The stuff you love, one click away.

Windows:Internet

Explorer9

//Site Pinning
//Hardware Acceleration
//Tracking Protection

beautyoftheweb.com

http://txt.couchware.com/medias/jump?hid=2531&cid=439&mid=755

/1 DZone Refcardz Hesar

= Why WebSocket?

HTMLS WebSocket
= Using the WebsSocket API Full-dupl Real-ti Web C ot

= A New Class of Web Applications 4 MpleXisediutiiRepvie OINmspeaton
= WebSocket in the Real World

= and More!

By Peter Lubbers

This Refcard explores WebSocket, a revolutionary new communication feature in
the HTMLS5 specification, which defines a full-duplex communication channel that
operates over the Web through a single socket. WebSocket is not just another
incremental enhancement to conventional HTTP communications; it represents a Listing 1. Example WebSocket Upgrade handshake
major advance, especially for real-time, event-driven web applications.
From client to server:

“Reducing kilobytes of data to 2 bytes... and reducing latency from 150ms to 50ms T ST

is far more than marginal. In fact, these two factors alone are enough to make Host: serverexample.com
WebSocket seriously interesting to Google.” Upgrade: websocket
—lan Hickson, HTML5 Specification Lead, Google (http://goo.gl/IAséO) Gt Vst

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat
WHY WEBSOCKET? Sec-WebSocket-Version: 13

Let's take a look at how WebSocket can reduce unnecessary network
traffic and latency by comparing HTTP solutions to full-duplex “real time”

Get More Refcardz! Visit refcardz.com

From server to client:
HTTP/1.1 HTTP/1.1 101 Switching Protocols

browser communication with WebSocket. Upgrade: websocket
Connection: Upgrade
Normally, when a browser visits a web page, an HTTP request is sent SR SR N O AT 22

to the web server that hosts that page. The web server acknowledges
the request and sends back a response. In many cases—for example,
for stock prices, news reports, ticket sales, traffic patterns, and medical
device readings—the response may be stale by the time the browser
renders the page. If you want to get the most up-to-date real-time
information, you can continually refresh the page manually. But that's

After the handshake, the client and server can send messages at any time.
The client and the server construct messages according to the WebSocket
protocol. The bytes preceding the data payload mark the frame length
and type. Text frames are UTF-8 encoded.

obviously not much of a solution. The data sent from the browser to the server is masked, which is an
unusual feature of the WebSocket protocol. Every byte of payload data

Previous attempts to provide real-time web applications largely revolve is XORed with a random mask to ensure that WebSocket traffic does

around polling, long polling, and other server-side push technologies, not look like other protocols. Like the Sec-WebSocket-Key hash, this

commonly referred to as “Comet.” Ultimately, all of these methods for is meant to mitigate an arcane form of cross-protocol attack against a

providing real-time data involve HTTP request and response headers, non-compliant network infrastructure. Figure 2 shows an example of a

which contain lots of additional, unnecessary header data and introduce WebSocket frame.

latency.

On top of that, full-duplex connectivity requires more than just the 5 fragmelnt

downstream connection from server to client. In an effort to simulate full- | s masked

duplex communication over half-duplex HTTP, many of today’s solutions | » »

use two connections: one for the downstream and one for the upstream.

The maintenance and coordination of these two connections introduce C%F()i-e length eﬁ%’gﬁd mask data

significant overhead in terms of resource consumption and add lots (7 bits)

of complexity. WebSocket gets you the most up-to-date and real-time > >

information since it is a new transport protocol for web applications that 2 bytes 0/2/4 4 bytes (client only) n bytes

provides a bi-directional stream of data that arrives in order, much like bytes

TCP. As with TCP, higher-level protocols can run over WebSocket. Figure 2. Components of a WebSocket Frame

THE WEBSOCKET PROTOCOL

To establish a WebSocket connection, the client and server upgrade Wmdows*lnternet
from the HTTP protocol to the WebSocket protocol during their initial @

handshake, as shown in Figure and Listing 1. Note that this connection EXp orer 9
description represents the latest version of the protocol, as defined in
|IETF RFC 6455.

GET /chat HTTP/1.1
Bost, server. exanple.con

e —— //Enhance your site
//with pinning today
//1t takes less than an hour

ie
gk
88y

Web Page

]
il @
WebSocket
Server

Browser

buildmypinnedsite.com M

Micresoft

EXTP/L.1 101 “Syitching Protocols® or other description
rade: websockef
Coanoction: Upgred

Soc-Hebs: m:k.t-lnn.pt 20-byte D5 hash in base6d
<optional headers:

Figure 1. WebSocket Upgrade handshake

e
()
=
(8]
(o]
(72)
0
2
=
.t
3
e
O
o
|
©
)
(72]
(o))}
.E
)
i
(]
O

DZone, Inc. | www.dzone.com

http://txt.couchware.com/medias/jump?hid=2533&cid=439&mid=757

Az DZone Refcardz ~ Microsoft

WEBSOCKET

Dramatic Reduction in Unnecessary Network Overhead
and Latency

Imagine performing a Yahoo! or Google search. As you type in a letter, an
Ajax request is fired off to the server for a list of suggested words that start
with that letter. An HTTP request may look like the one shown in Listing 2.

Listing 2. HTTP request headers

GET/HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:12.0a2) Gecko/20120218 Firefox/12.0a2
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%,q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Cookie: __utma=2... (add lots of characters here)

Cache-Control: max-age=0

The server then shoots back a response that looks like this:

Listing 3. HTTP response headers

HTTP/1.1 200 OK

Cache-Control: private, max-age=0
Content-Disposition: attachment
Content-Encoding: gzip
Content-Type: application/json; charset=UTF-8
Date: Wed, 22 Feb 2012 01:06:16 GMT
Expires: -1

Server: gws

x-frame-options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Firefox-Spdy: 1

Just for fun, let's add up all the characters. The total HTTP request and
response header information overhead (not even including all the cookie
data!) contains 871 bytes—and that's just the overhead. Of course, this is
just an example and there could be less than 871 bytes of header data...
but we also know that the header data commonly exceeds 2,000 bytes. So,
what happens when we deploy an application that makes frequent polling
HTTP requests for real-time updates to a large number of users? Let's take
a look at the network overhead for just the HTTP request and the response
header data associated with this request in three different cases.

Figure 3 compares the dramatic reduction in unnecessary network traffic
that is obtained for the polling solution with 1,000, 10,000, and 100,000
concurrently connected clients and compares it to what that would look
like with WebSocket instead.

700,000,000

@ Polling
@ WebSocket

600,000,000

500,000,000

400,000,000

300,000,000

Bits per second

200,000,000

100,000,000

1,000 10,000 100,000

Clients

Figure 3. Comparison of unnecessary network overhead between polling
and WebSocket traffic

And what about the reduction in latency? Take a look at Figure 4. In the
top half, you see the latency of the half-duplex polling solution. If we
assume for this example that it takes 50 milliseconds for a message to
travel from server to browser, then the polling application introduces a lot
of extra latency because a new request has to be sent to the server when
the response is complete. This new request takes another 50ms, during
which the server cannot send any messages to the browser, which results
in additional server memory consumption.

In the bottom half of the figure, you see the reduction in latency provided
by the WebSocket solution. Once the connection is upgraded to
WebSocket, messages can flow from server to browser the moment they
arrive. It still takes 50 ms for messages to travel from server to browser,
but the WebSocket connection remains open, so there is no need to send
another request to the server.

Response 1
Response 2
Request n
Response n

Browser

Time

50ms ———— 100ms ——— 150ms ——— 200ms ——— 250ms ——

0
% « <
-B gg Ev— EN En Ev '2:
8 o8 o8 o8 o8 ge 14
2 W W [
] H 3 H H] H 3
3 y
Browser
Timg 50ms ———— 100ms ——— 150ms ——— 200ms ——— 250ms ——

Figure 4. Comparison between latency of polling and WebSocket
applications

WebSocket provides an enormous step forward in the scalability of the
real-time web. As we have just shown, WebSocket can provide a 500:1
or—depending on the size of the HTTP headers—even a 1000:1 reduction
in unnecessary HTTP header traffic and a 3:1 reduction in latency.

Websocket Servers

All of today’s widely used browsers already support WebSocket. For
details, see http://caniuse.com. To create a successful WebSocket
connection, however, you need a WebSocket-enabled server. Fortunately,
there are already lots of WebSocket server implementations out there and
even more under development. The following are just a few of the existing
WebSocket servers.

L4 Alchemy-Websockets (.NET) - http://alchemywebsockets.net/

® Apache ActiveMQ (Java) - http://activemq.apache.org/

Apache-websocket (Apache module) - https://github.com/
disconnect/apache-websocket#readme

® APE Project (C) - http://www.ape-project.org/

® Autobahn (virtual appliance) - http://autobahn.ws/
Caucho Resin (Java) - http://www.caucho.com/
Cowboy - https://github.com/extend/cowboy

® Cramp (Ruby) - http://cramp.in/

Diffusion (Commercial product) - http://www.pushtechnology.com/
home

® EM-WebSocket (Ruby) - https://github.com/igrigorik/em-websocket

® Extendible Web Socket Server (PHP) - https://github.com/wkjagt/
Extendible-Web-Socket-Server

Gevent-websocket (Python) - http://www.gelens.org/code/gevent-
websocket/

DZone, Inc. | www.dzone.com

Az DZone Refcardz ~ Microsoft

WEBSOCKET

® GlassFish (Java) - http://glassfish.java.net/

® Goliath (Ruby) - https://github.com/postrank-labs/goliath
® Jetty (Java) - http://jetty.codehaus.org/jetty/

® jWebsocket (Java) - http://jwebsocket.org/

® Kaazing WebSocket Gateway (Commercial product and cloud
service) - http://kaazing.com/

® libwebsockets (C) - http://git.warmcat.com/cgi-bin/cgit/
libwebsockets/

® Misultin (Erlang) - https://github.com/ostinelli/misultin

® net.websocket (Go) - code.google.com/p/go.net/websocket

® Netty (Java) - http://netty.io/

® Nugget (.NET) - http://nugget.codeplex.com/

® Orbited (Python) - http://labs.gameclosure.com/orbited2

® phpdaemon (PHP) - http://phpdaemon.net/

® Pusher (commercial cloud service) - http://pusher.com/

® pywebsockets (Python) - http://code.google.com/p/pywebsocket/

® RabbitMQ (Erlang) - https://github.com/videlalvaro/rabbitmg-
websockets

o Socket.io (Node.js) - http://socket.io/

® SockJS-node (Node) - https://github.com/sockjs/sockjs-node

® SuperWebSocket (.NET) - http://superwebsocket.codeplex.com/
® Tomcat (Java) - http://tomcat.apache.org/

® Tornado (python) - http://www.tornadoweb.org/

® txWebSocket (Python/Twisted) - https://github.com/rlotun/
txWebSocket

° vert.x (Java) - http://vertx.io/
® Watersprout (PHP) - http://spoutserver.com/

® web-socket-ruby (Ruby) - https://github.com/gimite/web-socket-
ruby

° Webbit (Java) - https://github.com/webbit/webbit

® WebSocket-Node (Node.js) - https://github.com/Worlize/
WebSocket-Node

® websockify (Python) - https://github.com/kanaka/websockify
° XSockets (.NET) - http://xsockets.net/

® Yaws (Erlang) - http://yaws.hyber.org/websockets.yaws

USING THE WEBSOCKET API

In this section, we'll explore the use of WebSocket in more detail.

Checking for Browser Support

Before you use the WebSocket API, you need to make sure that the
browser supports it. This way, you can provide a message, prompting the
users of your application to upgrade to a more up-to-date browser. You
can use the following code to test for browser support:

Listing 4. Checking for browser support

if (window.WebSocket) {
alert(“WebSocket is supported”);
Yelse {
alert(“WebSocket is not supported”);
}

Listing 4 shows how a call to window.WebSocket returns the WebSocket
object if it exists or triggers a failure case if it does not. Figure 5 shows the
resulting message in Microsoft Internet Explorer 10, which does support
Webocket.

=@l =

[websockesforFeser . || (1 77 5

B Beremompmnm -2

(R metsocess

Message from webpage

f, Websocketis supported

Figure 5. Resulting message in Microsoft Internet Explorer

Another way to see if your browser supports WebSocket is to use
the browser's developer tools. Figure 5 shows how you can use the
WebSocket API from the debug console. You can also test to see if
WebSocket is supported there. If it is not, the window.WebSocket
command returns “undefined.”

Sath Method

Timeline

Suus swze
Te Content | Latency 280

Type Initiator
| broadcast 101 1278
P GET . undefined Other N

1/5requests | 127B /9598 transferred | 94ms (onload: 114ms, DOMContentLoaded: 76ms)
= @ O Al | Documents Stylesheets Images Scripts XHR Fonts ([[Z3SCSC5) Other
> w = new WebSocket("ws://lab.htmlSproject.com:8002/broadcast")
» WebSocket
> w.onmessage = function(e) { console.logle.data) }
function (e) { console.log(e.data) }
> w.send("hello from chrome")
true
hello from chrome
>

Figure 6. WebSocket connectivity in Chrome Developer Tools’ Network
panel

In Google Chrome, you can also navigate to chrome://net-
internals/#sockets to get fine-grained information about all socket
connections as shown in Figure 6.

Expor.
import
Proxy

Events.

Start Time: Fri Mar 08 2012 20:28:18 GMT-0800 (PST)

Timeline.
NS

Sockels

SPDY

HTTP Cache
HTTP Throtting
Tests

HSTS
Prerender

Detasomciea [t a] G co =

Figure 7. Socket internals page chrome://net-internals/#sockets

DZone, Inc. | www.dzone.com

Az DZone Refcardz ~ Microsoft

WEBSOCKET

Creating a WebSocket object and Connecting to a
WebSocket Server

Using the WebSocket interface is quite straightforward. To connect to an
endpoint, just create a new WebSocket instance, providing the new object
with a URL that represents the endpoint to which you wish to connect.

You can use the ws:// and wss:// prefixes to indicate a WebSocket and a

WebSocket Secure connection, respectively.

url ="ws://localhost:8080/echo”;
w = new WebSocket(url)

When you make a WebSocket connection, you have the option of listing
the protocols your application can speak. The second argument to the
WebSocket constructor can be a string or array of strings with the names
of the subprotocols that your application understands and wishes to use
to communicate.

w = new WebSocket(url, protocol);

You can even list several protocols:

w = new WebSocket(url, [‘proto1’, “proto2"]);

Hypothetically, proto1 and proto2 are well defined protocol names that
both the client and server can understand; they may even be registered
and standardized. The server will select a prefered protocol from the list.
When the socket opens, its protocol property will contain the protocol that
the server chooses.

onopen = function(e) {
// determine which protocol the server selected
log(etarget.protocol)

}

Adding Event Listeners

WebSocket programming follows an asynchronous programming model;
once you have an open socket, you simply wait for events. You don't have
to actively poll the server anymore. You add callback functions to the
WebSocket object in order to listen for events.

A WebSocket object dispatches four events: open, message, close, and
error. The open event fires when a connection is established, the message
event when messages are received, the close event when the WebSocket
connection is closed, and the error event when an error occurs. The error
event fires in response to unexpected failure. As in most JavaScript APls,
there are corresponding callbacks (onopen, onmessage, onclose, and
onerror) that are called when events are dispatched.

w.onopen = function() {
console.log(‘open”);
w.send(“Connection open”);

}

w.onmessage = function(e) {
console.log(e.data);

}

w.onclose = function(e) {
consolelog(“closed”);

}

w.onerror = function(e) {
console.log(“error”);

}

Let's take another look at this message handler. The data attribute on
the message event is a string if the WebSocket protocol message was
encoded as text. For binary messages, data can be either a Blob or an
ArrayBuffer, depending on the value of the WebSocket's binaryType
property.

w.binaryType ="arraybuffer”;

w.onmessage = function(e) {
// data can now be either a string or an ArrayBuffer
consolelog(e.data);

}

Sending Messages

While the socket is open (that is, after the onopen listener is called and
before the onclose listener is called), you can use the send function to
send messages. After sending one or more messages, you can also call
close to terminate the connection or you can leave the connection open.

document.getElementByld(“sendButton”).onclick = function() {
w.send(document.getElementByld(“inputMessage”).value);
}

In more advanced uses of WebSocket, you may want to measure how

much data is backed up in the outgoing buffer before calling send(). The
bufferedAmount attribute represents the number of bytes that have been sent
on the WebSocket that have not yet been written onto the network. This could
be useful for throttling the rate at which the application sends data.

document.getElementByld(“sendButton”).onclick = function() {
if (w.bufferedAmount < bufferThreshold) {
w.send(document.getElementByld(“inputMessage”).value);
}
}

In addition to strings, WebSocket can also send binary data. This is
especially useful when you want to implement binary protocols, such
as the standard Internet protocols that are typically layered on top of
TCP. The WebSocket APl supports the sending of Blob and ArrayBuffer

instances as binary data.

var a = new Uint8Array([8,6,7,5,3,0,9]);
w.send(a.buffer);

A NEW CLASS OF WEB APPLICATIONS

Now that you have a socket connection in your browser, you can do

lots of things that were not previously possible in a browser. In fact, the
first line in the WebSocket API specification defines WebSocket as an
“API that enables Web pages to use the WebSocket protocol for two-
way communication with a remote host”. Combine the powerful socket
connectivity over standard web ports with other HTML5 features such as
canvas and SVG for visualization of the WebSocket data, local storage,
and offline capabilities, and you can create web applications that are on
par with desktop applications with the added benefit that they don't have
to open non-standard ports to communicate to a backend server.

A common approach is to use some JSON format over WebSocket. But
once you start writing your own syntax for how traffic should flow over the
wire, you should consider using existing protocols. For example, you may
want to use include Extensible Messaging and Presence Protocol (XMPP
or Jabber), Advanced Message Queuing Protocol (AMQP), Remote Frame
Buffer (RFB, or VNC), and Streaming Text Oriented Messaging Protocol
(STOMP).

These are real-world protocols that are in use by many desktop clients and
servers. Using a standard protocol ensures that there is interoperability
between web applications and servers from different organizations
(protocols are programming-language agnostic). It also opens the door
for public WebSocket services. You can speak to a server using a known
protocol. Client applications that understand the same protocol can

then connect and participate. There are already quite a few WebSocket-
based protocol implementations available, and we expect to see many
more over time. Some examples are stomp-websocket, a JavaScript
implementation of STOMP (http://jmesnil.net/stomp-websocket/doc/)
and a proposed draft of XMPP over WebSocket (http://tools.ietf.org/html/
draft-moffitt-xmpp-over-websocket-00).

Traditional web pages, shown in Figure 8, are usually assembled on
the server side and pushed out as static, stateless content to the client.
Conversely, modern web apps, shown in Figure 9, can behave more
like client-server applications in which the browser first requests the
static resources for the web page from an HTTP server (or a network
edge caching server), then makes stateful WebSocket-based backend
connections.

DZone, Inc. | www.dzone.com

AX DZone Refcardz

WEBSOCKET

|3
E 3
Back-end
Data Store
| ‘

App
,,,,,,,,, Logic
@ Ul for Web Page

(PHP, JSP, JSF, etc.)

Browser Firewall
Client

Web
(Application) |
Server

| Business
Logic & Data
e Access

L

Back-end
Data Store

Figure 8. Traditional web apps generated server-side available for the
viewer

2
(-
Back-end
Data Store
J — App
E - = Logic
2 Q)
Ly - ‘é
1 (| WebSocket Ny
A= = = Gateway
Web Business
Logic & Data
Access
Firewall
Ul & Client Logic
. L =
Web B |
(HTTP/SPDY)
Server L’ J
Back-end
Data Store

Figure 9. HTMLS5 client-side generated web app

Architectures like this are often achieved by using some sort of higher-
level protocol, which in turn enable HTML5 web apps to rapidly become
first class network citizens.

WEBSOCKET IN THE REAL WORLD

What happens with WebSocket connectivity in the real world—when

you move away from localhost tests and proof of concepts? This section
will cover what happens when a WebSocket connection traverses
intermediaries on the network and what can be done to make WebSocket
work in older browsers.

Transparent Proxy Servers

Real-world WebSocket traffic will flow through proxy servers. Figure

10 shows a simplified network topology in which clients use a browser

to access back-end TCP-based services using a full-duplex HTML5
WebSocket connection. Some clients are located inside a corporate
network that's protected by a corporate firewall and configured to access
the Internet through explicit or known proxy servers, which may also
provide content caching and security. Other clients access the WebSocket
server directly over the Internet. In both cases, the client requests may

be routed through transparent, or unknown, proxy servers (for example,

a proxy server in a data center or a reverse proxy server in front of the
remote server). It is even possible for proxy servers to have their own
explicit proxy servers, which increases the number of hops the WebSocket
traffic has to make.

Company Intranet

Browser
Client

‘————
] -
» =
443 ws:// and TCP

wss:// ©

WebSocket Message
Gateway Broker
or Server

Firewall or
Reverse Proxy
Server

Explicit
Proxy
Server

Transparent
Browser ;::r’:gr
Clients
Browser
Client

Figure 10. WebSocket architecture with explicit and transparent proxy
servers

If a browser is configured to use an explicit proxy server, it will first issue
the HTTP CONNECT method to that proxy server while establishing the
WebSocket connection. For example, to connect to the server example.
com using the ws:// scheme (typically over port 80), the browser client
sends the HTTP CONNECT method to the proxy server as follows:

CONNECT example.com:80 HTTP/1.1
Host: example.com

When the explicit proxy server allows the CONNECT method, the
WebSocket connection upgrade handshake can be made. When that
handshake succeeds, WebSocket traffic can begin to flow unimpeded
through the proxy server.

In the case that the unencrypted WebSocket traffic flows through a
transparent proxy on its way to the WebSocket server, the connection is
likely to fail in practice since the browser will not issue the CONNECT
method. When a proxy server forwards a request to the (WebSocket)
server, it is expected to strip off certain headers, including the Connection
header. Therefore, a well behaved transparent proxy server will cause the
WebSocket upgrade handshake to fail almost immediately.

Not all proxy servers conform to the HTTP standard in terms of expected
proxy behavior. For example, some proxy servers are configured such
that they do not remove the Connection: Upgrade header ; instead, they
pass it on to the WebSocket server, which in turn sends the 101 Switching
Protocols response. Problems then arise when the client or the server
begins sending the first WebSocket frame. Since the frame does not
resemble anything the proxy server might expect (such as regular HTTP
traffic), some form of rejection or hiccup will likely occur unless the proxy
server is specifically configured to handle WebSocket traffic.

Fortunately, there is a solution to this problem. You can use WebSocket
Secure (wss:// scheme), which will first establish an end-to-end encrypted
tunnel. With the wire traffic now encrypted, intermediate transparent
proxy servers will simply allow the encrypted traffic through, so there is
every likelihood that the WebSocket connection will succeed. Therefore, it
is always best to use WebSocket Secure using TLS (a.k.a. SSL) encryption
to connect to a WebSocket server unless you're absolutely certain there
are no intermediaries. While TLS encryption has the added benefit of
being more secure, it does increase CPU consumption for both the client
and the server, though usually not to a dramatic degree. With hardware
TLS acceleration, you can reduce CPU consumption to near zero on the
server side.

DZone, Inc.

| www.dzone.com

A1 DZone Refcardz ~ Microsoft 6 WEBSOCKET

WHAT ABOUT BROWSERS THAT DO NOT SUPPORT Additional Resources
WEBSOCKET?
WebSocket is now supported by all of today’s widely used browsers, ° WebSocket API (W3C): http://dev.w3.org/html5/websockets/
but what if you have to support an old version of Internet Explorer or a .))
version of a mobile browser that does not support WebSocket? There is ° WebSocket Protocol (IETF): http://tools.ietf.org/html/rfc6455
good news here. There are quite a few polyfills (libraries that emulate the .)
WebSocket APl in browsers that do not have native support). Here are a ¢ WebSocket test server: http://www.websocket.org
f fth lyfills:
ewotthese polylils o How HTML5 WebSockets Interact with Proxy Servers: http://
o Kaazing WebSocket Gateway—pure JavaScript polyfill as far www.infoq.com/articles/Web-Sockets-Proxy-Servers
backas I.E. 6
. Socket.|O—works with Node.js
. WebSocket.JS—Flash based library (Note: using Flash-based

emulation for encrypted WebSocket requires opening an
extra port for the policy file, and Flash has some known proxy
poisoning-attack issues)

ABOUT THE AUTHOR RECOMMENDED BOOK

Peter Lubbers (@peterlubbers) lives

and breathes HTML5. Even his car has

. the California 'HTML5' license plate. HTMLS5 is here, and with it, web applications have

| Peter is the co-author of Pro HTML5 acquired power, ease, scalability, and responsiveness like

[Programming (Apress, 2011) and the co- Programming never before. With this book, developers will learn how
founder of the San Francisco HTML5 User 5 to use the latest cutting-edge HTMLS5 web technology—

Group, the largest HTML5 User Group available in the most recent versions of modern

in the world. Peter oversees all aspects browsers—to build web applications with unparalleled

of documentation and global training at Kaazing, a start-up functionality, speed, and responsiveness.

company specialized in building a high-performance HTML5

WebSocket platform that revolutionizes web communication

and the first company to offer HTML5 training worldwide.

K Pro HTML 5 Programming

= Browse our collection of over 150 Free Cheat Sheets

Getting Started with
Cloud Computing

By Daniel Rublo

— Upcoming Refcardz

Scala Collections

JavaFX 2.0

Free PDF Aol e

DZone, Inc.
. ISBN-13: 978-1-93k502-4E-2
150 P E Dr.
D Z one 59 reston Executive Dr. ISBN-10° 1-93L502-4b-1

Suite 200 50795

Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
make‘rs. DZone offers something for ev‘eryone, including news, Refcardz Feedback Welcome -
tutorials, cheat sheets, blogs, feature articles, source code and more. o
" .) ") refcardz@dzone.com 1936"5024 ~

DZone is a developer’s dream,” says PC Magazine. o

Sponsorship Opportunities
Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, sales@dzone.com Versioﬂ 1 O
without prior written permission of the publisher.

