution is a View. A View is the combination of a template
described by a classic PHP file, and a configuration file describing the way this template
will fit with other interface elements. It contains some HTML code and some basic PHP
code, usually calls to variables defined in the action and helpers.

With two actions index and list in a product
module:
class productActions extends sfActions{
 public function executeIndex(){
 ...
 return sfView::SUCCESS;
 }
 public function executeList(){
 ...
 return sfView::SUCCESS;
 }
}

The templates called at the end of the
execution of each action will be located in

and named:
myapp/modules/product/templates/

indexSuccess.php
listSuccess.php

HELPERS

Facilitate the process of writing templates and
produce the best possible HTML code in terms
of performance and accessibility.

Three types of helpers are available:
1) - must be

used instead of the corresponding HTML
code because they allow internal symfony
mechanisms (routing, i18n, ...) to work.

2) , that use less
code than classic HTML for the same
purpose. Using these helpers, you make sure
that your code will even work after any
subsequent change in the file tree structure.

3)
 (custom helpers).

Standard compulsory helpers

Standard optional helpers

Helpers defined specifically for an
application

Variables called in the templates must be
either one of the usual shortcuts (see below)
or attributes of the action object defined in
the related action file.
E.g.: to define a value for the
variable, the action must contain a line:

$name

$this->name = 'myvalue';

Pre-defined variables or shortcuts:

$sf_context

$sf_request

$sf_params

$sf_user

$sf_view

 //the whole context object

//the request

//parameters of the request

//the current sfUser object

//the calling sfView object

the template code:

is equivalent to the following action code:
echo $sf_params->get('total');

echo $this->getRequestParameter('total');

Helper:

defines the use_helper() helpers,

Default helpers - loaded for every app:

 needed for helper inclusion

defines the basic tag operations

links and URL management

head, include, images and js call

allow inclusion of template fragments

manipulation of cached code fragments

form input

Tag:

Url:

Asset:

Partial:

Cache:

Form:

1st part: is related to the action

A template name is made of two parts:

This is an implicit rule: if the value returned
by the action is , then the
name of the template called will be:
the concatenated with

sfView::SUCCESS

name of the action
Success.php

So, an action called that executed
successfully is:

index

NAMING CONVENTIONS

An action can set an alternate template:
$this->setTemplate('myCustomTemplate');

The template called is:
myCustomTemplateSuccess.php

ALTERNATE TEMPLATE

VARIABLES

SHORTCUTS

apps

myproject

myapp

modules

templates

mymodule1

templates

mymodule2

templates

(templates and partials
for module1)

(layouts for application1 and
global partials)

(templates and partials
for module2)

DEFAULT GLOBAL LAYOUT

DECORATOR DESIGN PATTERN

LAYOUT

TEMPLATE

LAYOUT

TEMPLATE+ =

myapp/templates

mymodule/templates

E.g.:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" “http://
 www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <?php echo include_http_metas() ?>
 <?php echo include_metas() ?>
 <?php echo include_title() ?>
 <link rel="shortcut icon" href="/favicon.ico" />
</head>
<body>

<?php echo $sf_data->getRaw('sf_content') ?>

</body>
</html>

<myproject>/apps/<myapp>/templates/layout.php

LAYOUT CONFIGURATION

You may have several layouts for your application.
The default layout is myproject/apps/myapp/templates/layout.php. Additional layouts must
be added in the same global templates/ directory.

Some views don't need any layout at all
(for instance, plain text pages or RSS feeds).
In that case, set has_layout to false

LAYOUT DEFINITION IN VIEW.YML

LAYOUT DEFINITION IN ACTION

indexSuccess:
 layout: my_layout

$this->setLayout('my_layout');

LAYOUT REMOVAL IN VIEW.YML

indexSuccess:
 has_layout: false

LAYOUT REMOVAL IN ACTION

$this->setLayout(false);

Ajax actions views have no layout by default.

To use a custom layout file, you
can set it in the view.yml file or
in the action.

Loading a non-default helper

echo use_helper(’HelperName’)

2nd part: to the result

 indexSuccess.php

Using helpers outside a template

sfLoader::loadHelpers($helpers)

Access the action stack:

$sf_context->getModuleName()

$sf_context->getActionName()

//last module called

//last action called

	Page 1

