

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 About Flex
	n	 Hello, World
n	 Web Services
n	 Remoting and Messaging
 with Java
n	 Hot Tips and more...

Rich Internet Applications and Flex are taking off. Many
developers need to learn Flex fast. That is why we wrote the
book First Steps in Flex. We’re giving you just the right
information to get you started. This refcard highlights three
useful chapters which help readers get started learning Flex.
The first is a simple “Hello, World” application which will help
familiarize readers with the Flex Builder tool and programming
model. Secondly, we'll go into depth about how to connect
Flex applications to back-end data through RESTful XML and
SOAP. And lastly, “Remoting and Messaging with Java” walks
through how to easily connect to a Java back-end with the
open source BlazeDS product.

Flex Builder automatically puts in the first line that you see in
the listing above; this is the doctype line which specifies that
this is a standard XML file. However, Flex ignores this line when
compiling the program and so it can be omitted.

The name property in the Application tag is ignored by Flex;
we use it to give the name of the file containing program. In this
case, the full file name is helloWorld.mxml.

Now run the application. Go to the Run menu and select “Run.”
This should launch your web browser and run the application
within the browser. You’ll see the words “Hello, world” in a
field of blue.

Note that “Hello, World” is in the upper left corner. Modify the
Application tag by removing the layout="absolute" property
and re-run the application. You’ll see that “Hello, world” is
now centered.

Build Your First Flex Applications
First, download and install the 60-day free trial of Flex Builder
from http://www.adobe.com/go/flex_trial. The easiest way to
do this is to get the standalone installation (even if you already
have Eclipse installed for some other purpose). There is also an
Eclipse plugin if you are so inclined.

Display a Label
	 n	 Select File|New|Other. This brings up the “Select a
 wizard” dialog box.

	 n Select “Flex Project.” This brings up the “New Flex
 Project” Dialog box.

 n	 Type in a project name: helloWorld.

	 n	 Use the default location (which will already be checked).

	 n	 Select “Web application (runs in Flash Player).”

	 n	 Leave everything else alone and press “Finish.”

Your project will open in the MXML code editor. You will see the
file titled helloWorld.mxml. Note that this is a valid XML file.

	 n	 Now add an XML tag in between the Application tags:
 <mx:Label text="Hello, world"/>

This inserts a Label component into your Flex application,
which should now look like the following.

 <?xml version="1.0" encoding="utf-8"?>

 <mx:Application name="helloWorld"

 xmlns:mx="http://www.adobe.com/2006/mxml"

 layout="absolute">

 <mx:Label text="Hello, world"/>

 </mx:Application>

ABOUT FLEX

HELLO, WORLD

Ve
ry

 F
ir

st
 S

te
p

s
in

 F
le

x

 w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Very First Steps in Flex
By Bruce Eckel and James Ward

Hot
Tip

The Application component in Flex as well as
other components like Panel have a layout
property. The valid values for layout are
“absolute”, “vertical”, and “horizontal”. This

selects the container class which is used inside the
component. If unspecified the “vertical” layout is used. The
“absolute” layout utilizes the Canvas contains. In a Canvas
components are positioned with x and y values or using
constraints like top, bottom, left, right, horizontalCenter,
verticalCenter. Setting these properties on non-absolutely
positioned containers like VBox and HBox has no effect.
The “vertical” layout utilizes the VBox container which
positions its children in a vertical stack (top to bottom).
The “horizontal” layout utilizes the HBox container which
positions its children next to one another (left to right).

#17

Very First Steps in Flex
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Build Your First Flex Applications, continued

MXML allows you to describe and configure components in
a higher-level, declarative fashion. However, MXML is always
translated into the (procedural) ActionScript language, which
is then compiled into SWF bytecode to be executed by the
Flash Virtual Machine (VM).

Control Label Text with Data Binding
Create a new application called helloWorld2, and remove
the layout property. Place your cursor within the Application
body and add a String and a Label component. Note that
when you enter ‘<’ and then start typing, for example, “String,”
Flex Builder will perform command completion for you. Make
your example look like this:

 <mx:Application name="helloWorld2"
 xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:String id="message">Hello, world</mx:String>
 <mx:Label text="{message}"/>
 </mx:Application>

The String object has an id property. The id is the name of
the object, and is necessary so that other objects can talk to it.
You’ll use id a lot.

Here, the id is message, and the Label component uses
this id, but within curly braces. Curly braces have a special
meaning, which is “bind to this other object.” In this case,
the text field in the Label object is fetched from the String
object. That’s data binding—the data in one object is bound
to the data in another.

In the above example the string doesn’t change during
the execution of the program. Data binding is especially
interesting when the bound-to data does change, because
the Label will be automatically updated. Let’s look at a more
complex example:

 <mx:Application name="helloWorld3"
 xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:TextInput id="message" text="Hello, world"/>
 <mx:Label text="{message.text}"/>
 </mx:Application>

Now we’ve added another component, a TextInput field. The
Label’s text field is bound to message.text, so when you
modify the TextInput the label will automatically change.

Switch to Design View: in the upper left corner you’ll see
a button that allows you to toggle between “source” and
“design.” Experiment by adding components to your
layout by dragging and dropping them, then switch back to
“source” view and notice that you’ve just added more MXML
components. In “design” view, try configuring the components
using the “Flex Properties” pane.

Flex easily uses web services to get and change
data on remote servers.
Flex applications, whether in the browser or on the desktop,
run on the client side. Thus, there are no special server-side
components necessary when building Flex applications.
However, most Flex applications get data from remote servers,
make changes to that data and then submit those changes
back to the server.

Flex provides many ways to load and manipulate remote data.
Most of these methods are simple and can work with any back-
end technology such as .Net, Java, Ruby, Python, PHP, etc.—as
long as the back-end logic is exposed through some kind of
web service. Web services is a broad term which can mean
SOAP, RESTful, JSON, XML-RPC, and more. Flex can easily
connect to any of these web services.

General Purpose HTTP Networking
HTTPService is the easiest way for a Flex application to make
network requests. It makes an HTTP request to a server and
returns the results. This simple example makes a request for an
XML file located at http://FirstStepsInFlex.com/bookmarks.xml

 <mx:Application name="UsingHTTPService"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 applicationComplete="srv.send()">
 <mx:HTTPService id="srv"
 url="http://FirstStepsInFlex.com/bookmarks.xml"/>
 <mx:DataGrid
 dataProvider="{srv.lastResult.bookmarks.item}"/>
 </mx:Application>

The HTTPService url property is set to the URL of the file we
are requesting. After the application has finished initializing,
the applicationComplete event is dispatched, which goes to
the event handler of the same name, which calls srv.send().
The meaning of “send” here is “send the request to the
server.” You can send request parameters as arguments to
the send() method.

The DataGrid displays the results of the request by binding
to srv.lastResult, which is dynamically set when the response
comes back from the server.

By default the srv.lastResult comes back as objects, which the
HTTPService automatically converts from XML. What does
this mean? Each XML node becomes an object, which contains
other objects. If a node contains multiple subnodes, you end
up with an array. If a node is just names and properties, then

WEB SERVICES

Hot
Tip

Data Binding Makes Development Simpler

Under the covers, data binding generates fairly
complex code in order to watch for changes and
respond to them. But you don’t have to think
about this; all you need is the curly braces. This
is one of many cases where Flex does a lot of
work for you in order to keep your life simple.

Hot
Tip

Flex Communities Online

There are a number of online communities out
there to help answer your questions about Flex:

Flexcoders Yahoo Group
http://FirstStepsInFlex.com/go/Flexcoders

Adobe Forums
http://FirstStepsInFlex.com/go/AdobeForums

Blogs are also a great way to continue learning about Flex.
http://feeds.adobe.com has a Flex category which makes
finding Flex blogs easy.

3

DZone, Inc. | www.dzone.com

Very First Steps in Flex
 tech facts at your fingertips

General Purpose HTTP Networking, continued

that node becomes an Object with corresponding keys and
values. This algorithm repeats to the depth of your XML tree.

You can also set the HTTPService resultFormat property
to "e4x" in which case the results will be kept as native XML
objects for use in E4X expressions. Or you can set resultFormat

to “text” which allows for custom deserializers like JSON.

Binding to the lastResult is the simplest way to get the results
of a network request. You can also write a result event handler
and attach it to the HTTPService:

 <mx:Application name="HTTPServiceResultHandler"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 applicationComplete="srv.send()">
 <mx:HTTPService id="srv"
 url="http://FirstStepsInFlex.com/bookmarks.xml">
 <mx:result>
 dg.dataProvider = event.result.bookmarks.item;
 </mx:result>
 </mx:HTTPService>
 <mx:DataGrid id="dg"/>
 </mx:Application>

Note that the DataGrid isn’t configured with a dataProvider.
Instead, this happens in the result event handler, which is
written as a script block.

HTTPService also has a fault event for requests that
return errors.

SOAP Web Services
The WebService component connects to a remote server
using SOAP:

 <mx:Application name="UsingSOAP"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 applicationComplete="srv.GetInfoByZIP(94103)">
 <mx:WebService id="srv"
 wsdl="http://www.webservicex.net/uszip.asmx?wsdl">
 <mx:operation name="GetInfoByZIP">
 <mx:result>
 dg.dataProvider = event.result.NewDataSet.Table
 </mx:result>
 </mx:operation>
 </mx:WebService>
 <mx:DataGrid id="dg"/>
 </mx:Application>

SOAP defines operations that are specified by its WSDL
(Web Services Description Language). Once we set the wsdl

property of the WebService to the remote WSDL URL, those
operations can be called on the WebService object as if they
were native methods of that object (this is one of the many
benefits of using a dynamic language).

Here, the call to the WebService method GetInfoByZip()
takes a single parameter. The result event handler puts the data
returned from the request into the DataGrid. Data binding can
also be used with the results of the request by binding to the
srv.GetInfoByZIP.lastResult.NewDataSet.Table property.

Networking Limitations
The browser imposes several limitations on the networking
capabilities of the Flash Player. The primary limitation is that
applications running in the Flash Player can only make requests
back to the server from which the application originated.

There are two workarounds:

 1. Use a proxy server on the server from which the
 application originated from.

 2. Use cross-domain requests.

Any server can act as a proxy. Apache is easy to configure as
a proxy, as is the open source BlazeDS server (a subset of the
LiveCycle Data Services product).

To enable cross-domain requests, server administrators must
explicitly allow them. Unfortunately, this can open web sites
to XSRF types of attacks. During development testing, the
Flash Player lets you bypass this security restriction for specific
applications. This happens automatically when developing Flex
application in Flex Builder. It can also be done manually by
modifying the Flash Player’s trust file. For more information, see
http://FirstStepsInFlex.com/go/FlashPlayerTrustFile

Another limitation of the networking capabilities of Flash Player
is that non-200 HTTP response codes cannot be accessed in
the Flash Player. This is due to limitations in the browsers’
Plug-in networking APIs. Either insure that all responses from
your server are 200, or utilize a proxy.

Further Learning
The open source AS3Corelib library adds JSON support to
HTTPService: http://FirstStepsInFlex.com/go/as3corelib

Flex Builder 3 supports a new technique for working with SOAP
web services which stubs out the ActionScript objects for a
given WSDL. This feature is available in Flex Builder from the
Data menu: http://FirstStepsInFlex.com/go/WSDLImport

More information on HTTPService and WebService:
http://FirstStepsInFlex.com/go/WebServices

The open-source BlazeDS provides simple
two-way communication with Java back ends.

The Web Services examples showed how Flex applications
can easily communicate with back-end servers through various
web services protocols. Those servers can be running Java,
ColdFusion, .Net, PHP, Ruby or any number of other server-
side technologies. While web services are an easy way to
communicate between Flex applications and servers, other
options exist which can dramatically increase application
performance as well as developer productivity.

Every server technology can easily speak XML since it is a text-
based protocol. XML is perfect when protocol transparency
is necessary. For instance, Flickr’s web services use RESTful-style
XML over HTTP. This allows any developer using any technology
to easily interact with Flickr by sending text-based requests.
Flickr then responds with simple XML. One downside to
text-based protocols like XML is that the additional layer of

REMOTING AND MESSAGING WITH JAVA

Note
If you get an error when running this program,
close all instances of your browser and try
again. For an explanation, refer to the following
Networking Limitations section.

4

DZone, Inc. | www.dzone.com

Very First Steps in Flex
 tech facts at your fingertips

Remoting and Messaging with Java, continued

data abstraction is usually cumbersome to write and maintain.
In addition, this data abstraction layer consumes resources
on the server- and client-side when the data is serialized and
deserialized.

For some time, Flash Player has supported a transport protocol
that alleviates the bottlenecks of text-based protocols and
provides a simpler way to communicate with servers. Called
Action Message Format (AMF), this binary protocol for
exchanging data can be used over HTTP in place of text-based
protocols that transmit XML. Applications using AMF can
eliminate an unnecessary data abstraction layer and communicate
more efficiently with servers. To see a demonstration of the
performance advantages of AMF, look at the Census RIA
Benchmark at http://www.jamesward.org/census.

The open source BlazeDS project includes a Java implementation
of AMF which is used for remotely communicating with server-
side Java objects as well as for passing messages between
clients. BlazeDS remoting technology allows developers to
easily call methods on Plain old Java objects (POJOs), Spring
services, or EJBs. Developers can use the messaging system
to easily send messages from the client to the server or from
the server to client. BlazeDS can also be linked to other
messaging systems such as JMS or ActiveMQ. Because the
remoting and messaging technologies use AMF over HTTP
they gain the performance benefits of AMF as well as the
simplicity of fewer data abstraction layers. BlazeDS works
with a wide range of Java-based application servers, including
Tomcat, WebSphere, WebLogic, JBoss, and ColdFusion. In
addition, BlazeDS can be easily used in Flex applications
for the web (running in the Flash Player) and the desktop
(running in Adobe AIR).To get started, simply deploy the
blazeds-samples.war file in any servlet container. This
web application contains a number of preconfigured sample
applications that can be accessed at http://localhost:8080/
blazeds-samples (The port may vary depending on your
application server and configuration).

BlazeDS Remoting
To use the BlazeDS Remoting Service:

 1. Create a new POJO Java class which exposes the
 methods you want to access from a Flex application.

 2. Configure a BlazeDS remoting destination in the
 remoting-config.xml file.

 3. Create a Flex application which uses the
 RemoteObject class.

Let’s walk through those steps in more detail using Eclipse and
Flex Builder. You will need the following software installed:

	 n Eclipse 3.3 Classic, from http://www.eclipse.org
	 n The Flex Builder 3 plugin for Eclipse, from
 http://www.adobe.com (For building this example,
 you must use the plugin rather than the standalone
 Flex Builder installation).
	 n Any Java Application Server (Tomcat, JBoss, WebLogic,
 WebSphere, etc.)
	 n BlazeDS from http://opensource.adobe.com

To create a simple Remoting Application:

 1. Unjar the blazeds.war file from BlazeDS into your
 application server’s deployment folder. For instance, on
 JBoss use <JBOSS_HOME>/server/default/deploy/

 blazeds.war

 2. Start Eclipse + Flex Builder.

 3. Create a new Java project that you can use to configure
 BlazeDS and add Java classes to your web application.

 a. Use a project name like blazeds_server

 b. Create the project from existing source; use the path
 of the WEB-INF directory of your deployed BlazeDS
 WAR, such as: <JBOSS_HOME>/server/default/

 deploy/blazeds.war/WEB-INF

 c. Add the src directory to the build path.

 d. Use the WEB-INF/classes directory as the
 output folder.

 4. Create a new Java file called HelloWorld.java with the
 following code (this is your POJO):

 public class HelloWorld {
 public String sayHello(String name) {
 return "hello, " + name;
 }
 }

 5. Configure BlazeDS to allow remoting requests to the
 HelloWorld class by adding a destination to the
 remoting-config.xml file found in the WEB-INF/flex
 directory. Use the following destination configuration:

 <destination id="HelloWorld">
 <properties>
 <source>HelloWorld</source>
 </properties>
 </destination>

 6. Start your application server and verify that your web
 application is configured by going to the following URL
 (The port may vary depending on your application server
 and configuration): http://localhost:8080/blazeds

 (If your server is not configured to display directory
 contents, you might see a 404 error. This is OK.)

→

Open Source AMF Implementations

The AMF protocol has numerous open source
implementations:

Java: BlazeDS
http://opensource.adobe.com

.Net: FlourineFx
http://FirstStepsInFlex.com/go/FlourineFx

PHP: AMFPHP
http://FirstStepsInFlex.com/go/AMFPHP

Python: PyAMF
http://FirstStepsInFlex.com/go/PyAMF

Ruby: RubyAMF
http://FirstStepsInFlex.com/go/RubyAMF

Hot
Tip

5

DZone, Inc. | www.dzone.com

Very First Steps in Flex
 tech facts at your fingertips

BlazeDS Remoting, continued

 7. Create a new Flex Project

 a. For the project name, type testHelloWorld.

 b. Select “J2EE” as the Application Server Type.

 c. Select “Use remote object access service” and
 LiveCycle Data Services.

 d. Specify the Root folder to be the location of your
 deployed WAR file.

 e. Specify the Root URL to be http://localhost:8080/blazeds
 (Your port name may be different depending on your
 application server and configuration).

 f. Specify the Context Root to be: /blazeds.

 g. Verify the configuration and click “Finish.”

 8. Create the Flex application by updating the
 testHelloWorld.mxml file with the following source code:

 <mx:Application name="testHelloWorldUpdate"

 xmlns:mx="http://www.adobe.com/2006/mxml">

 <mx:RemoteObject id="ro" destination="HelloWorld"/>

 <mx:TextInput id="n" change="ro.sayHello(n.text)"/>

 <mx:Label text="{ro.sayHello.lastResult}"/>

 </mx:Application>

 9. Run the application and test it by typing your name into
 the TextInput box. You should see “hello, <your name>”
 displayed beneath the TextInput.

The Flex application uses the RemoteObject library to
communicate with the BlazeDS-enabled server. When the user
enters text in the TextInput box, the change event causes
the RemoteObject to make a request to the server. The
server then makes a request to the Java Class specified in the
remoting destination configuration. This could call a Spring
service or EJB session bean, but this example just calls a POJO.
The POJO’s return value is simply “hello,” with the name
argument appended.

When the POJO returns a value, that value is serialized into
AMF and returned to the Flex application. The RemoteObject

library then sets the ro.<method name>.lastResult
property to the value that was returned. (In this case
ro.sayHello.lastResult.) The result can also be obtained
through a result event on the RemoteObject. Data binding
triggers the Label to display the result.

BlazeDS also supports passing typed Java objects back
and forth.

BlazeDS Messaging
To use the BlazeDS Messaging Service:

 1. Create a messaging destination in the
 messaging-config.xml file.

 2. Create a Flex application that uses the Producer and
 Consumer classes to send and receive messages.

 3. Begin listening for messages by subscribing to the
 Consumer’s message feed.

Let’s build an application that uses the BlazeDS messaging system.

 1. Start by adding a messaging destination to the
 messaging-config.xml file found in the WEB-INF/flex
 directory. Add the following destination:

 <destination id="chat"/>

A messaging destination allows the messaging system to relay
messages to clients listening on that destination, and it allows
messages to be sent to the destination. Messaging destinations
can have durability and network parameters, and they can also
be connected to other messaging systems like JMS.

 2. Restart your application server so that BlazeDS configures
 the new messaging destination.

 3. Create a new Flex Project

 a. For the project name, type testChat.

 b. Select “J2EE” as the Application Server Type.

 c. Select “Use remote object access service” and
 LiveCycle Data Services.

 d. Specify the Root folder to be to location of your
 deployed WAR file.

 e. Specify the Root URL to be http://localhost:8080/blazeds
 (Your port name may be different depending on your
 application server configuration).

 f. Specify the Context Root to be: /blazeds.

 g. Verify the configuration and click “Finish.”

 4. To create a simple chat application that uses the
 messaging system, update testChat.mxml with the
 following code:

 <mx:Application name="testChatUpdate"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="cons.subscribe()">
 <mx:Script>
 import mx.messaging.messages.AsyncMessage;
 </mx:Script>
 <mx:Producer id="prod" destination="chat"/>
 <mx:Consumer id="cons" destination="chat"
 message="c.text += event.message.body.msg + '\n'"/>
 <mx:TextArea id="c" width="300" height="300"/>
 <mx:TextInput id="m"/>
 <mx:Button label="Send"
 click="prod.send(new AsyncMessage({msg: m.text}))"/>
 </mx:Application>

 5. Run the application. Enter a message in the lower
 TextInput box and click “Send.” Verify that the message
 is displayed in the upper box. Also notice that messaging
 works across multiple browser windows.

When the user clicks the “Send” button, a new message is
created using an anonymous object to set the msg property
on the body of the message to the value in the TextInput.
Because the message type is an AsyncMessage, that class
must be imported.

The Consumer object allows Flex applications to listen for
messages. When the application has initialized, it subscribes
to the message system. Then, when a message is received, the
event handler on the Consumer takes the chat message out of
the body of the message and appends it to the TextArea.

→

Very First Steps in Flex
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-20-2
ISBN-10: 1-934238-20-1

9 781934 238202

5 0 7 9 5

ABOUT THE AUTHORS

First Steps in Flex will give you
just enough information, and just
the right information, to get you
started learning Flex. Enough so
that you feel confident in taking
your own steps once you finish the
book. For more information visit
http://www.firststepsinflex.com.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/adobeflex

Bruce Eckel
Bruce Eckel specializes in languages and rapid-development tools and
techniques, and provides consulting, workshops and conferences. He is
the author of the multi-award-winning Thinking in Java and Thinking in
C++, among others. Visit his web site at www.MindViewInc.com.

James Ward
James Ward is a Technical Evangelist for Flex at Adobe. He travels the
globe speaking at conferences and teaching developers how to build
better software with Flex. Visit his web site at www.jamesward.com.

BlazeDS Messaging, continued

The Producer object allows Flex applications to send messages
into the message system. There is also a Java API (not used in
this example) which allows messages to be sent into the message
system on the server.

With a custom adapter or the out-of-the-box JMS adapter you
can connect the message system to other messaging systems,
but by default the message system runs standalone.

Further Learning
Downloading LiveCycle Data Services and taking the built-in
Test Drive can be a great way to learn more about LCDS:
http://FirstStepsInFlex.com/go/LCDS

BlazeDS also has a Test Drive:
http://FirstStepsInFlex.com/go/BlazeDS

Hot
Tip

LCDS and BlazeDS both have two WAR files

which help get developers started. The first

is a samples war file containing demos and

source code explaining the product features.

There is also a plain WAR file with just the

basics needed to start from scratch.

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

