Снешіsтку Salt Analysis Cheatsheet

Version 2.0

© 2008 Ankur Banerjee All Rights Reserved.

Only **important** stuff for CBSE Class 12th Chemistry practical syllabus has been included, **not everything**.

Апіопѕ

Test mentioned next to group is the preliminary test; the ones mentioned under an anion are confirmatory tests for it.

Group I (dilute H_2SO_4 group) – CO_3^{2-}

(carbonate), SO_3^{2-} (sulphite), S^{2-} (sulphide), NO_2^{-} (nitrite): Salt + dil H_2SO_4

- 1. **No reaction**: Group I anion not present. Continue to group II.
- Carbonate: Colourless and odourless gas (CO₂)
 1. WE¹ + MgSO₄ = white ppt
- 3. **Sulphite**: Colourless gas with pungent smell
 - 1. WE + $BaCl_2$ (aq) = white ppt soluble in dil HCl
- 1 Water extract: Pinch of salt + water

- 2. WE + acidified $K_2Cr_2O_7^2$ = sol ³ turns green
- 3. WE + acidified KMnO₄ = pink colour of KMnO₄ is discharged
- Sulphide: Colourless gas with a smell of rotten eggs (H₂S); turns lead acetate paper black
 - Sodium nitroprusside test: WE
 + sodium nitroprusside ⁴ =
 purple / violet colour
 - Lead acetate test: WE + lead acetate ⁵ (aq) = black ppt
- 5. Nitrite: Pungent light brown gas
 - 1. Starch-iodide test: WE + dil H₂SO₄ (or dil acetic acid); boil, then add solid KI + fresh starch sol = deep blue colouration

Group II (conc H₂SO₄ group) – Cl⁻

(chloride), Br (bromide), I⁻ (iodide), NO₃⁻ (nitrate), CH₃COO⁻ (acetate), C₂O₄²⁻ (oxalate): Salt + conc H₂SO₄

- 1. **No reaction**: Group II anion not present. Continue to group III.
- Chloride: Colourless white pungent fumes (HCl); intensify when glass rod dipped in NH₄OH is brought near mouth of test tube
 - Silver nitrate test: WE + AgNO₃ = white ppt soluble in NH₄OH
 - 2. Chromyl chloride test: Salt + solid $K_2Cr_2O_7$ + 2-3 drops conc H_2SO_4 = orange / red fumes of chromyl chloride ⁶
 - 1. Vapours + NaOH (aq) = yellow solution
 - Yellow solution + acetic acid + lead acetate sol = yellow ppt
- 2 Potassium dichromate
- 3 Solution
- 4 Na₂[Fe(CN)₅NO]
- 5 Pb(CH₃COO)₂
- $6 CrO_2Cl_2$

- 3. Bromide: Reddish brown vapour
 - Silver nitrate test: WE + AgNO₃ (aq) = yellow ppt partially soluble in NH₄OH
 - Organic layer test: WE + CCl₄ + 1 drop conc HNO₃ = Upper layer aqueous; lower layer organic of orange / brown colour (bromine is soluble in non-polar solvent)
- 4. Iodide: Violet vapours
 - Silver nitrate test: WE + AgNO₃ (aq) = yellow ppt insoluble in NH₄OH
 - Organic layer test: WE + CCl₄ + 1 drop conc HNO₃ = Upper layer aqueous; lower layer organic of violet colour (iodine is soluble in non-polar solvent)
- Nitrate: Brown fumes with pungent smell, which intensify on adding paper pellets (may need heating)
 - Brown ring test: WE + freshly prepared FeSO₄ sol + 1 drop conc HNO₃ added along side of test tube = brown ring formed at junction of sol and acid
- 6. **Acetate**: Pungent vapour with vinegar-like smell
 - Ester test: Salt + conc H₂SO₄ + ethanol = fruity smell of ester
 - 2. Ferric chloride test: WE + FeCl₃ (aq) = brick red colour
 - 1. Add dil HCl = red colour disappears
 - Add water and boil = reddish brown ppt
- 7. **Oxalate**: Colourless gas with effervescence (CO + CO₂)
 - 1. Calcium chloride test: WE + acetic acid + CaCl₂ (aq) + boil 7 $(NH_4)_2M_0O_4$

= white ppt; ppt dissolves when dil HNO_3 is added and warmed

 Potassium permanganate test: Salt + dil H₂SO₄ + heat; then add 2-3 drops KMnO₄ sol = pink colour of KMnO₄ is discharged

Group III anions (special group) -

 SO_4^{2-} (sulphate), PO_4^{3-} (phosphate): No group reagent

- 1. Sulphate:
 - 1. Barium chloride test: WE + BaCl₂ (aq) = white ppt insoluble in conc HCl
 - Lead acetate test: WE + lead acetate (aq) + acetic acid = white ppt soluble in CH₃COONH (ammonium acetate)
- 2. Phosphate:
 - Ammonium molybdate test: WE + dil HNO₃ + ammonium molybdate ⁷ + boil = crystalline canary yellow ppt

Сатіопз

- Group reagent is mentioned next to group cations.
- Test mentioned next to cation is the preliminary; ones under it are confirmatory tests for it.
- When sulphate is detected, Ba²⁺, Ca²⁺, Pb²⁺, and Sr²⁺ are not present as sulphates of these radicals are insoluble.
- When phosphate is detected, cations of group III and later are absent.

www.ankurb.info

Group 0 – *NH*₄⁺ (*ammonium*): No group reagent

- Sodium hydroxide test: Salt + NaOH = pungent smelling gas; gives white fumes when a glass rod dipped in conc HCl is brought near mouth of test tube
- Nessler's reagent ⁸ test: OS ⁹ + NaOH + Nessler's reagent = Brown / yellow ppt

Group I – Pb²⁺ (lead):

OS + dil HCl = white ppt; add water, boil, and divide into three parts

- 1. Leave OS undisturbed = white crystals formed on cooling
- 2. Potassium iodide test: OS + KI = yellow ppt
- 3. Potassium chromate test: $OS + K_2CrO_4 = yellow ppt$

Group II – **Cu**²⁺ (copper):

 $OS + dil HCl + H_2S = black ppt$

- 1. Throw off extra sol, retain ppt, and dissolve in a few drops of conc HNO_3 = bluish green sol, ppt dissolves; divide into two parts
 - 1. Part 1 + excess NH_4OH = blue coloured sol
 - Potassium ferrocyanide test: Part 2 + acetic acid + K₄[Fe(CN)₆] = reddish brown / chocolate coloured ppt (Note – this test is difficult to get)

Group III – Fe²⁺, Fe³⁺ (iron), Al³⁺ (aluminium):

 $OS + solid NH_4Cl + excess NH_4OH$

 Fe²⁺ / Fe³⁺: Note – ferrous salts are green in colour, ferric salts are brown in colour.

- 1. If ferrous salt has been given, convert to ferric: OS + conc $HNO_3 + heat = brown ppt;$ then do reaction with group reagent
- 2. Brown ppt + HCl; then divide into two parts
 - Potassium ferrocyanide test: Part 1 + K₄[Fe(CN)₆] = blue ppt / colour
 - 2. Potassium thiocyanate test: Part 2 + KCNS = blood red colour
- 2. Al³⁺: Gelatinous white ppt
 - 1. Blue lake test: Retain ppt + dil HCl = clear sol
 - Sol + blue litmus and NH₄OH (drop-by-drop) = blue colour layer ('lake') floats over colourless sol

Group IV – Co^{2+} (cobalt), Ni²⁺ (nickel), Mn²⁺ (manganese), Zn²⁺ (zinc): OS + solid NH₄Cl + excess NH₄OH + pass H₂S gas

- Co²⁺ / Ni²⁺: Black ppt; dissolve ppt in aqua regia ¹⁰ and evaporate sol to dryness to get residue
 - Co²⁺: Blue residue; turns pink / purple when dissolved in water; divide into two parts
 - 1. Part 1 + dil acetic acid + KNO_2 + warm = yellow ppt
 - 2. Part 2 + ether (1 mL) + solid NH₄CNS ¹¹ = blue colour in ether
 - Ni²⁺: Yellow residue; turns green when dissolved in water; divide into two parts

11 Ammonium sulphocyanide

⁸ K₂HgI₄

⁹ Original solution: Salt + acid + water

¹⁰ Aqua regia: 3 parts conc HCl + 1 part conc HNO $_3$

- 1. DMG¹² test: Part 1 + excess NH₄OH + DMG = bright red ppt
- 2. Part 2 + NaOH + bromine water + boil = black ppt
- Mn²⁺: Buff / skin colour ppt; divide into two parts
 - Part 1 + dil HCl + boil off H₂S + NaOH = white ppt; which turns black / brown on adding bromine water
 - 2. Lead dioxide test: Part 2 + PbO₂ + conc HNO₃ + boil = after cooling; pink colouration
- Zn²⁺: Greyish white ppt; divide into two parts
 - Part 1 + excess NaOH = white ppt dissolves
 - Potassium ferrocyanide test: Part 2 + K₄[Fe(CN)₆] = white / bluish white ppt

Group V – Ba^{2+} (barium), Sr^{2+} (strontium), Ca^{2+} (calcium): OS + (NH₄)₂CO₃ + NH₄Cl + NH₄OH = white ppt; add dil acetic acid, divide sol into three parts and test for following IN ORDER

- 1. **Ba²⁺**: Part 1 + excess K_2CrO_4 ¹³ (aq) = yellow ppt
- 2. Sr^{2+} : Part 2 + (NH₄)₂SO₄ (aq) = white ppt
- 3. **Ca²⁺:** Part 3 + $(NH_4)_2C_2O_4$ ¹⁴ (aq) + NH₄OH (only if nothing appears at first) = white ppt
- 4. Flame test: Take salt and make a paste by mixing with conc HCI. Take paste on tip of glass rod / platinum wire, and put in Bunsen burner flame
 - 1. **Ba²⁺:** Green flame
 - 2. **Sr²⁺**: Crimson red flame
 - 3. **Ca²⁺:** Brick red flame

- 13 Potassium chromate
- 14 Ammonium oxalate

Group VI – Mg^{2+} (magnesium): No group reagent OS + NH₄Cl + excess NH₄OH + ammonium phosphate = white ppt

Coloured salts

Colour	Inference
Blue	Cupric salts
Green	Hydrated nickel salts
Rose red	Cobalt salts, Hgl ₂
Light green	Ferrous salts
Yellow / brown	Ferric salts
Green / blue	Hydrated copper salts
Deep blue	Anhydrous cobalt salts
Pale pink	Manganese salts
Dark green / purple	Chromic salts

Miscellaneous Notes

- With Br^{-} , most labs only have NH_4^+ .
- With Ca²⁺, most labs only have Cl⁻.
- Easier way to do flame test: Use test tube holder as tongs, and pick up a sizeable chunk of salt with it. Put <u>one</u> drop of conc HCl, and put in Bunsen burner flame.
- Do flame test first; if you're lucky you'll get your cation early. Most students spend up a lot of time doing cation test.

¹² Dimethyl glyoxime reagent