

DZone, Inc. | www.dzone.com

By Frank Cohen

About Selenium

Hot
Tip

HTMLUnit runs Selenium tests faster than a real
browser and requires much less memory and CPU
resources.

S
e

le
n

iu
m

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#67

Getting Started with

Selenium
Selenium is a portable software testing framework for Web
applications. Selenium works well for QA testers needing
record/playback authoring of tests and for software developers
needing to author tests in Java, Ruby, Python, PHP, and
several other languages using the Selenium API. The Selenium
architecture runs tests directly in most modern Web browsers,
including MS IE, Firefox, Opera, Safari, and Chrome. Selenium
deploys on Windows, Linux, and Macintosh platforms.

Selenium was developed by a team of programmers and
testers at ThoughtWorks. Selenium is open source software,
released under the Apache 2.0 license and can be downloaded
and used without royalty to the originators.

CONTENTS INCLUDE:
n	 About Selenium
n	 Architecture in a Nutshell
n	 Installing Selenium
n	 Recording/Playback using Selenium IDE
n	 Selenese Table Format
n	 Selenium Command Reference and more...

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Architecture in a Nutshell

Selenium Browserbot is a JavaScript class that runs within a
hidden frame within a browser window. The Browserbot runs
your Web application within a sub-frame. The Browserbot
receives commands to operate against your Web application,
including commands to open a page, type characters into form
fields, and click buttons.

Selenium architecture offers several ways to play a test.

Functional testing (Type 1) uses the Selenium IDE add-on
to Firefox to record and playback Selenium tests in Firefox.
Functional testing (Type 2) uses Selenium Grid to run tests in
a farm of browsers and operating environments. For example,
run install Selenium Grid on 3 operation environments (for
example, Windows Vista, Windows XP, and Ubutu) and on each
install 2 browser (for example, Microsoft Internet Explorer and
Firefox) to smoke test, integration test, and functional test your
application on 6 combinations of operating environment and
browser. Many more combinations of operating environment
and browser are possible. An option for functional testing
(Type 2) is to use the PushToTest TestMaker/TestNode open

Installing selenium

Selenium IDE installs as a Firefox add-on. Below are the steps
to download and install Selenium IDE:

 1. Download selenium-ide-1.0.2.xpi (or similar) from
 http://seleniumhq.org.
 2. From Firefox open the .xpi file. Follow the Firefox
 instructions.
 3. Note: Selenium Grid runs as an Ant task. You need JDK
 1.6, Ant 1.7, and the Selenium Grid 1.0 binary distribution.
 Additional directions can be found at
 http://selenium-grid.seleniumhq.org/get_started.html
 4. See http://www.pushtotest.com/products for TestMaker
 installation instructions.

source project. It uses Selenium RC to provide Selenium Grid-
like capability with the added advantage of providing data-
driven Selenium tests, results analysis charts and graphs, and
better stability of the test operations.

The PushToTest open-source project provides Selenium data-
driven testing, load testing, service monitoring, and reporting.
TestMaker runs load and performance tests (Type 3) in a
PushToTest TestNode using the PushToTest SeleniumHTMLUnit
library and HTMLUnit Web browser (and Rhino JavaScript
engine.)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Selenium

Selenese Table Format

Selenium IDE is meant to be a light-weight record/playback
tool to facilitate getting started with Selenium. It is not
designed to be a full test development environment. While
Selenium records in an HTML table format (named Selenese)
the table format only handles simple procedural test use
cases. The Selenese table format does not provide operational
test data support, conditionals, branching, and looping. For
these you must Export Selenese files into Java, Ruby, or other
supported languages.

Selenium COmmand reference

Selenium comes with commands to: control Selenium test
operations, browser and cookie operations, pop-up, button,
list, edit field, keyboard, mouse, and form operations.
Selenium also provides access operations to examine the
Web application (details are at http://release.seleniumhq.org/
selenium-core/0.8.0/reference.html).

Command Value, Target, Wait Command

Selenium Control

setTimeout milliseconds

setMouseSpeed number of pixels

setMouseSpeedAndWait

setSpeed milliseconds

setSpeedAndWait

addLocationStrategy strategyName

addLocationStrategyAndWait

allowNativeXpath boolean

allowNativeXpathAndWait

ignoreAttributesWithoutValue boolean

ignoreAttributesWithoutValueAndWait

assignId locator

assignIdAndWait

captureEntirePageScreenShot filename, kwargs

captureEntirePageScreenShotAndWait

echo message

pause milliseconds

runScript javascript

runScriptAndWait

waitForCondition javascript

waitForPageToLoad milliseconds

waitForPopUp windowID

fireEvent locator

fireEventAndWait

Browser Operations

open url

openAndWait

openWindow url

openWindowAndWait

goBack goBackAndWait

refresh refreshAndWait

close

deleteCookie name

deleteCookieAndWait

Record/playback using selenium ide

Hot
Tip

Selenium IDE is a Firefox add-on that records clicks,
typing, and other actions to make a test, which you
can play back in the Firefox browser. Open Selenium
IDE from the Firefox Tools drop-down menu, Selenium
IDE command.

Selenium IDE records interactions with the Web application,
with one command per line. Clicking a recorded command
highlights the command, displays a reference page, and
displays the command in a command form editor. Click the
command form entry down-triangle to see a list of all the
Selenium commands.

Run the current test by
clicking the Run Test
Case icon in the icon
bar. Right click a test
command to choose
the Set Breakpoint
command. Selenium
IDE runs the test to a
breakpoint and then
pauses. The icon bar
Step icon continues
executing the test one
command at a time.

With Selenium IDE
open, the menu bar
context changes to
provide access to
Selenium commands:
Open/Close Test Case
and Test Suite. Test Suites contain one or more Test Cases.

Use the Options drop-
down menu, Options
command to set
general preferences
for Selenium IDE.

Selenium IDE provides
an extensibility
API set called User
Extensions. You can
implement custom
functions and modify
Selenium IDE behavior
by writing JavaScript
functions. We do not
recommend writing
User Extensions as the Selenium project makes no guarantees
to be backwardly compatible from one version to the next.

Selenium Context Menu provides quick commands to insert
new Selenium commands, evaluate XPath expressions within
the live Web page, and to show all available Selenium
commands. Right click on commands in Selenium IDE, and
right-click on elements in the browser page to view the
Selenium Context Menu commands.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Selenium

deleteAllVisibleCookies deleteAllVisibleCookiesAndWait

setBrowserLogLevel logLevel

setBrowserLogLevelAndWait

Cookie Operations

createCookie nameValuePair

createCookieAndWait

deleteCookie name

deleteCookieAndWait

deleteAllVisibleCookies deleteAllVisibleCookiesAndWait

Popup Box Operations

answerOnNextPrompt answer

answerOnNextPromptAndWait

chooseCancelOnNextConfirmation chooseCancelOnNextConfirmationAndWait

chooseOkOnNextConfirmation chooseOkOnNextConfirmationAndWait

Checkbox & Radio Buttons

check locator

checkAndWait

uncheck locator

uncheckAndWait

Lists & Dropdowns

addSelection locator

addSelectionAndWait

removeSelection removeSelectionAndWait

removeAllSelections removeAllSelectionsAndWait

Edit Fields

type locator

typeAndWait

typeKeys locator

typeKeysAndWait

setCursorPosition locator

setCursorPositionAndWait

Keyboard Operations

keyDown locator

keyDownAndWait

keyPress locator

keyPressAndWait

keyUp locator

keyUpAndWait

altKeyDown altKeyDownAndWait

altKeyUp altKeyUpAndWait

controlKeyDown controlKeyDownAndWait

controlKeyUp controlKeyUpAndWait

metaKeyDown metaKeyDownAndWait

metaKeyUp metaKeyUpAndWait

shiftKeyDown shiftKeyDownAndWait

shiftKeyUp shiftKeyUpAndWait

Mouse Operations

click locator

clickAndWait

clickAt locator

clickAtAndWait

doubleClick locator

doubleClickAndWait

doubleClickAt locator

doubleClickAtAndWait

contextMenu locator

contextMenuAndWait

contextMenuAt locator

contextMenuAtAndWait

mouseDown locator

mouseDownAndWait

mouseDownA locator

mouseDownAtAndWait

mouseMove locator

mouseMoveAndWait

mouseMoveAt locator

mouseMoveAtAndWait

mouseOut locator

mouseOutAndWait

mouseOver locator

mouseOverAndWait

mouseUp locator

mouseUpAndWait

mouseUpAt locator

mouseUpAtAndWait

dragAndDrop locator

dragAndDropAndWait

dragAndDropToObject sourceLocator

dragAndDropToObjectAndWait

Form Operations

submit formLocator

submitAndWait

Windows/Element Selection

select locator

selectAndWait

selectFrame locator

selectWindow windowID

focus locator

focusAndWait

highlight locator

highlightAndWait

windowFocus windowFocusAndWait

windowMaximize windowMaximizeAndWait

Selenese Table Format

Selenium commands identify elements within a Web page using:

identifier=id Select the element with the specified @id attribute. If no match is
found, select the first element whose @name attribute is id.

name=name Select the first element with the specified @name attribute.
The name may optionally be followed by one or more element-
filters, separated from the name by whitespace. If the filterType
is not specified, value is assumed. For example, name=style
value=carol

dom=javascriptExpression Find an element using JavaScript traversal of the HTML

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Selenium

dom=javascriptExpression
(continued)

Document Object Model. DOM locators must begin with
“document.” For example:
dom=document.forms[‘form1’].myList
dom=document.images[1]

xpath=xpathExpression Locate an element using an XPath expression. Here are a few
examples:
xpath=//img[@alt=’The image alt text’]
xpath=//table[@id=’table1’]//tr[4]/td[2]
/html/body/table/tr/td/a
//div[@id=’manage_messages_iterator’]
//tr[@class=’SelectedRow’]/td[2]
//td[child::text()=’myemail@me.com’]
//td[contains(child::text(),’@’)]

link=textPattern Select the link (anchor) element which contains text matching the
specified pattern.

css=cssSelectorSyntax Select the element using css selectors. For example:

css=a[href=”#id1”]
css=span#firstChild + span

Selenium 1.0 css selector locator supports all css1, css2 and css3
selectors except namespace in css3, some pseudo classes(:nth-
of-type, :nth-last-of-type, :first-of-type, :last-of-type, :only-of-type,
:visited, :hover, :active, :focus, :indeterminate) and pseudo
elements(::first-line, ::first-letter, ::selection, ::before, ::after).
Without an explicit locator prefix, Selenium uses the following
default strategies:

dom, for locators starting with “document.”
xpath, for locators starting with “//”
identifier, otherwise

Your choice of element locator type has an impact on the
test playback performance. The following table compares
performance of Selenium element locators using Firefox 3 and
Internet Explorer 7.

Locator used Type Firefox 3 Internet
Explorer 7

q Locator 47 ms 798 ms

//input[@name=’q’] XPath 32 ms 563 ms

//html[1]/body[1]//form[1]//input[2] XPath 47 ms 859 ms

//input[2] XPath 31 ms 564 ms

document.forms[0].elements[1] DOM Index 31 ms 125 ms

Additional details on Selenium performance can be found at:
http://www.pushtotest.com/docs/thecohenblog/symposium

Script-Driven Testing

Selenium implements a domain specific language (DSL) for
testing. Some applications do not lend themselves to record/
playback: 1) The test flow changes depending on the results
of a step in the test, 2) The input data changes depending
on the state of the application, and 3) The test requires
asynchronously operating test flows. For these conditions,
consider using the Selenium DSL in a script driven test.
Selenium provides support for Java, Python, Ruby, Groovy, PHP,
and C#.

Selenium IDE helps get a script-driven test started by
exporting to a unit test format. For example, consider the
following test in the Selenese table format:

Use the Selenium IDE File menu, Export, Python Selenium RC
command to export the test to a jUnit-style TestCase written in
Python. The following shows the Java source code:

package com.example.tests;

from selenium import selenium
import unittest, time, re

class franktest(unittest.TestCase):
 def setUp(self):
 self.verificationErrors = []
 self.selenium = selenium(“localhost”, 4444, “*chrome”, \
 “http://change-this-to-the-site-you-are-testing/”)
 self.selenium.start()
 def test_franktest(self):
 sel = self.selenium
 sel.open(“/”)
 sel.type(“q”, “sock puppet”)
 sel.click(“sa”)
 sel.wait_for_page_to_load(“30000”)
 sel.click(“//div[@id=’res’]/div[1]/ol/li[1]/div/h2/a/em”)
 sel.click(“//div[@id=’res’]/div[1]/ol/li[1]/div/h2/a/em”)
 sel.wait_for_page_to_load(“30000”)

 def tearDown(self):
 self.selenium.stop()
 self.assertEqual([], self.verificationErrors)

if __name__ == “__main__”:
 unittest.main()

An exported test like the one above has access to all of
Python’s functions, including conditionals, looping and
branching, reusable object libraries, inheritance, collections,
and dynamically typed data formats.

Selenium provides a Selenium RC client package for Java,
Python, C#, Ruby, Groovy, PHP, and Perl. The client object
identifies the Selenium RC service in its constructor:

 self.selenium = selenium(“localhost”, 4444, “*iexplore”, \
 “http://change-this-to-the-site-you-are-testing/”)
 self.selenium.start()

The above code identifies the Selenium RC service running on
the localhost machine at port 4444. This client will run the test
in Microsoft Internet Explorer. The third parameter identifies
the base URL from which the recorded test will operate.

 Using the selenium.start() command initializes and starts the
Selenium RC service. The Selenium RC client module (import
selenium in Python) provides methods to operate the Selenium
DSL commands (click, type, etc.) in the Browserbot running
in the browser. For example, selenium.click(“open”) tells the
Browserbot to a click command to the element with an id tag
equal to “open”. The browser responds to the click command
and communicates with the Web application.

At the end of the test the selenium.stop() command ends the
Selenium RC service.

Selenium and ajax

Ajax uses asynchronous JavaScript functions to manipulate
the browser’s DOM representation of the Web page. Many
Selenium commands are not compatible with Ajax. For
example, ClickAndWait will time-out waiting for the browser

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Selenium

Working with tinymce and ajax objects

Ajax is about moving functions off the server and into the
browser. Selenium architecture supports innovative new
browser-based functions because Selenium’s Browserbot is a
JavaScript class itself. The Browserbot even lets Selenium tests
operate JavaScript functions as part of the test. For example,
TinyMCE (http://tinymce.moxiecode.com) is a graphical text
editor component for embedding in Web pages. TinyMCE
supports styled text and what-you-see-is-what-you-get editing.
Testing a TinyMCE can be challenging. Selenium offers click
and type functions that interact with TinyMCE but no direct
commands for TinyMCE’s more advanced functions. For
example, imagine testing TinyMCE’s ability to stylize text.
The test needs to insert test, move the insertion point, select
a sentence, bold the text, and drag the sentence to another
paragraph. This is beyond Selenium’s DSL. Instead, the
Selenium test may include JavaScript commands that interact
with TinyMCE’s published API
(http://tinymce.moxiecode.com/documentation.php).

Here is an example of using the TinyMCE API from a Selenium
test context:

 this.browserbot.getCurrentWindow().tinyMCE.execCommand
 (‘mceInsertContent’,false,’Hello world!!’);

Data Production

Selenium offers no operational test data production capability
itself. For example, a Selenium test of a sign-in page usually
needs sign-in name and sign-in password operational test data
to operate. Two options are available: 1) Use the data access
features in Java, Ruby, or one of other supported languages,
2) Use PushToTest TestMaker’s Selenium Script Runner to
inject data from comma separated value (CSV) files, relational
databases, objects, and Web services.
See http://tinyurl.com/btxvn4 for details.

Create a Comma-Separated-Value file. Use your favorite text
editor or spreadsheet program. Name the file data.csv. The
contents must be in the following form.

The first row of the data file contains column names. These
will be used to map values into the Selenium test. Change the
Selenium test to refer to mapping name. PushToTest maps
the data from the named column in the CSV data file to the
Selenium test data using the first row definitions.

Connect the Data Production Library (DPL) to the Selenium test
in a TestMaker TestScenario. Begin by definition a HashDPL.
This DPL reads from CSV data files and provides the data to the
test.

<DataSources>
 <dpl name=”mydpl” type=”HashDPL”>
 <argument name=”file” dpl=”rsc” value=”getDataByIndex” index=”0”/>
 </dpl>
</DataSources>

Next, tell the TestScenario to send the data.csv and Selenium
test files to the TestNodes that will operate the test.

 <resources>
 <data path=”data.csv”/>
 <selenese path=”CalendarTest.selenium”/>
 </resources>

Then tell the Selenium ScriptRunner to use the DPL provided
data when running the Selenium test.

<run name=”CalendarTest” testclass=”CalendarTest.selenium”
 method=”runSeleneseFile” langtype=”selenium”>
 <argument dpl=”mydpl” name=”DPL_Properties”
 value=”getNextData”/>
</run>

The getNextData operation gets the next row of data from the
CSV file. The Selenium ScriptRunner injexts the data into the
Selenium test.

to load the Web page because Ajax functions that manipulate
the current Web page in response to a click event do not
reload the page. We recommend using Selenium commands
that poll the DOM until the Ajax methods complete their tasks.
For example, waitUntilElementPresent polls the DOM until
the JavaScript function adds the desired element to the page
before continuing with the rest of the Selenium script.

Consider the following checklist when using Selenium with Ajax
applications:

 Your Selenium tests may require a large number of extra commands to ensure the test
stays in synchronization with the Ajax application. Consider an Ajax application that
requires a log-in, then displays a selection list of items, then presents an order form.
Ajax enabled applications often deliver multiple steps of function on a single page
and show-and-hide elements as you work with the application. Some even disable
form submit buttons and other user interface elements until you enter enough valid
information. For an application like this you will need a combination of Selenium
commands. Consider the following Selenium test:

waitForElementPresent pauses the test until the Ajax application adds the requisite
element to the page. waitForCondition pauses the test until the JavaScript function
evaluates to true.

 Some Ajax applications use lazy-loading techniques to improve user interaction
with the application. A stock market application provides a list of 10 stock quotes
asynchronously after the user clicks the submit button. The list may take 10 to 50
seconds to completly update on the screen. Using waitForXPathCount pauses the
test until the page contains the number of nodes that match the specified XPath
expression.

 Many Ajax applications use dynamic element id tags. The Ajax application that named
the Log-out button app_6 may later rename the button to app_182. We recommend
using DOM element locator techniques, or XPath techniques if needed, to dynamically
find elements on a positional or other attribute means.

Run the above JavaScript function from within a Selenium test
using the AssertEval command.

AssertEval	javascript:this.browserbot.getCurrentWindow().tinyMCE.
execCommand
 (‘mceInsertContent’,false,’Hello world!!’);

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

Reporting options

Selenium offers no results reporting capability of its own.
Two options are available: 1) Write your tests as a set of JUnit
tests and use JUnit Report (http://ant.apache.org/manual/
OptionalTasks/junitreport.html) to plot success/failure charts, 2)
Use PushToTest TestMaker Results Analysis Engine to produce
more than 300 charts from the transaction and step time
tracking of Selenium tests.

For example, TestMaker tracks Selenium command duration
in a test suite or test case. Consider the following chart. This
shows the “Step” time it takes to process each Selenium
command in a test use case over 10 equal periods of time that
the test took to operate.

selenium rc browser profiles

Selenium Remote Control (RC) enables test operation on
multiple real browsers. A browser profile attribute may be
any of the following installed browsers: chrome, konqueror,
piiexplore, iehta, mock, opera, pifirefox, safari, iexplore and
custom. Append the path to the real browser after browser
profile if your system path does not state the path to the
browser. For example:

*firefox /Applications/Firefox.app/Contents/MacOS/firefox

Component approach example

Many organizations pursue a “Test and Trash” methodology to
achieve agile software development lifecycles. For example, an
organization in pursuit of agile techniques may change up to
30% of an application with an application lifecycle of 8 weeks.
Without giving the change much thought, up to 30% of their
recorded tests break!

We recommend a component approach to building tests.
Test components perform specific test operations. We write
or record tests as individuals components of test function.
For example, a component operates the sign-in function
of a private Web
application. When the
sign-in portion of the
application changes,
we only need to
change the sign-in test
and the rest of test
continues to perform
normally.

Selenium supports the
component approach
in three ways:
Selenium IDE supports
Test Suites and Test
Cases, exporting
Selenium tests to
dynamic languages
(Java, Ruby, Perl, etc.)

creates reusable software classes, and 3) PushToTest TestMaker
supports multiple use cases with parameterized test use cases.

In Selenium IDE, the File menu enables tests to be saved as
test cases or test suites. Record a test, use File -> Save Test
Case. Create a second Test Case by choosing File -> New Test
Case. Record the second test use case. Save the TestSuite for
these two test use cases by choosing File -> Save TestSuite.
Click the “Run entire test suite” icon from the Selenium IDE
tool bar.

TestMaker defines test use cases using a simple XML notation:

 <usecases>
 <usecase name=”MailerCheck_usecase”>
 <test>

 <run name=”LogIn” testclass=”Login.selenium”
 instance=”myinst”

 method=”runSeleneseFile” langtype=”selenium”>

 </run>

 <run name=”OrderProduct” testclass=”OrderProduct.
 selenium” instance=”myinst”

 method=”runSeleneseFile” langtype=”selenium”>

 </run>

 </test>
 </usecase>
 </usecases>

Browser Sandbox, Redirect, and proxy issues

Selenium RC launches the browser with itself as the proxy
server to inject the Javascript of the Browserbot and your
test. This architecture makes it possible to run the same test
on multiple browsers. However, some browsers will warn the
user of possible security threats when the proxy starts and
when the test requests functions or pages outside of the
originating domain. The browser takes control and stops the
Browserbot operations to display the warning message. When
this happens, the test stops until a user dismisses the warning.
There are no reliable cross-browser workarounds.

Some Web applications redirect from http to https URLs. The
browser will often issue a warning that stops the Selenium test.

Selnium does not support a test moving across domains. For
example, a test that started with a baseurl of www.mydomain.
com may not open a page on www.secondomain.com.

6
Getting Started with Selenium

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

7
Getting Started with Selenium

RECOMMENDED BookABOUT the Author

As a Java developer, you want a guide that shows you
how to add Ajax functionality to your web applications
with a minimum of effort. Well look no further than Pro
Ajax and Java Frameworks. In this book, recognized
Java experts and authors of the best-selling Apress
title, Foundations of Ajax, will show you how.

Frank Cohen is, Founder of PushToTest, Author of
FastSOA. Through his speaking, writing and consulting, Frank
Cohen, is the expert that information technology professionals
and enterprises go to when they need to understand and solve
problems in complex interoperating information systems,
especially Service Oriented Architecture (SOA), Ajax, and
Web services. PushToTest is the open-source test automation
solutions business, and maintainer of the popular TestMaker
open-source project

Website: www.pushtotest.com

The Cohen Blog: www.pushtotest.com/docs/thecohenblog

Selenium Biosphere

Test Maker allows repurposing Selenium tests as load test
service monitors. http://www.pushtotest.com

BrowserMob facilitates low-cost Selenium load testing.
http://browsermob.com/load-testing

SauceLabs provides a farm of Selenium RC servers for testing.
http://saucelabs.com/

ThoughtWorks Twist can be used for test authoring and
management.
http://studios.thoughtworks.com/twist-agile-test-automation

Running a Selenium test as a functional test in TestMaker.
TestMaker displays the success/failure of each command in the
test and the duration in milliseconds of each step.

The Future, Selenium 2.0 (AKA Webdriver)

The Selenium Project started the WebDriver project, to be
delivered as Selenium 2.0. WebDriver is a new architecture
that plays Selenium tests by driving the browser through its

native interface. This solves the test playback stability issue
in Selenium 1.0 but requires the Selenium project to maintain
individual API drivers for all the supported browsers. While
there is no release date for Selenium 2.0, the WebDriver code
is already functional and available for download at
http://code.google.com/p/webdriver.

Available Training

SkillsMatter.com, Think88com, PushToTest.com, RTTSWeb.com,
and Scott Bellware (http:blog.scottbellware.com) offer training
courses fro Selenium. PushToTest offers free Open Source Test
Workshops (http://workshop.pushtotest.com) as a meet-up for
Selenium and other Open Source Test tool users.

About The name selenium

Selenium lore has it that the originators chose the name
of Selenium after learning that Selenium is the antidote to
Mercury poisoning. There appears to be no love between the
Selenium team and HP Mercury, but perhaps a bit of envy

BUY NOW
books.dzone.com/books/pro-ajax-java

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

