S
O
O
N
J)
-
©
O
G
(O}
al
5=
o
>
N
O
1 S
©
(S}
(e
Q
o
()
1S
(o)
=
S
()
O

ith MySQL

iIioning w

Database Part

/! DZone Refcardz

brought to you by...

AnsvyerHub

Connecting People With Knowledge

= What is Database Partitioning

= Database Partitioning Basics

* Database Partitioning in MySQL
= MySQL Database Engine

= Partitioning Types

= And more...

Database Partitioning with MySQL

Improving Performance, Availability, and Manageability

By Narayana Maruvada

MYSQL - THE MOST CHOSEN DATABASE

MySQL, the world’s most popular open-source database
management system, encompasses key attributes such as high
performance, manageability, scalability, availability and ease of
use. It has become the default database for building any new
generation applications over any technology stack. Additionally,
its capability to run on any platform has made it a reliable option
to use because of its flexibility and control over the applications.

This reference card provides an overview of the MySQL database
partitioning techniques and how these techniques lead to
operational excellence.

WHAT IS DATABASE PARTITIONING?

Partitioning is a database design technique with details as follows

Major Abilities of Partitioning

1. Splits large database into smaller and more manageable ones.

2. Simplifies the overall data management and operations.

3. Enhances the overall performance of the database.

4. Assists the MySQL Optimizer.

MySOL Optimizer typically contains the set of routines that decide
what execution path the database server should take for executing
the queries.

DATABASE PARTITIONING BASICS

The two very basic database partitioning practices are as follows.

Technique Description
Horizontal Partitions a big table based on the number of rows.
Vertical Partitions a table based on the different columns

DATABASE PARTITIONING IN MYSQL

MySQL implements the database partitioning feature through
user-defined partitioning.

Advantages

1. Allows for more control over the records stored in the database.

2. Specifies the partition in which a record is stored

3. Default is based on a specific value

To determine whether the MySQL server supports partitioning features or
not, issues a SHOW VARIABLES statement at the mysql prompt, as show
below.

mysql> SHOW VARIABLES LIKE ‘Sspartitionss’;

| Variable_name | Value |

| have_partitioning | YES |

1 row in set (0.00 sec)

Since the variable have_partitioning has a value of YES, it indicates
MySQL server supports partitioning.

Similarly, you can also verify the partitioning support by issuing the SHOW
PLUGINS statement at the mysgl prompt, as shown below.

mysql> SHOW PLUGINS;

Library | License |

| Name | Status Type

| binlog | ACTIVE | STORAGE ENGINE | NULL | GPL |
| partition | ACTIVE | STORAGE ENGINE | NULL | GPL |
| ARCHIVE | ACTIVE | STORAGE ENGINE | NULL | GPL |
| BLACKHOLE | ACTIVE | STORAGE ENGINE | NULL | GPL |
| Csv | ACTIVE | STORAGE ENGINE | NULL | GPL |
| FEDERATED | DISABLED | STORAGE ENGINE | NULL | GPL |
| MEMORY | ACTIVE | STORAGE ENGINE | NULL | GPL |
| InnoDB | ACTIVE | STORAGE ENGINE | NULL | GPL |
| MRG_MYISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |
| MyISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |
| ndbcluster | DISABLED | STORAGE ENGINE | NULL | GPL |

11 rows in set (0.00 sec)

Enterprise Q&A What's That?

Find Out Why Guru.com, Unity3D
and DynDNS all use AnswerHub

AnsvyerHub.com

DZone, Inc. | www.dzone.com


http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://answerhub.com

AnswverHub

Connecting People With Knowledge

A3 DZone Refcardz

Database Partitioning with MySQL

If the status is being displayed as ACTIVE against the partition
plugin, it indicates the partitioning feature is enabled and
available.

To disable the partitioning support option, start the MySQL server

with the —skip — partition option. The value of have partitioning is now
DISABLED.

MYSQL DATABASE ENGINE - A PREREQUISITE FOR
PARTITIONING

For creating partitioned tables, you can use most of the storage
engines that are supported by the MySQL server.

Itis important to note that all partitions of the partitioned table should

be using the same storage engine.

To determine which storage engine the MySQL server supports,
issue the SHOW ENGINES statement at the mysgl prompt at
shown below.

mysql> SHOW ENGINES\G

1. row
Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary
tables
Transactions: NO
XA: NO
Savepoints: NO

2. row
Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
XA: NO
Savepoints: NO

3. row
Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign
keys
Transactions: YES
XA: YES

Among all, the value against support column indicates whether
an engine can be used or not.

Avalue of YES, NO and DEFAULT with the storage engine indicates if
an engine is available, not available or available and currently set as
default storage, respectively.

PARTITIONING TYPES

The following section outlines the various types of partitioning
techniques that are supported by MySQL.

RANGE Partitioning

Features

1.Tables are partitioned based on the column values falling
within a given range.

2. Ranges should be contiguous but not overlapping.

The following example illustrates the range-partitioning
technique. First, we create an employees table, as shown below:

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT ‘1970-01-01',
separated DATE NOT NULL DEFAULT ‘9999-12-31',
job_code INT NOT NULL,

store_id INT NOT NULL

D8

Among the list of columns, store_id can be used to partition the
entire table based on the values available with it, as shown below:

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

name VARCHAR(30),

hired DATE NOT NULL DEFAULT ‘1970-01-01’,

separated DATE NOT NULL DEFAULT ‘9999-12-31',

job_code INT NOT NULL,

store_id INT NOT NULL

)

PARTITION BY RANGE (store_id) (
PARTITION p® VALUES LESS THAN (6),
PARTITION pl VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN (21)

It is important to note that each partition in defined in order from
lowest to highest.

For accommodating rows with some higher and/or greater values in

the partitions, a clause named VALUE
LESS THAN is used in the create table.. statement, as show below.

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT ‘1970-01-01',

separated DATE NOT NULL DEFAULT ‘9999-12-31',

job_code INT NOT NULL,

store_id INT NOT NULL

)

PARTITION BY RANGE (store_id) (
PARTITION p® VALUES LESS THAN (6),
PARTITION pl VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN

MAXVALUE

);

MAXVALUE represents an integer value that is always greater
than the largest possible value that is available.

LIST Partitioning

Features

1. Very analogous to range partitioning.

2. Partition is selected based on columns matching a set of
discrete values.

DZone, Inc. | www.dzone.com



http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

AnswverHub

Connecting People With Knowledge

A3 DZone Refcardz

Database Partitioning with MySQL

Features

3. Each partition should be explicitly defined.

4. Partitions do not need to be declared in any order.

The following example demonstrates how to list partition a table
based on a column value.

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT ‘1970-01-01',

separated DATE NOT NULL DEFAULT ‘9999-12-31’',

job_code INT,

store_id INT

)

PARTITION BY LIST(store_id) (
PARTITION pNorth VALUES IN (3,5,6,9,17),
PARTITION pEast VALUES IN (1,2,10,11,19,20),
PARTITION pWest VALUES IN (4,12,13,14,18),
PARTITION pCentral VALUES IN (7,8,15,16)

)i

Deleting data from a partition works more efficiently than deleting the

data directly from the table.

HASH Partitioning

Features

1. Ensures an even distribution of data among partitions.

2. Explicitly specify into which partition a given column value is
to be stored

The following example demonstrates how to hash partition a
table based on a column.

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT ‘1970-01-01’,
separated DATE NOT NULL DEFAULT ‘9999-12-31',
job_code INT,

store_id INT

)

PARTITION BY HASH(store_id)

PARTITIONS 4;

If you do not include the PARTITIONS clause, the number of
partitions defaults to 1.

KEY Partitioning

Features

1. Conceptually and syntactically, it is analogous to HASH
partitioning.

2. The requisite hashing function is supplied by MySQL server.

If there is no primary key available with the table but there is a unique

key, then the unique key can be used as a partitioning key, as shown
below.

CREATE TABLE k1 (
id INT NOT NULL,
name VARCHAR(20),
UNIQUE KEY (id)

)

PARTITION BY KEY()
PARTITIONS 2;

RETRIEVING INFORMATION ABOUT EXISTING

PARTITIONS

You can obtain information about existing partitions in a number
of ways.

Sr. No Statement

1 Issue SHOW CREATE TABLE statement to view
partition clause used.

2 Issue SHOW TABLE STATUS statement to determine
whether table is partitioned.

3 Query the INFORMATION SCHEMA.PARTITIONS
table for information about table partitions.

4 Issue statement EXPLAIN PARTITIONS SELECT, as

shown in below syntax,

Issue statement EXPLAIN PARTITIONS SELECT, as
shown in below syntax:

EXPLAIN PARTITIONS SELECT * FROM table_name
WHERE clause

MANAGING PARTITIONS

Partition management refers to a set of activities that deals with
the actions, such as:

e  Adding
. Dropping
e Redefining

o Merging or Splitting

You can realize all of these actions by using the ALTER TABLE
statement with a partition_option clause.

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION,

REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in
a given ALTER TABLE statement.

Managing Range and List Partitions - a Quick Glance

1. Managing range and list partitions is very similar.

3. Partitioning key must consist of table’s primary key.

2. Adding and Dropping of partitions are handled in same way.

CREATE TABLE k1 (

id INT NOT NULL PRIMARY KEY,
name VARCHAR(20)

)

PARTITION BY KEY()
PARTITIONS 2;

3. Dropping an existing partitions is very straightforward.

4. Accomplished by using ALTER TABLE statement with
appropriate partition clause.

5. To delete all the data from a partition, use the DROP
PARTITION clause.

ALTER TABLE table_name DROP PARTITION partition_name;

DZone, Inc. | www.dzone.com



http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

AX DZone Refcardz ~ AnsvierHub

cting People With

Database Partitioning with MySQL

Managing Range and List Partitions - a Quick Glance

6. To preserve the table definition, use TRUNCATE TABLE
statement.

7. To change the partition without losing any data, use the
REORGANIZE PARTITION clause. ALTER TABLE table_name
REORGANIZE PARTITION [partition_name INTO (partition_
definitions)]

8. With range partitions, you can add new partitions ONLY to
the high end of the partition list.

9. Adding a new partition in between or before an existing
partition will result in error.

10. You cannot add a new LIST PARTITION encompassing any
values that are already included in the value list of an existing
partition. This will result in an error.

11. The REORGANIZE PARTITION clause may also be used for
merging adjacent partitions.

12. The REORGANIZE PARTITION clause cannot be used for
changing the table’s partitioning type. For example, you cannot
change Range partitions to Hash partitions, or vice-versa.

Managing Hash and Key Partitions — a Quick Glance

1. When it comes to making changes to partitioning setup, it is
similar with hash and key partitions.

2. You cannot drop hash or key partitions.

3. You can merge hash or key partitions by using an ALTER
TABLE statement with the coalesce partition clause, as shown
below: ALTER TABLE table_name COALESCE PARTITION 4;

4. The number following the coalesce partition clause refers to
the number of partitions to remove from the table

5. Attempting to remove more partitions than the table has will
lead to an error.

PARTITIONS MAINTENANCE

You may also carry out a number of table and associated partition
maintenance tasks by issuing a few SQL statements using the
following options:

SQL Options | Description Equivalent SQL
Statement
REBUILDING Used for rebuild ing ALTER TABLE table_
PARTITIONS a partition and for name REBUILD
defragmentation. PARTITION pO, pT;
OPTIMIZING | Used to reclaim any ALTER TABLE
PARTITIONS unused space and table_name
defragment partition | OPTIMIZE
data files. PARTITION pO0, p1;
ANALYZING Used to store key ALTER TABLE
PARTITIONS distributions about table_name
partitions. ANALYZE partition
p3;
REPAIRING Used for repairing any | ALTER TABLE
PARTITIONS | corrupted partitions. | table_name REPAIR
partition p0, p1;
CHECKING Used for checking ALTER TABLE
PARTITIONS | errors in partitions table_name CHECK
partition p1;

PARTITION PRUNING

Partition pruning is an optimization technique that can be
implemented for partitioned tables. The idea behind pruning
is relatively simple and it can be described as “"Do not scan a
partition when there are no matching values.” For example,
suppose that you have a partitioned table t1 defined by the
statement shown below:

CREATE TABLE t1 (

fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)

PARTITION BY RANGE( region_code ) (
PARTITION p® VALUES LESS THAN (64),
PARTITION pl VALUES LESS THAN (128),
PARTITION p2 VALUES LESS THAN (192),
PARTITION p3 VALUES LESS THAN MAXVALUE

Now, consider the case where you wish to obtain results from a
query such as:

SELECT fname, Iname, region_code, dob FROM t1 WHERE
region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned
will be in either of the partitions p0O or p3; that is, we need to
search only in partitions p1 and p2 to find matching rows. By
doing so, we can save time and effort and find matching rows
instead of having to scan all partitions in the table. This “cutting
away” of unneeded partitions is known as “pruning.”

The query optimizer can perform pruning whenever a WHERE
condition can be reduced to either of the following two cases:

° partition_column = constant
. partition_column IN (constant1, constant2, constant3,....,
constantN)

In the first case, the optimizer simply evaluates the partitioning
expression for the value given. Then it determines and scans only
the partition containing that value. In many cases, the equal sign
can be replaced with other arithmetic comparison operators,
including <, >, <=,>=,and <>.

Queries using BETWEEN in the WHERE clause can also take advantage

of partition pruning.

In the second case, the optimizer evaluates the partitioning
expression for each value in the list, creates a list of matching
partitions, and then scans only the partitions in that list. Further
pruning can be applied to short ranges, which the optimizer can
convert into equivalent lists of values.

Pruning can also be applied for tables partitioned on a DATE or

DATETIME column when the partitioning expression uses the YEAR()
or T0 DAYS(] function.

DZone, Inc. | www.dzone.com



http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

AnsywyerHub

Connecting People With Knowledge

A3 DZone Refcardz

5 Database Partitioning with MySQL

IMPLEMENTING PARTITION PRUNING TECHNIQUE

Partition pruning can be implemented for all partition types.
Though pruning for RANGE partitioning is already explained

in the above section, this section illustrates how this technique
can be applied to other types of partitions as well. For example,
consider a table t3 that is partitioned by LIST, as shown below:

CREATE TABLE t3

(
fname VARCHAR(56) NOT NULL,
name VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT
dob DATE NOT NULL

NULL,

)

PARTITION BY LIST(region_code)

(
PARTITION r@ VALUES IN (1, 3),
PARTITION rl VALUES IN (2, 5, 8),
PARTITION r2 VALUES IN (4, 9),
PARTITION r3 VALUES IN (6, 7, 10)

)i

Table t3 shows that the region_code column is limited to values
between 1 and 10 (inclusive). So, when a select query is issued,
such as the one below—

SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3;

—the optimizer determines the partitions where values 1, 2 and 3
are found, which should be ro, r1 and skips those that remain (r2
and r3).

Similarly, for the tables that are partitioned by HASH and KEY,
pruning is also possible in the cases when the WHERE clause
uses a simple “ = " relation against a column that is used in the
partition expression. For example, consider the created table
shown below:

CREATE TABLE t4 (

fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)

PARTITION BY KEY(region_code)

PARTITIONS 8;

Any query that compares a column value with a constant can be
pruned, as shown in the next line of code:

SELECT * FROM t4 WHERE region_code = 7;

Importantly, pruning can also be employed for short ranges,
because the optimizer can turn such conditions into IN relations.
For example, consider the next two queries with reference to the
previously defined table t4:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both of these cases, the WHERE clause is transformed by the
optimizer into WHERE region_code IN (3, 4, 5). This optimization
is used only if the range size is smaller than the number of
partitions.

Pruning can be used only on integer columns of tables partitioned
by HASH or KEY. But, for a table that is partitioned by KEY, has a

composite primary key, and uses a composite partitioning key, it is
possible to perform pruning for queries meeting the following two
criteria:

o The query must have a WHERE clause of the form
pkcoll = ¢1 AND pkcol2 = c2 AND ... pkcolN = cN,
where pkcoll..... pkcolN are the partitioning key
columns and c1.....cN are constant values.

o All columns of the partitioning key must be
referenced in the WHERE clause.

ABOUT 'EXPLAIN PARTITION’ STATEMENT

1. Generally, EXPLAIN statement is used to obtain information
about how MySQL executes a statement.

2. EXPLAIN PARTITION is highly helpful for examining queries
involving partitions.

3. A SELECT statement that is preceded by an EXPLAIN
statement displays information from the Optimizer about the
query execution plan.

4. For Example: EXPLAIN PARTITIONS SELECT select_options

RESTRICTIONS AND LIMITATIONS ON PARTITIONING

1. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. The result must be an integer value or
NULL (except in the case of [LINEAR] KEY partitioning).

2. The bit operators |, &, A, <<, >>, and ~ are not permitted in
partitioning expressions.

3. Tables employing user-defined partitioning do not preserve
the SQL mode in effect at the time that they were created.

4. A change in the SQL mode at any time after the creation of
partitioned tables may lead to major changes in the behavior
of such tables, and could easily lead to corruption or loss of
data.

5. Sometimes a change in the server SQL mode can make
partitioned tables unusable.

6. Server SQL modes also impact replication of partitioned
tables since differing SQL modes on master and slave can lead
to differently evaluated partitioning expressions.

7. Different SQL modes on master and slave can cause different
distributions of data among partitions.

8. Partitioned tables do not support FULLTEXT indexes or
searches. This includes MyISAM storage engine.

9. Columns with spatial data types, such as POINT or
GEOMETRY, cannot be used in partitioned tables.

10. Temporary tables cannot be partitioned.

11. A partitioning key must be either an integer column or
an expression that resolves to an integer. The column or
expression value may also be NULL.

12. Partitioned tables do not support foreign keys.

DZone, Inc.

| www.dzone.com



http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

@ DZone Refcardz AnswerHub 6 Database Partitioning with MySQL

With Knos

PERFORMANCE CONSIDERATIONS FOR

CONCLUSIONS

Database partitioning is a value-added database design
technique that many data modelers and DBAs rely on to achieve
1. Generally, partitioning and repartitioning operations depend various objectives.

on file-system operations for their implementation.

PARTITIONING

a) Reduces the amount of data read operations for typical SQL
2. Speed of the partitioning-related operations is affected by operations. As such, the overall response time is reduced.
factors such as file system type, disk speed, swap space and

file-handling efficiency. b) Increases database performance by optimizing the database

scan operations internally.

3. In particular, you should make sure that large_files_support is

enabled and that openLfiles_limit is set properly. c) Simplifies data management so there is more control over how

the data is organized inside a database.

4. Partitioned tables using the MyISAM storage engine,
therefore increasing myisam_max_sort_file_size, may improve
performance.

d) Achieves a greater degree of query throughput by spreading
data more logically.

5. Similarly, partitioning and repartitioning operations involving

!nnoDB tgbles may be made more efficient by enabling SUGGESTED READINGS
innodb_file_per_table.

6. Partitioning operations, queries, and update operations
generally tend to be faster with MyISAM tables than with
InnoDB or NDB tables.

1. MySQL Reference Manual, which is available through the
website dev.mysqgl.com/doc/en/

7. As with non-partitioned tables, proper use of indexes can 2. MySQL Cookbook, by Paul DuBois

significantly speed up queries on partitioned tables.

8. The maximum possible number of partitions for a given 3. MySQL in a Nutshell, by Russell Dyer

table (that does not use the NDB storage engine) is 1024. This o ) ) )

includes sub-partitions. 4. MySQL Administrators Bible, by Sheeri K. Cabral and Keith

Murphy.
ABOUT THE AUTHOR RECOMMENDED BOOK

Narayana Maruvada is a computer science and il "his book provides a solid framework for both database
engineering graduate, currently working as MySQL novices and experienced DBA's transitioning to MySQL.
a QA engineer at Benefitfocus, the country’s IV I IIEN |t provides essential coverage of the fundamentals of

MySQL database management, including MySQL's

S unique approach to basic database features and

& functions as well as coverage of SQL queries, data
L] and index types, stored-procedure, functions, triggers,

leading provider of benefits technology. He is
part of a top notch technology organization that
focuses on rapid, high quality, and superiorly
architected solutions. Narayana has over 6 years

{lim

of experience developing and testing web-based applications. o views, transactions, etc. It also offers comprehensive
In particular, Narayana has worked extensively with MySQL and coverage of advanced topics such as MySQL server tuning, managing
Oracle databases, tuning queries and configurations for maximum storage engines, caching, backup and recovery, managing users, index
performance and reliability. tuning, database and performance monitoring, security, and more.

‘ez Browse our collection of over 150 Free Cheat Sheets

Getting Started with
Cloud Computing
By Do Ao

Upcoming Refcardz

Scala Collections

HBase
Opa
Data Warehousing

Z DZone, Inc. ‘ ISBN-13: 978-1-93L502-51-k
D one 150 Preston Executive Dr. ISBN-10: 1-93L502-51-8
Suite 201

50795
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399

more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

Refcardz Feedback Welcome
refcardz@dzone.com 1936"502

Sponsorship Opportunities

$7.95

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, sales@dzone.com Version 1 O
without prior written permission of the publisher.


http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
dev.mysql.com/doc/en/
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470416912.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470416912.html

