
Summary of Synthesisable Verilog 2001

Numbers and constants

Example: 4-bit constant 11 in binary, hex and decimal:
4’b1011 == 4’hb == 4’d11

Bit concatenation using {} :
{2’b10,2’b11} == 4’b1011

Note that numbers are unsigned by default.

Constants are declared using parameter vis:
parameter foo = 42

Operators

Arithmetic: the usual + and - work for add and sub-
tract. Multiply (*) divide (/) and modulus (%) are pro-
vided by remember that they may generate substantial
hardware which could be quite slow.

Shift left (<<) and shift right (>>) operators are avail-
able. Some synthesis systems will only shift by a con-
stant amount (which is trivial since it involves no logic).

Relational operators: equal (==) not-equal (!=) and the
usual < <= > >=

Bitwise operators: and (&) or (|) xor (ˆ) not (˜)

Logical operators (where a multi-bit value is false if
zero, true otherwise): and (&&) or (||) not (!)

Bit reduction unary operators: and (&) or (|) xor (ˆ)
Example, for a 3 bit vector a:

&a == a[0] & a[1] & a[2]
and |a == a[0] | a[1] | a[2]

Conditional operator ? used to multiplex a result
Example: (a==3’d3) ? formula1 : formula0
For single bit formula, this is equivalent to:

((a==3’d3) && formula1)
|| ((a!=3’d3) && formula0)

Registers and wires

Declaring a 4 bit wire with index starting at 0:
wire [3:0] w;

Declaring an 8 bit register:
reg [7:0] r;

Declaring a 32 element memory 8 bits wide:
reg [7:0] mem [0:31]

Bit extract example:
r[5:2]

returns the 4 bits between bit positions 2 to 5 inclusive.

Assignment

Assignment to wires uses the assign primitive outside
an always block, vis:

assign mywire = a & b

This is called continuous assignment because mywire
is continually updated as a and b change (i.e. it is all
combinational logic).

Registers are assigned to inside an always block which
specifies where the clock comes from, vis:
always @(posedge clock)

r<=r+1;

The <= assignment operator is none blocking and is
performed on every positive edge of clock . Note that
if you have whole load of none blocking assignments
then they are all updated in parallel.

Adding an asynchronous reset:

always @(posedge clock or posedge reset)
if(reset)

r <= 0;
else

r <= r+1;

Note that this will be synthesised to an asynchronous
(i.e. independent of the clock) reset where the reset is
connected directly to the clear input of the DFF.

The blocking assignment operator (=) is also used inside
an always block but causes assignments to be per-
formed as if in sequential order. This tends to result
in slower circuits, so we do not used it for synthesised cir-
cuits.

Case and if statements

case and if statements are used inside an always
block to conditionally update state.

Example:

always @(posedge clock)
if(add1 && add2) r <= r+3;
else if(add2) r <= r+2;
else if(add1) r <= r+1;

Note that we don’t need to specify what happenswhen
add1 and add2 are both false since the default be-
haviour is that r will not be updated.

Equivalent function using a case statement:

always @(posedge clock)
case({add2,add1})

2’b11 : r <= r+3;

2’b10 : r <= r+2;
2’b01 : r <= r+1;
default: r <= r;

endcase

And using the conditional operator (?):

always @(posedge clock)
r <= (add1 && add2) ? r+3 :

add2 ? r+2 :
add1 ? r+1 : r;

Which because it is a contrived example can be short-
ened to:

always @(posedge clock)
r <= r + {add2,add1};

Note that the following would not work:

always @(posedge clock) begin
if(add1) r <= r + 1;
if(add2) r <= r + 2;

end

The problem is that the none blocking assignmentsmust
happen in parallel, so if add1==add2==1 then we are
asking for r to be assigned r+1 and r+2 simultane-
ously which is ambiguous.

Module declarations

Modules pass inputs and outputs as wires only. If an
output is also a register then only the output of that
register leaves the module as wires.

Example:

module simpleClockedALU(
input clock,
input [1:0] func,
input [3:0] a,b,
output reg [3:0] result);

always @(posedge clock)
case(func)

2’d0 : result <= a + b;
2’d1 : result <= a - b;
2’d2 : result <= a & b;
default : result <= a ˆ b;

endcase
endmodule

Example in pre 2001 Verilog:

module simpleClockedALU(
clock, func, a, b, result);

input clock;
input [1:0] func;
input [3:0] a,b;
output [3:0] result;
reg [3:0] result;
always @(posedge clock)

case(func)
2’d0 : result <= a + b;
2’d1 : result <= a - b;
2’d2 : result <= a & b;
default : result <= a ˆ b;

endcase
endmodule

Instantiating the above module could be done as fol-
lows:

wire clk;
wire [3:0] data0,data1,sum;

simpleClockedALU myFourBitAdder(
.clock(clk),
.func(0), // constant function
.a(data0),
.b(data1),
.result(sum));

Notes:

• myFourBitAdder is the name of this instance of
the hardware

• the .clock(clk) notation refers to:
.port_name(your_name)

which ensures that values are wired to the right
place.

• in this instance the function input is zero, to the
synthesis system is likely to simplify the imple-
mentation of this instance so that it is only capa-
ble of performing an addition (the zero case)

Simulation

Example simulation following on from the above in-
stantiation of simpleClockeALU :

reg clk;
reg [7:0] vals;
assign data0=vals[3:0];
assign data1=vals[7:4];

// oscillate clock every 10 simulation units
always #10 clk <= !clk;

// initialise values
initial #0 begin

clk = 0;
vals=0;

// finish after 200 simulation units
#200 $finish;

end

// monitor results
always @(negedge clk)

$display("%d + %d = %d",data0,data1,sum);

Simon Moore

