

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#157
D

at
ab

as
e

 P
ar

ti
ti

o
n

in
g

 w
it

h
 M

yS
Q

L

By Narayana Maruvada

Improving Performance, Availability, and Manageability

MYSQL – THE MOST CHOSEN DATABASE

MySQL, the world’s most popular open-source database
management system, encompasses key attributes such as high
performance, manageability, scalability, availability and ease of
use. It has become the default database for building any new
generation applications over any technology stack. Additionally,
its capability to run on any platform has made it a reliable option
to use because of its flexibility and control over the applications.

This reference card provides an overview of the MySQL database
partitioning techniques and how these techniques lead to
operational excellence.

WHAT IS DATABASE PARTITIONING?

Partitioning is a database design technique with details as follows

Major Abilities of Partitioning

1. Splits large database into smaller and more manageable ones.

2. Simplifies the overall data management and operations.

3. Enhances the overall performance of the database.

4. Assists the MySQL Optimizer.

Hot
Tip

MySQL Optimizer typically contains the set of routines that decide
what execution path the database server should take for executing
the queries.

DATABASE PARTITIONING BASICS

 The two very basic database partitioning practices are as follows.

Technique Description

Horizontal Partitions a big table based on the number of rows.

Vertical Partitions a table based on the different columns

DATABASE PARTITIONING IN MYSQL

MySQL implements the database partitioning feature through
user-defined partitioning.

Advantages

1. Allows for more control over the records stored in the database.

2. Specifies the partition in which a record is stored

3. Default is based on a specific value

To determine whether the MySQL server supports partitioning features or
not, issues a SHOW VARIABLES statement at the mysql prompt, as show
below.

mysql> SHOW VARIABLES LIKE ‘%partition%’;
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| have_partitioning | YES |
+-------------------+-------+
1 row in set (0.00 sec)

Since the variable have_partitioning has a value of YES, it indicates
MySQL server supports partitioning.

Similarly, you can also verify the partitioning support by issuing the SHOW
PLUGINS statement at the mysql prompt, as shown below.

mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+----------+----------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	DISABLED	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	DISABLED	STORAGE ENGINE	NULL	GPL
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)

CONTENTS INCLUDE:
n	 What is Database Partitioning
n	 	Database Partitioning Basics
n	 Database Partitioning in MySQL
n	 MySQL Database Engine
n	 Partitioning Types
n	 And more...

Database Partitioning with MySQL

brought to you by...

http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://answerhub.com

2 Database Partitioning with MySQL

DZone, Inc. | www.dzone.com

If the status is being displayed as ACTIVE against the partition
plugin, it indicates the partitioning feature is enabled and
available.

Hot
Tip

To disable the partitioning support option, start the MySQL server
with the –skip – partition option. The value of have_partitioning is now
DISABLED.

MYSQL DATABASE ENGINE – A PREREQUISITE FOR

PARTITIONING

For creating partitioned tables, you can use most of the storage
engines that are supported by the MySQL server.

Hot
Tip

It is important to note that all partitions of the partitioned table should
be using the same storage engine.

To determine which storage engine the MySQL server supports,
issue the SHOW ENGINES statement at the mysql prompt at
shown below.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary
tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: MyISAM
 Support: DEFAULT
 Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: InnoDB
 Support: YES
 Comment: Supports transactions, row-level locking, and foreign
keys
Transactions: YES
 XA: YES

Among all, the value against support column indicates whether
an engine can be used or not.

Hot
Tip

A value of YES, NO and DEFAULT with the storage engine indicates if
an engine is available, not available or available and currently set as
default storage, respectively.

PARTITIONING TYPES

The following section outlines the various types of partitioning
techniques that are supported by MySQL.

RANGE Partitioning

Features

1.Tables are partitioned based on the column values falling
within a given range.

2. Ranges should be contiguous but not overlapping.

The following example illustrates the range-partitioning
technique. First, we create an employees table, as shown below:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01’,
separated DATE NOT NULL DEFAULT ‘9999-12-31’,
job_code INT NOT NULL,
store_id INT NOT NULL
);

Among the list of columns, store_id can be used to partition the
entire table based on the values available with it, as shown below:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01’,
separated DATE NOT NULL DEFAULT ‘9999-12-31’,
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21)
);

It is important to note that each partition in defined in order from
lowest to highest.

Hot
Tip

For accommodating rows with some higher and/or greater values in
the partitions, a clause named VALUE
LESS THAN is used in the create table.. statement, as show below.

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01’,
separated DATE NOT NULL DEFAULT ‘9999-12-31’,
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN
MAXVALUE
);

MAXVALUE represents an integer value that is always greater
than the largest possible value that is available.

LIST Partitioning

Features

1. Very analogous to range partitioning.

2. Partition is selected based on columns matching a set of
discrete values.

http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

3 Database Partitioning with MySQL

DZone, Inc. | www.dzone.com

Features

3. Each partition should be explicitly defined.

4. Partitions do not need to be declared in any order.

The following example demonstrates how to list partition a table
based on a column value.

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01’,
separated DATE NOT NULL DEFAULT ‘9999-12-31’,
job_code INT,
store_id INT
)
PARTITION BY LIST(store_id) (
 PARTITION pNorth VALUES IN (3,5,6,9,17),
 PARTITION pEast VALUES IN (1,2,10,11,19,20),
 PARTITION pWest VALUES IN (4,12,13,14,18),
 PARTITION pCentral VALUES IN (7,8,15,16)
);

Hot
Tip

Deleting data from a partition works more efficiently than deleting the
data directly from the table.

HASH Partitioning

Features

1. Ensures an even distribution of data among partitions.

2. Explicitly specify into which partition a given column value is
to be stored

The following example demonstrates how to hash partition a
table based on a column.

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01’,
separated DATE NOT NULL DEFAULT ‘9999-12-31’,
job_code INT,
store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include the PARTITIONS clause, the number of
partitions defaults to 1.

KEY Partitioning

Features

1. Conceptually and syntactically, it is analogous to HASH
partitioning.

2. The requisite hashing function is supplied by MySQL server.

3. Partitioning key must consist of table’s primary key.

CREATE TABLE k1 (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

Hot
Tip

If there is no primary key available with the table but there is a unique
key, then the unique key can be used as a partitioning key, as shown
below.

CREATE TABLE k1 (
id INT NOT NULL,
name VARCHAR(20),
UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

RETRIEVING INFORMATION ABOUT EXISTING

PARTITIONS

You can obtain information about existing partitions in a number
of ways.

Sr. No Statement

1 Issue SHOW CREATE TABLE statement to view
partition clause used.

2 Issue SHOW TABLE STATUS statement to determine
whether table is partitioned.

3 Query the INFORMATION SCHEMA.PARTITIONS
table for information about table partitions.

4 Issue statement EXPLAIN PARTITIONS SELECT, as
shown in below syntax,
Issue statement EXPLAIN PARTITIONS SELECT, as
shown in below syntax:
EXPLAIN PARTITIONS SELECT * FROM table_name
WHERE clause

MANAGING PARTITIONS

Partition management refers to a set of activities that deals with
the actions, such as:

•	 Adding

•	 Dropping

•	 Redefining

•	 Merging or Splitting

You can realize all of these actions by using the ALTER TABLE
statement with a partition_option clause.

Hot
Tip

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION,
REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in
a given ALTER TABLE statement.

Managing Range and List Partitions - a Quick Glance

1. Managing range and list partitions is very similar.

2. Adding and Dropping of partitions are handled in same way.

3. Dropping an existing partitions is very straightforward.

4. Accomplished by using ALTER TABLE statement with
appropriate partition clause.

5. To delete all the data from a partition, use the DROP
PARTITION clause.
ALTER TABLE table_name DROP PARTITION partition_name;

http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

4 Database Partitioning with MySQL

DZone, Inc. | www.dzone.com

Managing Range and List Partitions - a Quick Glance

6. To preserve the table definition, use TRUNCATE TABLE
statement.

7. To change the partition without losing any data, use the
REORGANIZE PARTITION clause. ALTER TABLE table_name
REORGANIZE PARTITION [partition_name INTO (partition_
definitions)]

8. With range partitions, you can add new partitions ONLY to
the high end of the partition list.

9. Adding a new partition in between or before an existing
partition will result in error.

10. You cannot add a new LIST PARTITION encompassing any
values that are already included in the value list of an existing
partition. This will result in an error.

11. The REORGANIZE PARTITION clause may also be used for
merging adjacent partitions.

12. The REORGANIZE PARTITION clause cannot be used for
changing the table’s partitioning type. For example, you cannot
change Range partitions to Hash partitions, or vice-versa.

Managing Hash and Key Partitions – a Quick Glance

1. When it comes to making changes to partitioning setup, it is
similar with hash and key partitions.

2. You cannot drop hash or key partitions.

3. You can merge hash or key partitions by using an ALTER
TABLE statement with the coalesce partition clause, as shown
below: ALTER TABLE table_name COALESCE PARTITION 4;

4. The number following the coalesce partition clause refers to
the number of partitions to remove from the table

5. Attempting to remove more partitions than the table has will
lead to an error.

PARTITIONS MAINTENANCE

You may also carry out a number of table and associated partition
maintenance tasks by issuing a few SQL statements using the
following options:

SQL Options Description Equivalent SQL
Statement

REBUILDING
PARTITIONS

Used for rebuild ing
a partition and for
defragmentation.

ALTER TABLE table_
name REBUILD
PARTITION p0, p1;

OPTIMIZING
PARTITIONS

Used to reclaim any
unused space and
defragment partition
data files.

ALTER TABLE
table_name
OPTIMIZE
PARTITION p0, p1;

ANALYZING
PARTITIONS

Used to store key
distributions about
partitions.

ALTER TABLE
table_name
ANALYZE partition
p3;

REPAIRING
PARTITIONS

Used for repairing any
corrupted partitions.

ALTER TABLE
table_name REPAIR
partition p0, p1;

CHECKING
PARTITIONS

Used for checking
errors in partitions

ALTER TABLE
table_name CHECK
partition p1;

PARTITION PRUNING

Partition pruning is an optimization technique that can be
implemented for partitioned tables. The idea behind pruning
is relatively simple and it can be described as “Do not scan a
partition when there are no matching values.” For example,
suppose that you have a partitioned table t1 defined by the
statement shown below:

CREATE TABLE t1 (
fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
 PARTITION p0 VALUES LESS THAN (64),
 PARTITION p1 VALUES LESS THAN (128),
 PARTITION p2 VALUES LESS THAN (192),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Now, consider the case where you wish to obtain results from a
query such as:

SELECT fname, lname, region_code, dob FROM t1 WHERE
region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned
will be in either of the partitions p0 or p3; that is, we need to
search only in partitions p1 and p2 to find matching rows. By
doing so, we can save time and effort and find matching rows
instead of having to scan all partitions in the table. This “cutting
away” of unneeded partitions is known as “pruning.”

The query optimizer can perform pruning whenever a WHERE
condition can be reduced to either of the following two cases:

•	  partition_column = constant

•	  partition_column IN (constant1, constant2, constant3,....,
 constantN)
In the first case, the optimizer simply evaluates the partitioning
expression for the value given. Then it determines and scans only
the partition containing that value. In many cases, the equal sign
can be replaced with other arithmetic comparison operators,
including <, >, <= , >= , and <>.

Hot
Tip

Queries using BETWEEN in the WHERE clause can also take advantage
of partition pruning.

In the second case, the optimizer evaluates the partitioning
expression for each value in the list, creates a list of matching
partitions, and then scans only the partitions in that list. Further
pruning can be applied to short ranges, which the optimizer can
convert into equivalent lists of values.

Hot
Tip

 Pruning can also be applied for tables partitioned on a DATE or
DATETIME column when the partitioning expression uses the YEAR()
or TO_DAYS() function.

http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

5 Database Partitioning with MySQL

DZone, Inc. | www.dzone.com

IMPLEMENTING PARTITION PRUNING TECHNIQUE

Partition pruning can be implemented for all partition types.
Though pruning for RANGE partitioning is already explained
in the above section, this section illustrates how this technique
can be applied to other types of partitions as well. For example,
consider a table t3 that is partitioned by LIST, as shown below:

CREATE TABLE t3
(
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY LIST(region_code)
(
 PARTITION r0 VALUES IN (1, 3),
 PARTITION r1 VALUES IN (2, 5, 8),
 PARTITION r2 VALUES IN (4, 9),
 PARTITION r3 VALUES IN (6, 7, 10)
);

Table t3 shows that the region_code column is limited to values
between 1 and 10 (inclusive). So, when a select query is issued,
such as the one below—

SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3;

—the optimizer determines the partitions where values 1, 2 and 3
are found, which should be ro, r1 and skips those that remain (r2
and r3).

Similarly, for the tables that are partitioned by HASH and KEY,
pruning is also possible in the cases when the WHERE clause
uses a simple “ = “ relation against a column that is used in the
partition expression. For example, consider the created table
shown below:

CREATE TABLE t4 (
fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

Any query that compares a column value with a constant can be
pruned, as shown in the next line of code:

SELECT * FROM t4 WHERE region_code = 7;

Importantly, pruning can also be employed for short ranges,
because the optimizer can turn such conditions into IN relations.
For example, consider the next two queries with reference to the
previously defined table t4:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both of these cases, the WHERE clause is transformed by the
optimizer into WHERE region_code IN (3, 4, 5). This optimization
is used only if the range size is smaller than the number of
partitions.

Hot
Tip

Pruning can be used only on integer columns of tables partitioned
by HASH or KEY. But, for a table that is partitioned by KEY, has a
composite primary key, and uses a composite partitioning key, it is
possible to perform pruning for queries meeting the following two
criteria:

•	 The query must have a WHERE clause of the form
 pkcol1 = c1 AND pkcol2 = c2 AND ... pkcolN = cN,
 where pkcol1..... pkcolN are the partitioning key
 columns and c1.....cN are constant values.

•	  All columns of the partitioning key must be
 referenced in the WHERE clause.

ABOUT ‘EXPLAIN PARTITION’ STATEMENT

1. Generally, EXPLAIN statement is used to obtain information
about how MySQL executes a statement.

2. EXPLAIN PARTITION is highly helpful for examining queries
involving partitions.

3. A SELECT statement that is preceded by an EXPLAIN
statement displays information from the Optimizer about the
query execution plan.

4. For Example: EXPLAIN PARTITIONS SELECT select_options

RESTRICTIONS AND LIMITATIONS ON PARTITIONING

1. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. The result must be an integer value or
NULL (except in the case of [LINEAR] KEY partitioning).

2. The bit operators |, &, ^, <<, >>, and ~ are not permitted in
partitioning expressions.

3. Tables employing user-defined partitioning do not preserve
the SQL mode in effect at the time that they were created.

4. A change in the SQL mode at any time after the creation of
partitioned tables may lead to major changes in the behavior
of such tables, and could easily lead to corruption or loss of
data.

5. Sometimes a change in the server SQL mode can make
partitioned tables unusable.

6. Server SQL modes also impact replication of partitioned
tables since differing SQL modes on master and slave can lead
to differently evaluated partitioning expressions.

7. Different SQL modes on master and slave can cause different
distributions of data among partitions.

8. Partitioned tables do not support FULLTEXT indexes or
searches. This includes MyISAM storage engine.

9. Columns with spatial data types, such as POINT or
GEOMETRY, cannot be used in partitioned tables.

10. Temporary tables cannot be partitioned.

11. A partitioning key must be either an integer column or
an expression that resolves to an integer. The column or
expression value may also be NULL.

12. Partitioned tables do not support foreign keys.

http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com

6 Database Partitioning with MySQL

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

PERFORMANCE CONSIDERATIONS FOR

PARTITIONING

1. Generally, partitioning and repartitioning operations depend
on file-system operations for their implementation.

2. Speed of the partitioning-related operations is affected by
factors such as file system type, disk speed, swap space and
file-handling efficiency.

3. In particular, you should make sure that large_files_support is
enabled and that open_files_limit is set properly.

4. Partitioned tables using the MyISAM storage engine,
therefore increasing myisam_max_sort_file_size, may improve
performance.

5. Similarly, partitioning and repartitioning operations involving
InnoDB tables may be made more efficient by enabling
innodb_file_per_table.

6. Partitioning operations, queries, and update operations
generally tend to be faster with MyISAM tables than with
InnoDB or NDB tables.

7. As with non-partitioned tables, proper use of indexes can
significantly speed up queries on partitioned tables.

8. The maximum possible number of partitions for a given
table (that does not use the NDB storage engine) is 1024. This
includes sub-partitions.

CONCLUSIONS

Database partitioning is a value-added database design
technique that many data modelers and DBAs rely on to achieve
various objectives.

a) Reduces the amount of data read operations for typical SQL
 operations. As such, the overall response time is reduced.

b) Increases database performance by optimizing the database
 scan operations internally.

c) Simplifies data management so there is more control over how
 the data is organized inside a database.

d) Achieves a greater degree of query throughput by spreading
 data more logically.

SUGGESTED READINGS

1. MySQL Reference Manual, which is available through the
 website dev.mysql.com/doc/en/

2. MySQL Cookbook, by Paul DuBois

3. MySQL in a Nutshell, by Russell Dyer

4. MySQL Administrators Bible, by Sheeri K. Cabral and Keith
 Murphy.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

150

Scala Collections
HBase
Opa
Data Warehousing

ABOUT THE AUTHOR

Narayana Maruvada is a computer science and
engineering graduate, currently working as
a QA engineer at Benefitfocus, the country’s
leading provider of benefits technology. He is
part of a top notch technology organization that
focuses on rapid, high quality, and superiorly
architected solutions. Narayana has over 6 years

of experience developing and testing web-based applications.
In particular, Narayana has worked extensively with MySQL and
Oracle databases, tuning queries and configurations for maximum
performance and reliability.

This book provides a solid framework for both database
novices and experienced DBA’s transitioning to MySQL.
It provides essential coverage of the fundamentals of
MySQL database management, including MySQL’s
unique approach to basic database features and
functions as well as coverage of SQL queries, data
and index types, stored-procedure, functions, triggers,
views, transactions, etc. It also offers comprehensive

coverage of advanced topics such as MySQL server tuning, managing
storage engines, caching, backup and recovery, managing users, index
tuning, database and performance monitoring, security, and more.

http://www.refcardz.com
http://www.refcardz.com
http://answerhub.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
dev.mysql.com/doc/en/
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470416912.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470416912.html

