

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 Ruby Language Overview
	n	 Simple Ruby Examples
n	 IRB
n	 RubyGems
n	 Ruby Language Reference Tables
n	 Hot Tips and More...

Ruby is an easy-to-learn, dynamic, object-oriented programming
language with dynamic typing and automatic memory
management. While object-oriented at heart, it provides
facilities for procedural and functional programming as well as
extensive support for introspection and meta-programming.
Ruby’s core API, extensive standard library, and thousands of
high-quality external libraries make it suitable for many different
programming tasks in multiple disciplines (key examples being
network programming, Web applications, shell scripts, data
processing, and text manipulation).

Ruby is already installed on Mac OS X and many Linux
distributions. For Windows the easiest way to install everything
necessary is the Ruby Installer (http://rubyinstaller.rubyforge.org).

This refcard provides a quick reference to language elements
and many important API functions for quick lookup.

Ruby is considered to be a “pure” object-oriented language
because almost every concept within Ruby is object-oriented
in some sense. Yukihiro “Matz“ Matsumoto, Ruby’s creator,
wanted to develop a language that operated on the “principle
of least surprise” meaning that code should behave in a non-
confusing manner and be reasonably self-explanatory (beyond
the basic syntax). Matz also wanted Ruby to be a pleasurable
language with which to program, and not make unnecessary
demands upon the programmer.

Ruby is considered a “reflective” language because it’s possible
for a Ruby program to analyze itself (in terms of its make-up),
make adjustments to the way it works, and even overwrite
its own code with other code. It’s also considered to be
“dynamically typed” because you don’t need to specify what
type of objects can be associated with certain variables. Objects
are considered prime in Ruby and whether you’re passing
around a string, a number, a regular expression, or even a class,
you’re just dealing with an object from Ruby’s point of view.

Ruby will seem reasonably familiar to Python and Perl
programmers (and to a lesser extent C# and JavaScript
developers) as Ruby was heavily inspired by Perl in certain areas
(as was Python). Ruby is less similar to languages like C, C++ or
Java because these languages are compiled (not interpreted),
statically typed, and focused on performance rather than
flexibility and conciseness.

Despite being an object-oriented language, it is not necessary
to use explicitly object-oriented syntax within a basic Ruby
program. While everything works on objects (and methods
called upon those objects) behind the scenes, you can write
a program as simply as this:

def fib(i)
 if i.zero?
 0
 elsif i == 1
 1
 else
 fib(i - 2) + fib(i - 1)
 end
end

puts fib(10)

This script prints to screen the 10th number in the Fibonacci
sequence. It defines a method called fib that returns the
relevant result from a simple if/elsif/else expression. Note
the use of standard equality syntax (==), addition (+), subtraction
(-), and method calling (fib(10)), but also note the possibility
of using methods in somewhat idiomatic ways (i.zero? rather
than i == 0—though the latter would also work). The use of
i.zero? demonstrates calling a method upon an object (where
i is the object, and zero? is the method).

AbOUT RUby

RUby LANgUAgE OvERvIEw

SImpLE RUby ExAmpLES

Essential Ruby
By Melchior Brislinger and Peter Cooper

E
ss

e
n

ti
al

 R
u

b
y

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#30

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Hot
Tip

The main Ruby interpreter is usually invoked by
running “ruby” from the command line. If it is
given a filename as an argument that file will be

run (e.g. ruby myscript.rb). The interpreter has several
other options that are listed in the “Ruby Interpreter Argu-
ments” table in this card’s reference section.

http://www.dzone.com
http://rubyinstaller.rubyforge.org
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

 Essential Ruby
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

IRB (short for “Interactive Ruby”) is an interactive prompt or
“Read-Eval-Print-Loop“ (REPL) that uses the Ruby interpreter.
Anything you type is evaluated by Ruby and the response
printed to screen. IRB can be invoked by running “irb“ from the
command. A demonstrative session shows the usage:

irb(main):001:0> 3 + 5
=> 8

irb(main):002:0> "hello there " * 3
=> "hello there hello there hello there "

irb(main):001:0> "A String".class
=> String

irb(main):002:0> "A String".methods.sort
=> ["%", "*", "+", "<", "<<", "<=", "<=>", "==",
"===", "=~", ">", ">=", "[]", "[]=", "__id__", "__
send__", "all?", …

irb(main):003:0> "A String".class.methods.sort
=> ["<", "<=", "<=>", "==", "===", "=~", ">", ">=",
"__id__", "__send__", "allocate", "ancestors",
"autoload", ...

IRB is most commonly used when learning the Ruby
programming language, and also as a handy “sand box” to try
out new programming tricks and techniques quickly. IRB can be
used to interactively explore classes, test pieces of code and
is also used as a console to inspect and manipulate running
programs, for example, in Web applications.

RubyGems is the official Ruby package manager (though, notably,
it is not included with default Ruby 1.8 releases by default—
although it is present within Ruby 1.9 and on the OS X version
of Ruby 1.8). It allows developers and users to easily search,
install and update Ruby libraries and their dependencies and
works in a similar fashion to other package management tools
(such as yum and apt-get).

Gems are installed by running “gem install“ and the name of
the gem (e.g. gem install rails). Running “gem update“ updates
all installed gems to their latest official versions.

A selection of popular Ruby gems/libraries:

Information about RubyGems can be found at:
http://www.rubygems.org

Simple Ruby Examples, continued

Developing a program with “true” object-oriented syntax is not
significantly different. For example:

class Person
 attr_accessor :name, :age

 def full_info
 return "#{@name} is #{@age} years old"
 end
end

fred = Person.new
fred.name = "Fred"
fred.age = 45
puts fred.full_info

In this example, a class (Person) is defined, and attributes (name
and age) and a method (full_info) are defined upon that class.
Below the class definition, we then create an instance of the
Person class and assign it to a variable, fred, before assigning
values to its attributes, and then calling that instance’s full_info
method (which, in turn, uses instance variables—prefixed with @—
to create its output).

Earlier we called Ruby a “reflective” language because it offers
functionality to programs to change, extend, and otherwise
inspect themselves. We can look at a key Ruby idiom and
reflective feature—class reopening—by changing the Fibonacci
example from earlier to the following:

class Integer
 def fib
 if self.zero?
 0
 elsif self == 1
 1
 else
 (self - 2).fib + (self - 1).fib
 end
 end
end

puts 10.fib

Note this time that in order to get the Fibonacci number, we’re
no longer calling a global fib method, but a method that works
directly upon the number 10 itself (remember, everything is an
object—even the number 10!). The way this is achieved is by
“reopening” a standard Ruby class—Integer—and defining
a new method called fib within it. This then makes the fib
method available to all objects of class Integer in Ruby! Note
that the content of the integer object itself (the number we
need to use) is obtained with the self keyword. self, in this
case, returns a representation of the current object in its native
form. In this sense, Ruby is very similar to Python.

Hot
Tip

Want to try Ruby without installing anything?
Or want to get a walkthrough tutorial? Go to
http://tryruby.hobix.com. It’s a Web-based version

of IRB and Ruby, and features a tutorial to bring you up to speed.

Hot
Tip

“This is a test” is a string with no special qualities
(and, remember, it’s also an object in Ruby)
but it’s possible to interpolate data into it (from

variables, etc.) with a special syntax:

"2 plus 2 is #{2 + 2}"

The #{} construction serves to interpolate the result of the
expression within the curly braces—in this case 2 + 2 is
calculated to equal 4 and so the string ends up as "2 plus 2 is 4"

IRb

RUbygEmS

gem/library Description URL

Rails The famous Web application framework http://www.rubyonrails.com

Rake A Ruby based build system
(like a Ruby equivalent of make)

http://rake.rubyforge.org

Capistrano A tool for automatic remote
deployment tasks

http://capify.org

Mongrel A Ruby Web server and HTTP daemon
library

http://mongrel.rubyforge.org

rspec A “Behavior Driven Development”
(BDD) framework

http://rspec.info

camping A tiny web framework http://code.whytheluckystiff.net/
camping

http://www.dzone.com
http://www.refcardz.com
http://www.rubygems.org
http://tryruby.hobix.com
http://www.rubyonrails.com
http://rake.rubyforge.org
http://capify.org
http://mongrel.rubyforge.org
http://rspec.info
http://code.whytheluckystiff.net/camping
http://code.whytheluckystiff.net/camping

3

DZone, Inc. | www.dzone.com

 Essential Ruby
 tech facts at your fingertips

→

Variables

Modules & Classes

RUby LANgUAgE REfERENCE TAbLES

The following reference tables provide a quick look at many
elements of Ruby’s syntax. These can be used as a comparison
to other languages in order to see how the syntax differs.
Ruby’s syntax is often rather different to that of, say, Java or C#.

Types

Literals

123 Integer (Fixnum or Bignum)

12345 1.23e-4 Float

0xFF00 0b01100 0244 Integer as hexadecimal, binary, or octal

1..5 'a'..'z' Range (inclusive

1...5 'a'...'z' Range (non-inclusive – e.g. 1…5 represents 1 through 4)

?c Character

'string' String

"string\n" Double-quoted String with escape character

"string # {...}" Double-quoted String with inline expressions

<<DOC
string
DOC

Heredoc String

:symbol Symbol

/regexp/opts Regexp (regular expression)

[123, 'string', object, :symbol] Array

{1 => 2, :symbol =>'string' } Hash (associative array)

%q %Q(string) Single/double-quoted String

%w %W(string string string) Array of Strings (no quotes for the Strings)

%r(regexp) Regexp (regular expression)

local Locally scoped variable

@instance Instance scoped variable

@@class Class scoped variable

$global Globally scoped variable

Constant Constant

module Name
 ...
end

Defines a module

class Name < Super
 ...
end

Defines a class with a superclass

class << SomeClass
 ...
end

Defines /accesses the singleton class of SomeClass—
suited for defining class methods rather than
instance methods

include Module Includes module in class

def name(arguments)
 ...
end

Defines instance method

if condition
 ...
end

if condition
 ...
elsif condition
 ...
else
 ...
end

unless condition
 ...
else
 ...
end

… if condition

… unless condition

condition ? ... : ... (a ternary operator)

case ...
when condition
 ...
else
 ...
end

while condition
 ...
end

until condition
 ...
end

do
 ...
while condition

do
 ...
until condition

for object in enumerable
 ...
end

break
next
redo
retry

yield arguments

Expressions

Modules & Classes, continued

Constants

Exceptions

def Class.name(arguments)
 ...
end

def self.name(arguments)
 …
end

Defines class method

public
protected
private

Methods below are public/protected/
private

public symbol
protected symbol
private symbol

Methods with names supplied as symbols
are public/protected/private

attr symbols
attr_accessor symbols
attr_reader symbols
attr_writer symbols

Creates accessor methods for all
variables given

alias :new_method_name :method_name Creates alias for method with name

super(arguments) Calls same method of superclass

__FILE__ Filename of current source code file

__LINE__ Current line

__END__ End of Ruby code (ignore everything below)

DATA Anything below __END__ as an IO/File object

ENV[] Environment Variables

ARGV[] ARGF[] Command Line Arguments

begin
 ...
rescue exception => variable
 ...
else
 ...
ensure
 ...
end

Try a block of code and catch possible exceptions

Figure 1 shows the Exception hierarchy.

NoMemoryError

ScriptError

 LoadError

 NotImplementedError

 SyntaxError

SignalException

 Interrupt

StandardError

 ArgumentError

 IOError

 EOFError

 IndexError

 LocalJumpError

 NameError

 NoMethodError

 RangeError

 FloatDomainError

 RegexpError

 RuntimeError

 SecurityError

 SystemCallError

 SystemStackError

 ThreadError

 TypeError

 ZeroDivisionError

 SystemExit

 fatal

Exception

http://www.dzone.com
http://www.refcardz.com

4

DZone, Inc. | www.dzone.com

 Essential Ruby
 tech facts at your fingertips

Ruby Language Reference Tables, continued

Ruby Tools

Ruby Interpreter Arguments

ruby The Ruby interpreter

irb An interactive Ruby prompt

ri symbol Shows documentation for the specified symbol

rdoc Generates HTML documentation form Ruby source files

gem RubyGems, the Ruby package manager—not always available by default

-c Check code

-d Debug

-e "…" Execute a single line expression

-h Help

-n gets loop

-rLibrary require the specified library

-v Verbose mode

-w Display code warnings

-y Enable compiler debug mode

-rubygems Loads RubyGem support

Regular Expressions
. Any character (excluding newlines)

[…] Any single character in set

[^…] Any single character not in set

* Zero or more

+ One or more (to as many as possible)

+? One or more (to as few as possible)

? Zero or one

| (pipe symbol) Alternatives (e.g. a|b|c will match a, b, or c)

(…) Group

^ Beginning of line or string

$ End of line or string

{n, m} n to m (as a quantity)

(?>…) Atomic group

(?=…) Lookahead

(?!…) Negative lookahead

\N Back reference N (where N is a digit)

\A Beginning of a string

\b Word boundary

\B Non-word boundary

\d Digit

\D Non-digit

\s Whitespace

\S Non-whitespace

\w Word-character (alphanumeric)

\W Non-word-character

\z End of a string

\Z End of string, before newline

/…/imx Case insensitive, multiline, ignore whitespace

Ruby Core API
Figure 2 shows important Core API classes and their inheritance tree.

Object String

Range

Module

Numeric

Float

Class

Integer

Bignum

Fixnum

Symbol

Array

Hash

IO

...

File

Ruby Core API, continued
The following is a selection of important Ruby Core API objects
and methods. Instance methods are written .method and called
object.method while class methods are written #method and
called Class.method.

Object

Enumerable

Array (Enumerable)

.class Returns the object’s class

.inspect Returns a string containing information
about the object

.instance_eval

.instance_eval { … }
String code
Block

Evaluates a string or block in the context
of the object

.is_a?

.kind_of?
Class class
Class class

Returns true if the object’s class equals
the argument

.methods Returns an array with the object’s methods

.nil? Returns true if the object equals nil

.respond_to? Symbol methodname Returns true if the object responds to
the method

.send Symbol methodname,
[arguments]

Sends the message to the object along
with optional arguments

.to_s Returns a string of the object

.all? { |object| … } Sends all elements to the block and
returns true if every block returned true

.any? { |object| … } Sends all elements to the block and
returns true if any block returned true

.map { |object| … } Sends all elements to the block and
returns a new Array with each result

.find { |object| … }

.detect { |object| … }
Sends all elements to the block and
returns the first element for which the
blocks result is not false

.find_all { |object| … }

.select { |object| … }
Sends all elements to the block and
returns all elements for which the block
is not false

.grep Object pattern Returns a new Array with all elements for
which pattern === element

.include? Object object Returns true if the collection includes object

.sort [{|object, object| … }] Returns the Array, sorted by each
elements <=> or by the block

[]
[]
[]

Fixnum index
Fixnum start,
Fixnum length
Range range

Returns the object at the specified index
or all objects in the specified range

.compact Returns the Array without element that
equal nil

.delete Object object Deletes object from the Array

.delete_at Fixnum index Deletes the object at index from the Array

.delete_if { |object| … } Deletes elements for which the block
returns true

.each { |object| … } Sends each element to the block

.flatten Flattens the Array

.index Object object Returns the index of the first occurrence
of object

.insert Fixnum index,
Object object

Inserts object at the position specified
by index

.join String separator Returns a String with all elements
separated by separator

.length Returns the number of elements

.pop Returns the last element and removes it

.push Object object... Pushes object to the end of the Array

.reverse Reverses the order of elements

.rindex Object object... Returns the index of the last occurrence
of object

.shift Returns the first element and removes it

.uniq Returns a new Array without duplicates

.unshift Object object... Pushes object to the front of the Array

http://www.dzone.com
http://www.refcardz.com

5

DZone, Inc. | www.dzone.com

Essential Ruby
 tech facts at your fingertips

Hash (Enumerable)

String (Enumerable)

IO

File < IO

Struct

Kernel

File options

[] Object key Returns the value for key

[] = value Object key Sets the value for key

.delete Object key Deletes key and value from the Array

.delete_if { |key, value| … } Deletes key and value for which block
returns true

.each { |key, value| … } Sends each key and value to the block

.each_key { |key| … } Sends each key to the block

.each_value { |value| … } Sends each value to the block

.include?

.key?
Object object...
Object object...

Returns true if the hash includes a value
for key

.value? Object object... Returns true if the collection includes a
key for value

.index Object object... Returns the key for value

.invert Returns a new Hash with keys and values
inverted

.keys Returns an Array with all keys from the Hash

.length Returns the number of key-value pairs

.merge Hash hash... Returns a new Hash with entries from
both Hashes

.select { |object| … } Returns an Array with key-value pairs for
which the block returns true

.to_a Returns an Array with nested key-value pairs

.values Returns an Array with all values from the Hash

[]
[]
[]

Fixnum index
Range range
Regexp regexp

Returns the specified character or string

.capitalize Returns a capitalized version of the string

.center Fixnum width,
[String filler]

Centers the string using spaces or a
specified filler string

.chomp [String separator] Returns a String with separator removed from
the end

.count Returns the number of characters

.downcase Returns a lowercase version of the string

.gsub Regexp regexp
String replacement

Replaces all occurrences of regexp with
replacement

.gsub { |string…| … } Regexp regexp Finds all occurrences of regexp and replaces
them with the result of the block

.index String/Regexp piece Returns the position of the first occurrence
of piece

.rindex String/Regexp piece Returns the position of the last occurrence
of piece

.scan { |string…| … } Regexp regexp Scans the string for occurrences of regexp
and passes them to the block

.split String string Splits the string into an array and returns it

.strip Returns a string with whitespace removed
from both ends

.swapcase Returns a version of the string with uppercase
turned to lowercase and vice-versa

.to_sym Returns a symbol named like the string

.upcase Returns an uppercase version of the string

#read String filename [,
Fixnum length]

Opens filename and reads at most
length bytes

#readline String file, [] Reads and returns a line from file

.close Closes the IO

.each_line { |string| … } Send each line to the block

.eof? Returns true if there is no more data to read

.print Object object Writes object to the IO

.printf String string,
[Object object...]

Formats and writes string to the IO

.puts Object object Writes object to the IO

.read [Fixnum length] Reads and returns at most length bytes

.readline Reads and returns a line

.pos Returns the current position in bytes

#basename String path [, String suffix] Returns the filename from path with or
without suffix

#exist? String filename Returns true if filename exists

#join String piece [, String piece] Returns path by joining pieces

#new { |file| … } String filename, String options Opens and sends filename to block

#new String filename, String options Opens and returns filename

#size String filename Returns the filesize of filename

.each { |object| … } Calls the block for each instance variable
passing the value

.each_pair
{ |symbol, object| … }

Calls the block for each instance variable
passing the name and value

.length Returns the number of instance variables

.members Returns an Array containing all instance
variable names

#new [Symbol name, ...] Creates a new Struct with an instance variable
for each symbol

block_given? Returns true if a block was passed to the method

fork { … } Creates a subprocess, runs the block in it and
returns its ID

open String filename Opens a file

open { |io| … } String filename Opens a file, passes it to the block and closes
it afterwards

p Object object Prints object to the stdio

printf String string,
[Object object...]

Formats and writes string to the stdio

lambda {|object…| … } Creates and returns a new proc object with
the supplied block

puts String string Writes object to the IO

require String filename Load a Ruby file

system(string
[,string…])

String command
[, args]

Executes a system command

Syntax Additions/
Differences

Ruby 1.9 Ruby 1.8

Hash literal syntax { key: "value" } { :key => "value" }

Additional Proc/lambda
definition syntax

foo = ->(a,b){ … } foo = lambda { |a,b| … }

Additional Proc/lambda call syntax foo.("x", "y") foo.call("x", "y")

Block local variables foo = lambda { |;a| ... }

Encoding support for String "foo".encoding

String indices return Strings "foo"[2] # => 111 "foo"[2] # => "o"

Optional arguments are
possible before and after
other arguments

def foo(a, b = 2, c, d = 3)
 …
end

External Iterators i = [1, 2, 3].each

r/r+ Read/read-write from start of file

w/w+ Write/read-write truncate if file exists or create new

a/a+ Write/read-write from the end of the existing file or create new

Ruby Core API, continued

RUby 1.9

Ruby 1.9 is the new version of Ruby considered transitional to
Ruby 2.0 containing many changes to the language and libraries.
It has an entirely new virtual machine and bytecode compiler,
formerly known as YARV.

The new version includes support for unicode in strings, the
famous Oniguruma regular expression engine as well as
Operating System Threads and Fibers for lightweight concurrency.

Important syntax additions/differences to Ruby 1.8

http://www.dzone.com
http://www.refcardz.com

 Essential Ruby
6

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying,
or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-21-9
ISBN-10: 1-934238-21-X

9 781934 238219

5 0 7 9 5

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server
Silverlight 2

IntelliJ IDEA

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

fREE

AbOUT THE AUTHORS

Beginning Ruby is for every type

of reader wanting to learn Ruby,

from novice programmers to web

developers to Ruby newcomers. It

starts by explaining the principles

behind object-oriented programming,

builds toward creating a genuine

Ruby application, then explains key

Ruby principles, such as classes and objects; projects,

modules, and libraries; and other aspects of Ruby such as

database access.

RECOmmENDED bOOK

bUy NOw
books.dzone.com/books/beginning-ruby

Peter Cooper
Peter Cooper is a digital “jack of all trades” based in the north of
England. He is author of Beginning Ruby—published by Apress—
creator of numerous Web sites and technologies, a professional blogger
who runs Ruby Inside—the most popular blog for Ruby and Rails
developers—and an entrepreneur who sold two startups in 2007.

Publications
n	 Beginning Ruby, Apress

Projects
Ruby Inside—http://www.rubyinside.com/
Ruby Flow—http://www.rubyflow.com/
Rails Inside—http://www.railsinside.com/
SwitchPipe—http://switchpipe.org/

Blog
http://www.peterc.org/
http://twitter.com/peterc/

Homepage
http://www.petercooper.co.uk/

Melchior Brislinger
Melchior Brislinger is currently a student of Visual Communication at the Bauhaus-University
Weimar, Germany. He uses Ruby and other programming languages and tools to explore
the possibilities of combining art, design and technology.

The official Ruby website http://www.ruby-lang.org

The official documentation http://www.ruby-doc.org

The main Ruby repository http://www.rubyforge.org

Wikipedia’s overview of Ruby http://en.wikipedia.org/wiki/Ruby_
(programming_language)

The Ruby mailing lists http://www.ruby-forum.com

Ruby Zone http://ruby.dzone.com/

An interac tive online tutorial http://tryruby.hobix.com
(no download or installation)

A Ruby news site http://www.rubyinside.com

A community-powered
Ruby news site

http://www.rubyflow.com/

A Ruby-related blog aggregator http://www.rubycorner.com

JRuby
(Java Ruby Implementation)

http://jruby.codehaus.org

IronRuby (.NET Ruby Implementation) http://www.ironruby.net

RESOURCES

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com/refcardz/silverlight2
http://refcardz.dzone.com/refcardz/intellij-idea
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://books.dzone.com/books/beginning-ruby
http://books.dzone.com/books/beginning-ruby
http://books.dzone.com/books/beginning-ruby
http://books.dzone.com/books/beginning-ruby
http://www.rubyinside.com/
http://www.rubyflow.com/
http://www.railsinside.com/
http://switchpipe.org/
http://www.peterc.org/
http://twitter.com/peterc/
http://www.petercooper.co.uk/
http://www.ruby-lang.org
http://www.ruby-doc.org
http://www.rubyforge.org
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://www.ruby-forum.com
http://ruby.dzone.com/
http://tryruby.hobix.com
http://www.rubyinside.com
http://www.rubyflow.com/
http://www.rubycorner.com
http://jruby.codehaus.org
http://www.ironruby.net

