

DZone, Inc. | www.dzone.com

Apache Tapestry 5.0

ABOUT TApesTry 5

Tapestry 5.0 is a high-productivity, component-based, open
source user interface tier for Java EE web applications. It
combines simple, concise page templates with minimal Java
classes (to contain state and business logic), and embraces
convention over configuration, dynamically locating and
adapting to your classes. This refcard covers Tapestry 5.0,
(released as version 5.0.18 in December 2008), and describes
the structure of a Tapestry application, the format of Tapestry
markup templates, the standard components, and typical
configuration options.

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 tech facts at your fingertips

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL

method = HTTP verb (GET, POST, etc.)

url = url to open, may include querystring

async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick,

onload, etc. in browser event model)

setRequestHeader

(namevalue)

add a header to the HTTP request

send(body) send the request

body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send()

is called)

httpStatus The HTTP return code (integer, only populated after

response reaches the loaded state)

responseText body of response as a JavaScript string (only set after

response reaches the interactive readyState)

responseXML body of the response as a XML document object (only

set after response reaches the interactive readyState)

getResponseHeader

(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

Hot
Tip

 tech facts at your fingertips

prOjecT LAyOUT

The first decision on a new project is the root package name.
Tapestry will automatically locate Tapestry pages and com-
ponents under the root package. Figure 1 shows a sample
project layout for a root package name of com.whizzco.snuz.

A
p

ac
h

e
 T

ap
e

st
ry

 5

 w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#40

By Howard M. Lewis Ship

Configuring the Web Application, continued

Java classes to be com-
piled are stored under
src/main/java. Additional
resources to be packaged
with the compiled classes
are stored under src/main/

resources.

The web application is
under src/main/webapp,
complete with a WEB-INF
folder and a web.xml con-
figuration file.

cOnfigUring The weB AppLicATiOn

Follow this layout and the instructions on the Tapes-
try 5 home page and you can use live class reload-
ing: changes to your page classes are picked

 up without a restart or redeploy.

Hot
Tip

Tapestry’s primary configuration comes from web.xml; this is
where the application’s root package is defined.

If you are using Maven, it can build a template project for you.
Enter the following all on a single line:

mvn archetype:create -DarchetypeGroupId=org.apache.tapestry \
 -DarchetypeArtifactId=quickstart \
 -DgroupId=com.wizzco -DartifactId=snuz
 -DpackageName=com.wizzco.snuz

You can replace the parts in bold with values specific to your

application. Maven creates an entire project structure, includ-
ing a web.xml and starter pages and classes.

Additional configuration is accomplished via Tapestry’s built-
in Inversion of Control container. This takes the form of a
module class that defines services and provides configuration.
If an AppModule class exists in the services package
(com.wizzco.snuz.services.AppModule), it is loaded automati-
cally. Maven will create this file for you.

Let’s turn Tapestry’s production mode off, so that any excep-
tions will be reported in full detail:

package com.whizzco.snuz.services;

import org.apache.tapestry5.ioc.*;
import org.apache.tapestry5.SymbolConstants;

public class AppModule {
 public static void
contributeApplicationDefaults(MappedConfiguration<String,
String> configuration) {
 configuration.add(SymbolConstants.PRODUCTION_MODE,
 “false”);
 }
}

SymbolConstants Field Description Default Value

CHARSET Output and request encoding UTF-8

COMPRESS_WHITESPACE “true” to remove excess template
whitespace, “false” to leave it in

true

PRODUCTION_MODE “true” for abbreviated exceptions,
“false” for the full exception report

true

SUPPORTED_LOCALES Comma separated list of locale
names. Often overridden to “en”

en, it, es, de, ...
Figure 1: Project layout with root pack-
age name of com.whizzco.snuz.

cOnTenTs incLUDe:

n	 Project Layout
n	 Configuring the Web Application
n	 About Pages and Components
n	 Tapestry Markup Templates
n	 Built-in Components
n	 Tapestry Annotations and more...

src/main/java/com/wizzco/snuz

 pages

 Index.java

 services

 AppModule.java

src/main/resources/com/wizzco/snuz/pages

 Index.properties

src/main/webapp

 Index.tml

 WEB-INF

 app.properties

 web.xml

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

ABOUT pAges AnD cOmpOnenTs

In Tapestry, each page is a specific Java class in the pages
package and has a page name that is based on the Java class
name. Thus com.whizzco.snuz.pages.Index is page “Index”
and com.whizzco.snuz.pages.profile.Edit is page “profile/Edit”.

Each page has a Tapestry markup template file that defines
what components are used by the page. Some components
also have templates and their own child components.

Every component has
a type and an id. The
type identifies what
Java class will be
instantiated. The id is
unique to the compo-
nent’s container (the
page, or containing
component). Tapestry
assigns an id if you
don’t.

Pages are not like servlets; they are not singletons. There will
be many instances of each page. A page instance is only vis-
ible to one request at a time, and Tapestry uses a page pool
to store page instances between requests.

Component classes
may extend from
other component
classes (but not from
other non-component
classes). There is no
required base compo-
nent class in Tapestry;
most components
extend from Object.

A page binds the
parameters of its child
components. For
example, a TextField
component’s value parameter is bound to a property, or
property expression, indicating what object property it will
read (when rendering) or update (when the containing form is
submitted). In Figure 3, the value parameter is bound to the
Index page’s activeProfile.lastName property.

The prop: prefix indicates a property expression binding; this
is often the default and is usually omitted. Other binding
prefixes fulfill other purposes, such as accessing localized
messages from a message catalog, and are described later.

2
 Apache Tapestry 5

TApesTry mArkUp TempLATes

Tapestry template files are well-formed XML documents with
a .tml extension. The file name must exactly match the class
name (including case). Page templates can be stored on the

Index

formlayout

pagelink

textfield

loop

Figure 2: Pages contain components; some
components contain other components.

Index

textfield

Profile

firstName : String

lastName: String
email: String

address : String

city: String

state: String

zip: String

Index

activeProfile : Profile

value = prop:activeProfile.lastName

Parameter Binding

TextField

value : Object

Figure 3: Parameter Bindings read and update
properties

Tapestry is not case insensitive about file names.
You must match the case of the class name to the
case of the template file name.

Hot
Tip

Tapestry Namespace
Tapestry uses the namespace http://tapestry.apache.org/sche-

ma/tapestry_5_0_0.xsd for its elements and attributes, usually
assigned the prefix “t”. A minimal, empty Tapestry page will
define the namespace in its outermost (“html”) element:

<html xmlns:t=”http://tapestry.apache.org/schema/tapes-
try_5_0_0.xsd”>
</html>

Any elements that are not in the Tapestry namespace will
ultimately be sent to the client web browser as-is. Markup
templates may contain other namespaces as well; these too
are sent to the client web browser as-is.

Using Expansions
Expansions allow you to read properties of the corresponding
page (or component). Expansions start with a ‘${‘ sequence
and end with a ‘}’. They may appear in ordinary text, includ-
ing inside attribute values:

<dt>Account Balance:</dt>
<dd class=”${balanceClass}”>${balance}</dd>”

Expansions are just like parameter bindings: you
can use a prefix. Often the message: binding prefix
is used to access a localized message from the
page’s message catalog.

Hot
Tip

Adding Components
A Tapestry component appears in the template as an element
inside the Tapestry namespace.

<t:textfield value=”activeProfile.lastName”/>

<t:pagelink page=”index”>back to home page</t:pagelink>

The element name is the component type, and matches a
component class. Tapestry searches the application’s compo-

nents package first, then the built-in core library if not found.

Component parameters are bound using attributes of the
element.

classpath (under src/main/resources) or directly inside the web
application (under src/main/webapp). See Figure 2. Templates
are optional, and many components do not have a template.

Tapestry Markup Templates, continued

You may assign your own id to a component with
the t:id attribute. It’s always a good idea to as-
sign an id to any form-related component, or to

ActionLink components; your choice will be shorter and more
mnemonic than what Tapestry assigns, and component ids
sometimes appear inside URLs or client-side JavaScript.

Hot
Tip

Body Element
The <t:body/> element is a placeholder for a component’s

Expansions are not allowed inside element names or
attribute names; just inside blocks of text or inside
attribute values.

 Note

 Tapestry is case-insensitive about page names (“In-
dex”, “index” and “iNdEX” are all equivalent). It is also
case-insensitive about property names, parameter
names, message keys, component types, and more.

 Note

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

Tapestry Markup Templates, continued Built-in Components, continued

3
 Apache Tapestry 5

BUiLT-in cOmpOnenTs

Link Component Description

ActionLink Triggers an “action” event on the component

EventLink Triggers an arbitrary event.

PageLink Creates a link to render another page in the application.

Dynamic Output
Component

Description

If Renders its body if a condition is met.

Loop Renders its body multiple times, iterating over a collection.

Output Formats and outputs an object using a Formatter.

Form Control Component Description

Checkbox Toggle Button

Errors Displays input validation errors for the enclosing Form.

DateField Text field with JavaScript popup calendar

Form Container of form control components.

Label Label for related form control component.

LinkSubmit A JavaScript-enabled link to submit a form.

Palette JavaScrript multiple selection and reordering.

PasswordField Single line input field with input obscured.

Radio Exclusive toggle button.

RadioGroup Invisible component that organizes Radio
components into an exclusive group.

Select Drop down list.

Submit Clicking form-submit button

TextArea Multiple-line text input field.

TextField Single line input field.

Tapestry’s scaffolding components allow for quick user interfac-
es for ordinary JavaBeans to be assembled quickly and easily.

Scaffolding
Component

Description

BeanDisplay Displays all the properties of a JavaBean.

BeanEditor Creates a UI for a JavaBean, providing different types of form
controls for each property.

BeanEditForm Combines a BeanEditor with a Form and submit button.

Grid Tabular output of a set of JavaBeans, with paging and sorting.

body: the portion of its container’s template enclosed by its
element.

Component Blocks
A section of a template may be enclosed as a block:
<t:block id=”nav”> … </t:block>

Blocks may contain anything: text, elements, components or
expansions. Blocks do not render in the normal flow; instead
they can be rendered on demand (discussed in the Compo-
nent Rendering section). Blocks can be injected into a field of
type Block:

@Inject

private Block nav;

Block Parameters
Some components take a parameter of type Block. You can
specify these using the <t:parameter> element:

<t:grid source=”users”>
 <t:parameter name=”empty”>
 <p>No users match the filter.</p>
 </t:parameter>

</t:grid>

Tapestry has built-in support for many common Ajax opera-
tions, built on top of Prototype and Scriptaculous. Many
of the components have Ajax related parameters, and the
following table lists components that exist just for Ajax.

Ajax
Component

Description

AjaxFormLoop Special looping component for use inside Forms to allow detail
rows to be added or removed.

FormFragment A portion of a Form that can be made visible or invisible.

FormInjector Allows an existing Form to be extended in place.

Zone A receiver of dynamic content from the server; used for in=place
updates

TApesTry AnnOTATiOns

Tapestry uses annotations to change how fields and methods
of your component classes are used.

Field Annotation Description

InjectPage Injects the page that ultiately contains this component as a
read-only field.

Parameter Defines the field as a formal parameter of the component.
Fields may be optional or required, may allow or forbid null,
and may have a default value.

Persist Identifies fields whose value should persist between requests
(stored in the session).

Property Tapestry should generate a getter and setter method for the
field.

Tapestry resets fields to their default values after
each request. If you have data that needs to last
longer than a single request, use the @Persist
annotation.

Hot
Tip

Class Annotation Description

IncludJavaScriptLibrary Ensures that the specified JavaScript libraries are linked
to in the output markup.

IncludeStylsheet Ensures that the specified Cascading Stylesheet file is
linked to in the output markup.

SuportsInformalParameters Marks the component as supporting additional, non-
formal parameters.

Method Annotation Description

Log Tapestry should log method entry and exit (at debug level).

OnEvent Method is an event handler method.

Cached Return value of method should be cached against later
invocations.

CommitAfter The Hibernate transaction should be committed after
invoking the method.

Many additional method annotations are discussed later, in
component rendering. All those annotations have a naming
convention alternative.

Tapestry includes a large suite of built-in components;
essential components are described in the following tables.
Full details of all components and component parameters are
available at:
http://tapestry.apache.org/tapestry5/tapestry-core/ref/.

http://www.refcardz.com
http://www.dzone.com
http://refcardz.dzone.com
http://tapestry.apache.org/tapestry5/tapestry-core/ref/

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

4
 Apache Tapestry 5

prOperTy expressiOns

Expressions are always evaluated in the context of a page or
component. Using the . and ?. operators allows expressions
to navigate a graph of objects and properties.

Expression Form Description

true Boolean.TRUE

false Boolean.False

null null

this The current page or component

1234 A number as a java.lang.Long.

-1234.56 A number as a java.lang.Double.

foo The name of a property.

bar() The name of a method to invoke.

foo.bar Nested property: Evaluate property foo, then property bar (can
be repeated). May be used with method names.

foo?.bar Safe dereference: Evaluate foo then bar, unless foo is null, in
which case the expression’s value is null.

‘err’ A string literal, inside single quotes.

Property expressions are updatable only if the final form is a
property, and there is a setter method for that property. The
case of property and method names is ignored. The . and ?.
operators can be called as many times as you need.

Hot
Tip

The safe dereference operator, ?., keeps you from
having to nest multiple If components to safely
access a nested property where some of the
intermediate properties may be null.

BinDing prefixes

The default binding prefix for most component parameters is
prop:, meaning a property expression. In certain cases, a par-
ticular parameter will have a different default binding prefix,
often literal:.

Essential Binding Prefixes Meaning

block: The id of a block within the template.

component: The id of a child component. Used to connect two
components together (such as Label and TextField).

literal: A literal string.

message: A key from the component’s message catalog.

prop: A property expression.

cOmpOnenT evenTs

Tapestry interacts with your application code by reading and
updating properties, and by invoking event handler methods.
Event handler methods may have any visibility. Component
events may be triggered by a request from the client (such as
a form submission) or may exist only on the server, or some
mix thereof.

Events have a name: in many cases, the event name is “ac-
tion”. Some components trigger other events (see their docu-
mentation). Class EventConstants defines string constants for
all events provided as part of Tapestry.

Type Meaning

String Name of page to render.

Class Class of page to render.

Object Page instance to render (often via @InjectPage).

StreamResponse Send byte stream direct to client.

java.net.URL External URL to redirect to.

boolean Return true to cancel event bubbling

Event bubbling
When an event is triggered on a component, the first step is
to look in the component itself for an event handler method,
then its container, then its container’s container, and so forth.
Event bubbling occurs when there is no event handler, or an
event handler exists but returns null (or void). The event is
re-triggered in the container. As the event bubbles, it always
appears to be from the component last checked.

Form events
The Form component fires a series of events when rendering
and when processing a submission:

Events may have a context: one or more values that are
passed as strings in the URL. Context values are converted
back to appropriate types and appear as method parameters
to event handler methods.

Naming Convention
Event handler methods are of the form “onEventName” or
“onEventNameFromComponentId”. Examples:
void onSuccess() {
 …
}

void onActionFromDelete() {
 …
}

@OnEvent annotation
The @OnEvent annotation can be used instead of the naming
convention:

@OnEvent(EventConstants.SUCCESS)
void storeOrderInDatabase() {
 …
}

@OnEvent(component=”delete”)
void deleteLineItem() {
 …
}

Tip: Use the @OnEvent annotation to support more descrip-
tive method names.

Return values
Return values from event handler methods are used for page
navigation:

Component Events, continued

Event Name When Usage

prepareForRender render Prepare page state to render
the form.

prepareForSubmit submit Prepare page state to process
the form submission.

prepare render/submit Prepare the page state to
render and submit.

validateForm submit Perform final cross-field
validations after all fields have
processed.

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

5
 Apache Tapestry 5

cOmpOnenT renDering

Component Events, continued

Tapestry breaks the render-
ing of a component down
into phases, shown in Figure
4. Each phase corresponds
to a method of the com-
ponent class (possibly a
method inherited from a
base class). The method
names match render phase
names (case insensitive).
Alternately, you may attach
a @SetupRender, @Begin-

Render, etc. annotation to a
method.

Normally, each phase fol-
lows the previous (the bold
lines marked “true”). A
render phase method may
return false to jump back-
wards (the dotted lines).
This is how conditional
components (such as If) and
looping components (such
as Loop and Grid) operate.

Render phase methods may be any visibility. They may either
take no parameters, or take a parameter of type MarkupWriter.
The MarkupWriter.element() method is used to create a new
output element (along with attributes) and should always be
balanced by a call to MarkupWriter.end().

Components will often start an element in the BeginRender
phase, and end it in the AfterRender phase.

Components that support informal parameters should be
marked with the @SupportsInformalParameters class annota-
tion, and include a call to ComponentResources.renderInformal-

Parameters():

@Inject
private ComponentResources resources;

void beginRender(MarkupWriter writer) {
 writer.element(“div”, “class”, “popup”);
 resources.renderInformalParameters(writer);
}

void afterRender(MarkupWriter writer) {
 writer.end();
}

A render phase method may also return a component instance
or a Block instance; the component or Block will take over
and be rendered completely before the current component

cOmpOnenT Life cycLe

Components, as part of pages, have a specific life cycle.
Components are instantiated and added to pages and
containing components. Once the page is fully constructed,
components receive a one-time notification that the page
has loaded. For the duration of a request, a page is attached
to the request: there is a notification for the page being at-
tached and later, for the page being detached (before it is
returned to the page pool).

There are three method annotations for this purpose: @Page-

Loaded, @PageAttached and @PageDetached. Alternately, you
can also use the method naming convention: pageLoaded(),
pageAttached() and pageDetached().

advances to the next phase.

If a component has a template, it is rendered after the
BeginRender phase. The template may include a <t:body/>
element to render the component’s body. A component
without a template is treated as if its template consists of just
a <t:body/> element.

Component Rendering, continued

Start

SetupRender

BeginRender

Render Template

Render Body

AfterRender

CleanupRender

End

true

false

true

true

false

false

false

true

Figure 4: Component Rendering
Phases

LOcALizATiOn

Tapestry localization support is pervasive. Tapestry deter-
mines the client’s desired locale based on standard HTTP
headers, or the presence of a HTTP Cookie.

Pages and components may have their own individual mes-
sage catalogs.

A message catalog is a set of files with similar names: My-

Component.properties for the default message catalog, or
with locale names appended: MyComponent_fr.properties or
MyComponent_de.properties.

Component subclasses may have message catalogs; subclass
keys override super-class keys.

Applications may have a message catalog: WEB-INF/app.prop-

erties. Page and component message keys override applica-
tion messages keys.

Messages are accessible inside templates:

${message:greeting}, ${user.firstName}!

You may inject your component’s message catalog as a Mes-
sages object:

@Inject

private Messages messages;

Using the @Inject annotation on a field of type java.util.Locale

will inject the page’s locale. This can be used to format dates
and currency values.

success submit Invoked if no input field
validation errors.

failure submit Invoked if there are input field
validation errors.

submit submit Invoked last, regardless of
validation errors.

envirOnmenTAL OBjecTs

Environmental objects are request-scoped objects that are
of use to your components. The @Environmental annotation
dynamically binds a component field to an environmental
object. Environmental objects don’t have a name; the type of
the Environmental is used to locate the object.

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

6 Apache Tapestry 5

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Tapestry in Action, Howard M. Lewis Ship, Manning Publishing Co. 2004. Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

free

Tapestry includes a number of useful services that can be
injected into components or other services. Other services
are useful not for injection, but to be configured.

TApesTry services

Service Description

ApplicationDefaults Configuration overrides FactoryDefaults symbols used
to configure other services.

For More Information
Tapestry 5 Home Page:
 http://tapestry.apache.org/tapestry5/

Detailed component reference (with examples):
 http://tapestry.apache.org/tapestry5/tapestry-core/ref/

Tapestry Wiki:
 http://wiki.apache.org/tapestry/

Environmental Objects, continued Tapestry Services, continued

Environmental Type Usage

FormSupport Details about the current form render, or form
submission. Generation of unique control names within
the form.

RenderSupport Generation of unique element ids, and inclusion of
JavaScript libraries and initialization snippets.

BeanModelSource Source for BeandEditor that can be customized and
provided to Grid and BeandEditor components.

ComponentSource Provides access to pages or components.

Request Current request object, used to obtain parameter
values directly.

Howard M. Lewis Ship
Howard M. Lewis Ship is the creator of the Apache
Tapestry project. He is a frequent speaker at JavaOne,
ApacheCon, No Fluff Just Stuff, and other software
conferences. He is the author of “Tapestry in Action”
for Manning Publications, which covers Tapestry 3. He
has trained dozens of developers in Tapestry over the
last five years, is currently the Director of Open Source
Technology at Formos, a Vancouver, Washington based

 consulting company.

ABOUT The AUThOr recOmmenDeD BOOk

Tapestry in Action
The definitive guide to the Tapestry ap-
proach: creating full-featured web apps by
connecting framework components to eco-
nomical amounts of application code. Many
simple examples show you how to tackle
common tasks such as form validation, ap-
plication localization, client-side scripting,

and synchronization between browser and app server.

Web site
http://howardlewisship.com
http://www.formos.com

BUy nOw
books.dzone.com/books/tapestryinaction

ISBN-13: 978-1-934238-43-1
ISBN-10: 1-934238-43-0

9 781934 238431

50795

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com/refcardz/silverlight2
http://refcardz.dzone.com/refcardz/intellij-idea
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns

