
SHELL PROGRAMMING
QUICK REFERENCE GUIDE

SPECIAL CHARACTERS
; command separator
() execute commands in subshell
{ } execute commands in current shell
comments
$var variable
& execute in the background
` substitute standard out
‘ quote all characters in a string
“ as ‘ but allow substitution

REGULAR EXPRESSIONS
. match any single character
$ match preceding regular expression

at the end of a line
^ match preceding regular expression

at the beginning of a line
* match zero or more occurrences of

preceding expression
[] match any character in the brackets

(or range, i.e. 2-8)
[^] match any character not in brackets

(i.e., ^0-9 means non-
numeric character)

\\ last regular expression encountered
\(exp\) remember expression for later

reference
\{m,n\} number of times occurring, with m
\{m\} indicating minimum and n
\{m,\} indicating maximum

COMMANDS
exit code
Exit shell with code return code

break level
Escape from level of for or while loop

continue level
Continue from level of for or while loop

read
Read input from a file

test
Evaluate an expression or condition

trap
Used for error handling

LOOPING
FOR

for variable in file/list
do

command
done

WHILE/UNTIL
while/until test/condition
do

command
done

CASE
case option in

option1) command;;
option2) command;;
*) command;;

esac
(* is any non-defined option)

IF
if test/condition then

command
elif test/expression then

command
else

command
fi

REPETITION
xargs -n
(see man page for more options)

VARIABLE EXPANSION
${var} simple variable substitution
${var:=value}

assign default value if not defined
${var:+value}

substitute value if var is non-null
${var:-value}

temporarily assign value if non-null
${var:?value}

issue error with value if var not set,
otherwise substitute value

Compiled by Michael Oliveri (www.mikeoliveri.com)
Feel free to print a copy for yourself!

