Book of Vaadin

Vaadin 6.4

vaadin

Book of Vaadin: Vaadin 6.4

Vaadin Ltd
Marko Gronroos

Vaadin Framework 6.4

Published: 2010-07-08
Copyright © 2000-2010 Vaadin Ltd

Abstract

Vaadin is a server-side AJAX web application development framework that enables developers to build
high-quality user interfaces with Java. It provides a library of ready-to-use user interface components and
a clean framework for creating your own components. The focus is on ease-of-use, re-usability, extensibility,
and meeting the requirements of large enterprise applications. Vaadin has been used in production since
2001 and it has proven to be suitable for building demanding business applications.

All rights reserved.

Table of Contents

P O AT oo iX
1R 12 £ T [¥T o1 [o T T PPN 1
T OVEBIVIEBW e 1

1.2. Example Application Walkthrougho, 3

1.3. Support for the ECHPSE IDEcooiii i 4

1.4. Goals and PhilOSOPNYuiii e e 4

1.5, BACKGIOUNG 5

2. Getting Started with Vaadinccccooriiviiiiiiiiiiiiiiiiiiiiiiiicncceerceaneee 7
2.7, Installing Vaadin ... 7
2.1.1. Installing the Distribution Packagecooooiiiiiiiii e 8

2.1.2. Starting the Content BrOWSEr 8

2.1.3. Package CONtENTS ... 9

2.1.4. Demo APPLICAtIONS ..o 11

2.2. Setting up the Development ENVIronment ... 11
2.2.1. Installing Java SDK ... 12

2.2.2. Installing Eclipse IDE ... 13

2.2.3. Installing Apache TOMCAatcooiiiiii e 14

2.2.4. Firefox and FIrebuUg ... 14

2.2.5. Vaadin Plugin for ECIIPSEcooiiiii e 15

2.3. QuickStart With EClIIPSEiiii e 18
2.3.1. Starting EClIPSE ..o 18

2.3.2. Importing Vaadin as a Projectooocooiiiiiii 18

2.3.3. Running the Demo Applications in EClipSecocooeiiiiiiiiii 19

2.3.4. Debugging the Demo Applications in Eclipseccoooiiiiiiiiiiii 23

2.3.5. Using QuickStart as a Project Skeletonc.occooiiiiiiiiii 23

2.4. Your First Project with Vaadin ... 24
2.4.1. Creating the ProjecCt ... 24

2.4.2. Exploring the Project 28

2.4.3. Setting Up and Starting the Web Server ..o 30

2.4.4. Running and Debuggingooiiiiii e 32

R IR Y o] 4 11 (= o1 (1= ST RRN 35
oA OVEIVIEBW L. 35

3.2. Technological BaCKkground 38

B 2 . AU A 38

3.2.2. Google Web TOOIKIToiiiiiiei e 38

3 2.3 UG ON 39

3.3. Applications as Java Servlet SESSIONSoouiiiiiiiiiii i 39

3.4, Client-Side ENGINE ...ooiiii i 39

3.5. BEvents and LIStENErS ... 41

4. Writing a Web Applicationccccoieiiiiiiiiiiiiiiiiiiiiiiiiinieenieesieesioesrasssasssasssasssasssns 43
A1 OVEBIVIBW i 43

4.2. Managing the Main WINAOW ... 46

4.3, Child WINAOWS ... e e e e 46
4.3.1. Opening and Closing a Child Windowcoooooiiiiiiiiiii e 47

4.3.2. WINAOW POSITIONING ©.ovvieii e 49

4.3.3. Modal WINAOWS ..o 49

4.4, Handling Events With LISTENErs ..., 50

4.5, Referencing RESOUICESo.viiiii e 52
4.5.1. Resource Interfaces and ClasSESviviiiiiiiiiiii e 53

Book of Vaadin iii

Book of Vaadin

4.5.2. File RESOUICES ...t 53
4.5.3. Class Loader RESOUICESccuiiiiiiiiiiii 54
4.5.4. Theme RESOUICES .. iiiiii e e 54
4.5.5, Stream RESOUICESiiiiiiiiiii e e 54

4.6. Shutting Down an AppliCationcoooiiiiii 56
4.6.1. Closing an ApPliCatioNooiii 56
4.6.2. Handling the Closing of @ WINdOWcooiiiiiiiiiiii e, 56

4.7, HandliNg ErTOrS .. oo 57
4.7.1. Error Indicator and MESSAQTE .. vvvniiiiii e 57
4.7.2. NOTICAtIONS L.uvtiiii e 57
4.7.3. Handling Uncaught EXCEPLiONSccooiiiiiiiiiii 60

4.8. Setting Up the Application ENvIronment ..., 61
4.8.1. Creating Deployable WAR in EClIDSEovviiiiiiiiiii 61
4.8.2. Web Application CONtENSiiiiiiiiiii e 61
4.8.3. Deployment Descriptor web.xml ..., 62

5. User Interface Componentsccceueiiiieuniiiiiiniiiiiimniiiiiienrtienecraneseceanesseeanes 65
B OVEIVIBW oo e 66
5.2. Interfaces and ADSIraCtions ..o 67
5.2.1. Component Interfacecooooiiiiii 68
5.2.2. AbstractComponent ... 69
5.2.3. Field Components (Field and AbstractField) ... 69

5.3. Common Component FEAtUIESoooiiiiiiiiiie e 72
5.3.1. CaptiOn i 72
5.3.2. Description and TOOIPS ...ooiiiiiii e 73
5.3.3 ENADIEd ..o 74

B 3L ICOM i 75
B5.3.5. LOCAIE .. o 75
5.3.6. REAT-ONIY ..ot 78
B5.3.7. Style NAME ..o 78
5.3.8. ViSIDIE L 79
5.3.9. SiziNG COMPONENES ...ttt 80
5.3.10. Managing INPUt FOCUSooiiiiii 81

5.4 LAl ... 82
D D LN 85
B5.6. TeXtFI@ld ... 86
5.7. RIChTEXIAFr@a ... 87
5.8. Date and Time INDUL ... 88
5.8.1. CaAlENAN .ot 89
5.8.2. DateField LOCaleo 89

D0, BUHION . 89
5.10. CRECKBOXccoooiiiiiiiiiiii 90
5,171, SeleCting HEMS .o oo 91
5.11.1. Binding Selection Components to Data ..., 92
5.11.2. Basic Select Componentcoooiiiiiii e 95
5.11.3. Native Selection Component NativeSelecte. 97
5.11.4. Radio Button and Check Box Groups with OptionGroup 98
5.11.5. Twin Column Selection with TwinColSelect 99
5.11.6. Allowing Adding New [tems ..o 100
5.11.7. Multiple Selection MOAEooiiiiii e 100
5.11.8. Other CommoON FEAtUreSoooiiiii 102
512, Table ..o 102
5.12.1. Selecting ltemsina Table ... 103
5.12.2. Table FEatUIES ... 104

Book of Vaadin

5.12.3. Column Headers and FOOEISoooiiiiiiiiiiiiiie e 109
5.12.4. Generated Table COIUMNS ... 111
5.12.5. CSS Style RUIES ... 114
DA T o 116
B4 MENUBAK ... 117
515 Embedded ... 119
5.15.1. Embedded ODJECES . ..iiiviiii i 120
5.15.2. Embedded IMagesccooviiiiii i 120
5.15.3. BrOWSEr Frames ..o 121
DB, UPload ... 121
BUAT. FOPM Lo 123
5.17.1. Form as a User Interface Componentcccccooiiiiiiiiiiiiiiiiieeee, 124
5.17.2. Binding FOrm to Data ... 126
5.17.3. Validating Form INpUL ... 128
5.17.4. Buffering FOrm Dataoiiiiiii 130
5.18. ProgressINdicator ... 131
5.18.1. Doing Heavy Computationcooiiiiiiiiiiiie e 131
D519 QIO ..o 132
5.20. LOGINFOFM ... 134
5.20.1. Customizing LOGINFOrM ... 135
5.21. Component Composition with CustomComponentc.. 137
6. MaNAgiNg LayouULc..cceiiieiiieiieiiniiniiettniirnertesteesseesrsessssssasssssssnsssnsssnsssnsssnssssssanss 139
B. 7. OVEBIVIEBW .ot 140
6.2. Window and Panel ROOt Layoutccooiiiiiiii 142
6.3. VerticalLayout and HorizontalLayout ... 142
6.3.1. Sizing Contained COMPONENTSoiiiiiii e 143

B.4. GridLayouUt ... 146
6.4.1. Sizing Grid CellS ..o 147

B.5. FOrmLayout ... 150
B.6. Panel ... 151
B.7. SplitPanel ... 153
B.8. TAbBSREet ... 155
B.9. ACCOIAION 158
6.10. Absolutelayoutoooiiiiiii 159
B.11. CSSLAYOUL ... 162
6.12. Layout FOrmattingooooii e 164
B.12.1. LayoUL SIZE ... 164
6.12.2. Layout Cell Alignment ... 166
6.12.3. Layout Cell SPaCINGiiiii e 167
B.12.4. Layout Marginsot 169
B.13. CUSIOM LAYOULS .. oo 170
7. Visual User Interface Design with Eclipse (experimental)ccooovvuirinnirinnnnnnn. 173
T3 OVEBIVIEW oo e 174
7.2. Creating a New CustomComponentcooiiiiiiii e, 174
7.3. Using The Visual EQITOr ... 176
7.3.1. Adding New COMPONENTSoviiiii e 176
7.3.2. Setting Component Propertiescooviiiiiiiiiiii e 177
7.3.3. Editing an AbsoluteLayout ... 180

7.4. Structure of a Visually Editable Componentccooooiiiiiiiii 181
7.4.1. Sub-Component ReferenCes ... 182
7.4.2. Sub-Component BUIlAErscoooiiiiiiiii 182
7.4.3. The CONSIUCION ..o 183

Book of Vaadin

L T I 2 =T 4 =N 185
BT, OVEBIVIEW .. 185
8.2. Introduction to Cascading Style Sheets ... 187

8.2.1. BasiC CSS RUIESo 187
8.2.2. Matching by Element Classoooiiiiiiiii e 188
8.2.3. Matching by Descendant Relationshipcoocoviiiiiiiii, 189
8.2.4. Notes on Compatibilitycoooiiii 191
8.3. Creating and UsiNg TheMESo 192
8.3.1. Styling Standard COmMPONENTScooiiiiiii e 192
8.3.2. BUIlt-IN TREMES ... 194
8.3.3. USING TNEIMES ..ot 195
8.3.4. Theme INNeritanCe ... 195
8.4. Creating a Theme iN ECHPSEcoovniii e 196

9. Binding Components t0 Datacccoeeeiievuniiiiiniiiiiiiiiiiiiicereeeee e 199
9.1 OVEBIVIBW .ot 199
9.2, PrOPEIIES .ot 201

9.2.1. Property Viewers and EQItOrsoooooiiiiiiiiiiii 202
9.2.2. ObjectProperty Implementationc.ooooiiiiiii 203
9.2.3. Implementing the Property Interfaceccccoooiiiii 203
9.3. Holding properties in [IEMS ... 204
9.3.1. The Propertysetltem Implementationcoooeiiiiiiniiii . 205
9.3.2. WrappingaBeaninaBeanltemcooiiii 205
9.4. Collecting items iN CONTAINETSviiiiii e 206
9.4.1. Iterating Over @ CONAINETooiiiiii e 207

10. Developing Custom COMPONENLSc.cceivuiiiniiiuiiiiiiiiiiiieiiriuieiiisreeersassssssssses 209
TO. T OVEIVIBW L.oiiii e 210
10.2. Doing It the Simple Way in EClIPSEoiiiiiiii e 212

10.2.1. Creating @ Widget .. .oooviii e 212
10.2.2. Recompiling the Widget Setcooiiiiiiiiiiii 214
10.2.3. Plugin Related Project SEtiNgSccooiiiiiiiiiiiiii i 215
10.3. Google Web Toolkit WIdgetsooiiiiie i, 216
10.3.1. Extending a Vaadin Widget ..o 217
10.3.2. Example: A Color Picker GWT Widgetcooooiiiiiiiiiiiiiiii 217
10.3.3. Styling GWT WIdQetsooviiiiiiiiii e 220
10.4. Integrating @ GWT WiIdgetoiiiiii e 221
10.4.1. Deserialization of Component State from Serverccooooi 222
10.4.2. Serialization of Component State to Servero.occooeeiiiiiiiiiin, 223
10.4.3. Example: Integrating the Color Picker Widgetccccooooiiiiinn, 224
10.5. Defining @ Widget SEt ..o 226
10.6. Server-Side COMPONENTSiiuiii i 227
10.6.1. Binding to the Client-Side Widgetccoooiiiiii 227
10.6.2. Server-Client Serializationccooiiiiiiiiii e 227
10.6.3. Client-Server Deserializationccooiiiiiiiiiiiii e, 227
10.6.4. Example: Color Picker Server-Side Componentcccccceeeiieiinien 228
10.7. Using @ Custom COMPONENTiiiiiiiiiie e 229
10.7.1. Example: Color Picker Applicationccoovviiiiiiiiiiiiiiiie, 229
10.7.2. Web Application Deploymentcooiiiiiiiii 230
10.8. GWT Widget Developmentcooooii 231
10.8.1. Creating a Widget Projectccooiiiiiiiii 231
10.8.2. Importing GWT Installation Packageccoooooiiiiiiiiiiiiii e, 232
10.8.3. Writing the Code ..o 233
10.8.4. Compiling GWT Widget Setsooiiiiiiiii 233

Vi

Book of Vaadin

10.8.5. Ready t0 RUN oo 237
10.8.6. GWT Development MOGEcooiiiiiiiiii e 238
10.8.7. Packaging a Widget Set ... 243
10.8.8. Troubleshootingooiii i 243

11. Advanced Web Application TOPICSccccviiiiiiiiiiiiiieiiieiiieiiienieeiieeiieesieesiensrenssanens 245
11.1. Special Characteristics of AJAX Applicationsccooiviiiiiiiiii 246
11.2. Application-Level WINAOWS ... 246
11.2.1. Creating New Application-Level Windowsooocoeieiiiiiiiiiin 247
11.2.2. Creating Windows Dynamicallycoooiiiiiiiiiii e 248
11.2.3. ClosSing WINAOWS ..o 251
11.2.4. Caveats in Using Multiple WindOWScoooviiiiiiiiiice e 252
11.3. Embedding Applications in Web Pagescoooiiiiiiiiiiii, 253
11.3.1. Embedding Inside adiv Element ... 254
11.3.2. Embedding Inside an iframe Element ... 256
11.4. Debug and Production MOOEoiiiiiiiiii 258
11.4.1. DEDUG MOTEoii 258
11.4.2. ANAlYZING LAYOULS ...t 259
11.4.3. CUSIOM LaYOULS ..o e 260
11.4.4. Debug Functions for Component Developersccccciiiiiieneeee, 260
1.5, RESOUICES .t 260
1151 URITHANAIErS ..o 261
11.5.2. Parameter Handlers 261
11,6, ShOMCUL KEYS ..ot 263
11.6.1. Click Shortcuts for Default BUHONS ... 263
11.6.2. Field FOCUS ShOMCULS 264
11.6.3. Generic ShortCut ACHIONS ... 264
11.6.4. Supported Key Codes and Modifier Keys ..., 266

7 PN NG o 267

8. Portal INtegration ... 268
11.8.1. Deploying 10 @ Portal ..o 268
11.8.2. Creating a Portal Application Project in EClipsecccoooiiiiiiiiiiiinnn. 269
11.8.3. Portlet Deployment DescCriptorsooiviiiiiiiiii e 271
11.8.4. Portlet Hello WOrId ... 276
11.8.5. Installing Vaadin in Liferayccoooiiiiiiiii 276
11.8.6. Handling Portlet ReqQUESES ..o 278
11.8.7. Handling Portlet Mode Changes ... 279
11.8.8. Non-Vaadin Portlet Modescoooiiiiiiii 281
11.9. Google App Engine INtegrationccoooiiiiiiiiiii 283
11.10. COMMON SECUNLY ISSUES ... it 284
11.10.1. Sanitizing User Input to Prevent Cross-Site Scripting ..., 284
11.11. URI Fragment and History Management with UriFragmentUtility 285
11.12. Capturing HTTP REQUESESvviiiiii e 286
11.12.1. Using Request and Response ObjJectsc.oooovviiiiiiiiiiiiiii 287
11.12.2. Managing CoOOKIESuuiiiii e 288
1113, Drag @nd DrOP . .oee i 289
11.13.1. HaNdlNG DrOPS .ovoee e 290
11.13.2. Dropping fems ONn a Treeccoooiiiiiiiiiii 290
11.13.3. Dropping ltems OnaTable ... 292
11.13.4. ACCEPLING DIOPS .. 293
11.13.5. Dragging COmMPONENESuiiiiiieii e 295
11.13.6. Dropping on @ COMPONENTciiiiiiiii e 296
11.13.7. Dragging Files from Outside the Browserccooooviiiiiiiiiinnnn, 297
11.14. Using Add-0n COMPONENES ...uvtiiiiii et 297

Vii

Book of Vaadin

11.14.1. Downloading Add-ons from Vaadin DireCtorycccccccceiiiinainnenn, 297

11.14.2. Compiling Add-on Widget Sets in EClipSeooooviviiiiiiii 298

11.14.3. Compiling Add-on Widget Sets with an Ant Script ..., 299

11.14.4. TroubleShOOtiNgoiiii i 299

11.14.5. Removing Widget SEtSoiiiiiiiiiiii e 300

A. User Interface Definition Language (UIDL)ccceuiiieniiieeiiennirrenneieeceeenceeeesnnees 301
A.1. APl for Painting COmMPONENTSiiiiie e 302

A2, JSON RENAEIING .o e 303

(= TS ToT o T T o) Y £ - T |13 N 307
LN OEX e 311

viii

Preface

This book provides an overview of the Vaadin Framework and covers the most important topics
which you might encounter when developing applications with it. A more detailed documentation
of individual classes, interfaces, and methods is given in the Java API Reference.

You can browse an online version of this book at the Vaadin website http://vaadin.com/.
A PDF version is also included in the Vaadin installation package and if you install the Vaadin
Plugin for Eclipse, you can browse it in the Eclipse Help. You may find the HTML or the Eclipse
Help plugin version more easily searchable than this printed book or the PDF version, but the
content is the same. Just like the rest of Vaadin, this book is open source.

Writing this manual is ongoing work and this edition represents a snapshot at a time when
working towards the release of Vaadin 6.4. Nevertheless, many of the Vaadin 6.4 features, such
as the enhanced keyboard support and table component enhancements were still in early phase
of development at the time of editing, so this edition does not include them. Also, a revised
visual editor plugin for Eclipse is expected around the time of Vaadin 6.4, but the chapter de-
scribing the editor is about the current version in early 2010.

This edition includes an index, which is not yet complete. Many sections are under work and
will be expanded in future.

Who is This Book For?

This book is intended for software developers who use, or are considering to use, Vaadin to
develop web applications.

The book assumes that you have some experience with programming in Java, but if not, it is as
easy to begin learning Java with Vaadin as with any other Ul framework if not easier. No know-
ledge of AJAX is needed as it is well hidden from the developer.

You may have used some desktop-oriented user interface frameworks for Java, such as AWT,
Swing, or SWT. Or a library such as Qt for C++. Such knowledge is useful for understanding
the scope of Vaadin, the event-driven programming model, and other common concepts of Ul
frameworks, but not necessary.

If you don't have a web graphics designer at hand, knowing the basics of HTML and CSS can
help, so that you can develop presentation themes for your application. A brief introduction to
CSS is provided. Knowledge of Google Web Toolkit (GWT) may be useful if you develop or in-
tegrate new client-side components.

Organization of This Book

The Book of Vaadin gives an introduction to what Vaadin is and how you use it to develop web
applications.

Chapter 1, Introduction The chapter gives introduction to the application archi-
tecture supported by Vaadin, the core design ideas
behind the framework, and some historical back-
ground.

Chapter 2, Getting Started with This chapter gives practical instructions for installing
Vaadin Vaadin and the reference toolchain, including the

Book of Vaadin ix

Preface

Chapter 3, Architecture

Chapter 4, Writing a Web Applic-
ation

Chapter 5, User Interface Com-
ponents

Chapter 6, Managing Layout

Chapter 7, Visual User Interface
Design with Eclipse (experiment-
al)

Chapter 8, Themes

Chapter 9, Binding Components
to Data

Chapter 10, Developing Custom
Components

Chapter 11, Advanced Web Ap-
plication Topics

Appendix A, User Interface
Definition Language (UIDL)

Vaadin Plugin for Eclipse, how to run and debug the
demos, and how to create your own application project
in the Eclipse IDE.

This chapter gives an introduction to the architecture
of Vaadin and its major technologies, including AJAX,
Google Web Toolkit, JSON, and event-driven program-
ming.

This chapter gives all the practical knowledge required
for creating applications with Vaadin, such as window
management, application lifecycle, deployment in a
servlet container, and handling events, errors, and re-
sources.

This chapter essentially gives the reference document-
ation for all the core user interface components in
Vaadin and their most significant features. The text
gives examples for using each of the components.

This chapter describes the layout components, which
are used for managing the layout of the user interface,
just like in any desktop application frameworks.

This chapter gives instructions for using the visual ed-
itor for Eclipse, which is included in the Vaadin Plugin
for the Eclipse IDE.

This chapter gives an introduction to Cascading Style
Sheets (CSS) and explains how you can use them to
build custom visual themes for your application.

This chapter gives an overview of the built-in data
model of Vaadin, consisting of properties, items, and
containers.

This chapter describes the process of creating new
client-side widgets with Google Web Toolkit (GWT)
and integrating them with server-side counterparts.
The chapter also gives practical instructions for creat-
ing widget projects in Eclipse, and using the GWT
Development Mode to debug widgets.

This chapter provides many special topics that are
commonly needed in applications, such as opening
new browser windows, embedding applications in
regular web pages, low-level management of re-
sources, shortcut keys, debugging, etc.

This chapter gives an outline of the low-level UIDL
messaging language, normally hidden from the de-
veloper. The chapter includes the description of the
serialization API needed for synchronizing the compon-
ent state between the client-side and server-side
components.

Organization of This Book

Preface

Appendix B, Songs of Vaadin

Supplementary Material

Mythological background of the name Vaadin.

The Vaadin installation package and websites offer plenty of material that can help you under-
stand what Vaadin is, what you can do with it, and how you can do it.

Demo Applications

Address Book Tutorial

Developer's Website

Online Documentation

Support

The installation package of Vaadin includes a number of
demo applications that you can run and use with your web
browser. The content browser allows you to view the source
code of the individual demo applications. You should find
especially the Sampler demo a good friend of yours.

You can find the demo applications online at http://vaad-
in.com/.

The Address Book is a sample application accompanied
with a tutorial that gives detailed step-by-step instructions
for creating a real-life web application with Vaadin. You
can find the tutorial from the product website.

Vaadin Developer's Site at http://dev.vaadin.com/ provides
various online resources, such as the ticket system, a de-
velopment wiki, source repositories, activity timeline, devel-
opment milestones, and so on.

The wiki provides instructions for developers, especially
for those who wish to check-out and compile Vaadin itself
from the source repository. The technical articles deal with
integration of Vaadin applications with various systems,
such as JSP, Maven, Spring, Hibernate, and portals. The
wiki also provides answers to Frequently Asked Questions.

You can read this book online at http://vaadin.com/book.
Lots of additional material, including technical HOWTOs,
answers to Frequently Asked Questions and other docu-
mentation is also available on Vaadin web-site
[http://dev.vaadin.com/].

Stuck with a problem? No need to lose your hair over it, the Vaadin Framework developer com-
munity and the Vaadin company offer support for all of your needs.

Community Support Forum

Report Bugs

You can find the user and developer community forum
for Vaadin at http://vaadin.com/forum. Please use the
forum to discuss any problems you might encounter,
wishes for features, and so on. The answer for your
problems may already lie in the forum archives, so
searching the discussions is always the best way to
begin.

If you have found a possible bug in Vaadin, the demo
applications, or the documentation, please report it by

Supplementary Material Xi

http://vaadin.com/
http://vaadin.com/
http://dev.vaadin.com/
http://vaadin.com/book
http://dev.vaadin.com/
http://dev.vaadin.com/
http://vaadin.com/forum

Preface

filing a ticket at the Vaadin developer's site at ht-
tp://dev.vaadin.com/. You may want to check the existing
tickets before filing a new one. You can make a ticket
to make a request for a new feature as well, or to sug-
gest modifications to an existing feature.

Commercial Support Vaadin offers full commercial support and training ser-
vices for the Vaadin Framework and related products.
Read more about the commercial products at http://vaad-
in.com/pro for details.

About the Author

Marko Grénroos is a professional writer and software developer working at Vaadin Ltd in Turku,
Finland. He has been involved in web application development since 1994 and has worked on
several application development frameworks in C, C++, and Java. He has been active in many
open source software projects and holds an M.Sc. degree in Computer Science from the Uni-
versity of Turku.

Acknowledgements

Much of the book is the result of close work within the development team at Vaadin Ltd. Joonas
Lehtinen, CEO of Vaadin Ltd, wrote the first outline of the book, which became the basis for the
first two chapters. Since then, Marko Grénroos has become the primary author. The development
team has contributed several passages, answered numerous technical questions, reviewed the
manual, and made many corrections.

The contributors are (in chronological order):

Joonas Lehtinen
Jani Laakso
Marko Grénroos
Jouni Koivuviita
Matti Tahvonen
Artur Signell
Marc Englund
Henri Sara

About Vaadin Ltd

Vaadin Ltd is a Finnish software company specializing in the design and development of Rich
Internet Applications. The company offers planning, implementation, and support services for
the software projects of its customers, as well as sub-contract software development. Vaadin
Framework, previously known as IT Mill Toolkit, is the flagship open source product of the
company, for which it provides commercial development and support services.

Xii

About the Author

http://dev.vaadin.com/
http://dev.vaadin.com/
http://vaadin.com/pro
http://vaadin.com/pro

Chapter 1

Introduction

1.1 OVEIVIBW oo 1
1.2. Example Application Walkthroughcccoooiiiiiii 3
1.3. Support for the EClipSe IDE ... 4
1.4, Goals and PhilOSOPNYvviiiiiiii e 4
1.5, BaCKIOUNG ..o 5

This chapter provides an introduction to software development with Vaadin, including installation
of Vaadin, the Eclipse development environment, and any other necessary or useful utilities. We
look into the design philosophy behind Vaadin, its history, and recent major changes.

1.1. Overview

The core piece of Vaadin is the Java library that is designed to make creation and maintenance
of high quality web-based user interfaces easy. The key idea in the server-driven programming
model of Vaadin is that it allows you to forget the web and lets you program user interfaces
much like you would program any Java desktop application with conventional toolkits such as
AWT, Swing, or SWT. But easier.

While traditional web programming is a fun way to spend your time learning new web technolo-
gies, you probably want to be productive and concentrate on the application logic. With the
server-driven programming model, Vaadin takes care of managing the user interface in the
browser and AJAX communications between the browser and the server. With the Vaadin ap-
proach, you do not need to learn and debug browser technologies, such as HTML or JavaScript.

Book of Vaadin 1

Introduction

Figure 1.1. General Architecture of Vaadin

Web Java Your Web
Browser Web Java Service
Client-Side Server Application

Engine

Figure 1.1, “General Architecture of Vaadin” illustrates the basic architecture of web applications
made with Vaadin. Vaadin consists of the server-side framework and a client-side engine that
runs in the browser as a JavaScript program, rendering the user interface and delivering user
interaction to the server. As the application runs as a persistent Java Servlet session in an ap-
plication server, you can easily bind your application to data and logic tiers.

Because HTML, JavaScript, and other browser technologies are essentially invisible to the ap-
plication logic, you can think of the web browser as only a thin client platform. A thin client dis-
plays the user interface and communicates user events to the server at a low level. The control
logic of the user interface runs on a Java-based web server, together with your business logic.
By contrast, a normal client-server architecture with a dedicated client application would include
a lot of application specific communications between the client and the server. Essentially re-
moving the user interface tier from the application architecture makes our approach a very ef-
fective one.

As the Client-Side Engine is executed as JavaScript in the browser, no browser plugins are
needed for using applications made with Vaadin. This gives it a sharp edge over frameworks
based on Flash, Java Applets, or other plugins. Vaadin relies on the support of GWT for a wide
range of browsers, so that the developer doesn't need to worry about browser support.

Behind the server-driven development model, Vaadin makes the best use of AJAX (Asynchronous
JavaScript and XML) techniques that make it possible to create Rich Internet Applications (RIA)
that are as responsive and interactive as desktop applications. If you're a newcomer to AJAX,
see Section 3.2.1, “AJAX” to find out what it is and how AJAX applications differ from traditional
web applications.

Hidden well under the hood, Vaadin uses GWT, the Google Web Toolkit, for rendering the user
interface in the browser. GWT programs are written in Java, but compiled into JavaScript, thus
freeing the developer from learning JavaScript and other browser technologies. GWT is ideal
for implementing advanced user interface components (or widgets in GWT terminology) and
interaction logic in the browser, while Vaadin handles the actual application logic in the server.
Vaadin is designed to be extensible, and you can indeed use any 3rd-party GWT components
easily, in addition to the component repertoire offered in Vaadin. The use of GWT also means
that all the code you need to write is pure Java.

Overview

Introduction

The Vaadin library defines a clear separation between user

interface presentation and logic and allows you to develop It looks Just Awesome
them separately. Our approach to this is themes, which dic-)

tate the visual appearance of applications. Themes control <) (B hoe e

the appearance of the user interfaces using CSS and (option- .
al) HTML page templates. As Vaadin provides excellent de-
fault themes, you do not usually need to make much custom-
ization, but you can if you need to. For more about themes, Took Breatn

Purchased Red Fi

see Chapter 8, Themes. o

We hope that this is enough about the basic architecture
and features of Vaadin for now. You can read more about it
later in Chapter 3, Architecture, or jump straight to more
practical things in Chapter 4, Writing a Web Application.

1.2. Example Application Walkthrough

Let us follow the long tradition of first saying "Hello World!" when learning a new programming
environment. After that, we can go through a more detailed example that implements the model-
view-controller architecture. The two examples given are really simple, but this is mostly because
Vaadin is designed to make things simple.

Example 1.1. HelloWorld.java
import com.vaadin.ui.*;
public class HelloWorld extends com.vaadin.Application {

public void initQ) {
Window main = new Window("*Hello window');
setMainWindow(main);
main.addComponent(new Label(*'Hello World!'));

}

The first thing to note is that the example application extends com.vaadin.Application class.
The Application class is used as the base class for all user applications. Instances of the Ap-
plication are essentially user sessions, and one is created for each user who uses the application.
In the context of our HelloWorld application, it is sufficient to know that the application is started
when the user first accesses it and at that time Init method is invoked.

Initialization of the application first creates a new window object and sets "Hello window" as its
caption. The window is then set as the main window of the application; an application can actually
have many windows. This means that when a user launches the application, the contents of the
‘main window" are shown to the user in the web page. The caption is shown as the title of the
(browser) window.

A new user interface component of class com.vaadin.ui.Label is created. The label is set to
draw the text "Hello World!". Finally, the label is added to the main window. And here we are,
when the application is started, it draws the text "Hello World!" to the browser window.

The following screenshot shows what the "Hello World!" program will look like in a web browser.

Example Application Walkthrough 3

Introduction

File Edit Wiew History Bookmarks Tools Help

<,ﬁ - - @ ﬁ [} http:/flocalhost:8888/Helloworld/ |"| D‘Pl "| |\l
Hello Waorld!

Done l (] l Adblock

Before going into details, we should note that this example source code is complete and does
not need any additional declaratively defined template files to be run. To run the program, you
can just add it to your web application, as explained in Section 4.8, “Setting Up the Application
Environment”.

1.3. Support for the Eclipse IDE

While Vaadin is not bound to any specific IDE, and you can in fact easily use it without any IDE
altogether, we provide special support for the Eclipse IDE, which has become the standard
environment for Java development. The support includes:

e Import the installation package as a QuickStart demo project in Eclipse
¢ Install the Vaadin Plugin for Eclipse, which allows you to:
¢ Create new Vaadin projects

e Create custom themes

Create custom client-side widgets and widget sets

Edit components with a visual (WYSIWYG) editor
¢ Easily upgrade to a newer version of the Vaadin library

The Vaadin Plugin for Eclipse is our recommended way of installing Vaadin; the actual installation
package contains demos and documentation that are available also from the website, so you
do not normally need to download and install it, unless you want to experiment with the demos
or try debugging.

Installing and updating the plugin is covered in Section 2.2.5, “Vaadin Plugin for Eclipse” and
the creation of a new Vaadin project using the plugin in Section 2.4.1, “Creating the Project”.
See Section 8.4, “Creating a Theme in Eclipse”, Section 10.2, “Doing It the Simple Way in Eclipse”,
and Chapter 7, Visual User Interface Design with Eclipse (experimental)for instructions on using
the different features of the plugin.

1.4. Goals and Philosophy

Simply put, Vaadin's ambition is to be the best possible tool when it comes to creating web user
interfaces for business applications. It is easy to adopt, as it is designed to support both entry-
level and advanced programmers, as well as usability experts and graphical designers.

When designing Vaadin, we have followed the philosophy inscribed in the following rules.

4 Support for the Eclipse IDE

Introduction

Right tool for the right purpose

Because our goals are high, the focus must be clear. This toolkit is designed for creating web
applications. It is not designed for creating websites or advertisements demos. For such pur-
poses, you might find (for instance) JSP/JSF or Flash more suitable.

Simplicity and maintainability

We have chosen to emphasize robustness, simplicity, and maintainability. This involves following
the well-established best practices in user interface frameworks and ensuring that our imple-
mentation represents an ideal solution for its purpose without clutter or bloat.

XML is not designed for programming

The Web is inherently document-centered and very much bound to the declarative presentation
of user interfaces. The Vaadin framework frees the programmer from these limitations. It is far
more natural to create user interfaces by programming them than by defining them in declarative
templates, which are not flexible enough for complex and dynamic user interaction.

Tools should not limit your work

There should not be any limits on what you can do with the framework: if for some reason the
user interface components do not support what you need to achieve, it must be easy to add
new ones to your application. When you need to create new components, the role of the
framework is critical: it makes it easy to create re-usable components that are easy to maintain.

1.5. Background

The library was not written overnight. After working with web user interfaces since the beginning
of the Web, a group of developers got together in 2000 to form IT Mill. The team had a desire
to develop a new programming paradigm that would support the creation of real user interfaces
for real applications using a real programming language.

The library was originally called Millstone Library. The first version was used in a large production
application that IT Mill designed and implemented for an international pharmaceutical company.
IT Mill made the application already in the year 2001 and it is still in use. Since then, the company
has produced dozens of large business applications with the library and it has proven its ability
to solve hard problems easily.

The next generation of the library, IT Mill Toolkit Release 4, was released in 2006. It introduced
an entirely new AJAX-based presentation engine. This allowed the development of AJAX applic-
ations without the need to worry about communications between the client and the server.

Release 5 Into the Open

IT Mill Toolkit 5, released initially at the end of 2007, took a significant step further into AJAX.
The client-side rendering of the user interface was completely rewritten using GWT, the Google
Web Toolkit.

IT Mill Toolkit 5 introduced many significant improvements both in the server-side API and in
the functionality. Rewriting the Client-Side Engine with GWT allowed the use of Java both on the
client and the server-side. The transition from JavaScript to GWT made the development and
integration of custom components and customization of existing components much easier than

Right tool for the right purpose 5

Introduction

before, and it also allows easy integration of existing GWT components. The adoption of GWT
on the client-side did not, by itself, cause any changes in the server-side API, because GWT is
a browser technology that is hidden well behind the API. Also themeing was completely revised
in IT Mill Toolkit 5.

The Release 5 was published under the Apache License 2, an unrestrictive open source license,
to create faster expansion of the user base and make the formation of a developer community
possible.

Stabilization of the release 5 took over a year of work from the development team. It introduced
a number of changes in the API, the client-side customization layer, and the themes. Many sig-
nificant changes were done during the beta phase, until the stable version 5.3.0 was released
in March 2009.

Birth of Vaadin Release 6

IT Mill Toolkit was renamed as Vaadin Framework, or Vaadin in short, in spring 2009. Later IT
Mill, the company, was renamed as Vaadin Ltd. Vaadin means an adult female semi-domesticated
mountain reindeer in Finnish.

The most notable enhancements in Vaadin 6 are the external development tools:
¢ Eclipse Plugin
¢ Visual user interface editor under Eclipse (experimental)

The Eclipse Plugin allows easy creation of Vaadin projects and custom client-side widgets. See
Section 2.2.5, “Vaadin Plugin for Eclipse” for details. The visual editor, described in Chapter 7,
Visual User Interface Design with Eclipse (experimental) makes prototyping easy and new users
of Vaadin should find it especially useful for introducing oneself to Vaadin. Like Vaadin itself,
the tools are open source.

While the APl in Vaadin 6 is essentially backward-compatible with IT Mill Toolkit 5.4, the package
names and some name prefixes were changed to comply with the new product name:

® Package name com.itmill.toolkit was renamed as com.vaadin.

The static resource directory ITMILL was changed to VAADIN.

Client-side widget prefix was changed from "1" to "V".

i-"to'v-".

CSS style name prefix was changed from

Other major enhancements in Vaadin 6 are listed in the Release Notes for Vaadin 6.0.0, which
also gives detailed instructions for upgrading from IT Mill Toolkit 5.

6 Birth of Vaadin Release 6

Chapter 2

Getting Started
with Vaadin

2.7, Installing Vaadin ..o 7
2.2. Setting up the Development Environment ... 11
2.3. QuickStart With EClIPSEcoooiiiiiii 18
2.4. Your First Project with Vaadincccoooiiiiiii i 24

This chapter gives practical instructions for installing Vaadin and the reference toolchain, installing
the Vaadin plugin in Eclipse, and running and debugging the demo applications.

2.1. Installing Vaadin

This section gives an overview of the Vaadin package and its installation. You have two options
for installing:

1. Download and install the installation package

2. If you use Eclipse, you can install the Vaadin plugin for Eclipse, as described in Sec-
tion 2.2.5, “Vaadin Plugin for Eclipse”

Even if you use Eclipse, you can install the installation package and import it under Eclipse as
the QuickStart project. It allows you to run and debug the demo applications and contains
documentation.

Book of Vaadin 7

Getting Started with Vaadin

2.1.1. Installing the Distribution Package

You can install the Vaadin installation package in a few simple steps:

1. Download the newest Vaadin installation package from the download page at http://vaad-

in.com/download/.

2. Unpack the installation package to a directory using a decompression program available

in your operating system (see below).

¢ In Windows, use the default ZIP decompression program to unpack the package

into your chosen directory e.g. C:\dev.

Warning

A At least the Windows XP default decompression program and some
versions of WinRAR cannot unpack the installation package properly in
certain cases. Decompression can result in an error such as "The system
cannot find the file specified." This happens because the decompression
program is unable to handle long file paths where the total length ex-
ceeds 256 characters. This occurs, for example, if you try to unpack the
package under Desktop. You should unpack the package directly into
C:\dev or some other short path or use another decompression pro-
gram.

e In Linux, Mac OS X, and other UNIX-like systems, use Info-ZIP or other ZIP software

with the unzip vaadin-6.x.x.zip command.

The files will be, by default, decompressed into a directory with the name
vaadin-6_x.X.

2.1.2. Starting the Content Browser

The Content Browser is your best friend when using Vaadin. It allows you to browse document-
ation and example source code, and run the demo applications. The demo applications
demonstrate most of the core features of Vaadin. You can find the demo applications also at
the vaadin website: http://vaadin.com/demo.

To start the Content Browser, run the start script in the Vaadin installation directory as instructed
below. The start script launches a stand-alone web server running on the local host at port 8888,
and a web browser at address http://localhost:8888/.

The Content Browser will open the default web browser configured in your system. If your default
browser is not compatible with Vaadin the demo applications may not work properly. In that
case launch a supported browser manually and navigate to http://localhost:8888/.

If the Content Browser fails to start, make sure that no other service is using port 8888.

/

JRE must be installed

You must have Java Runtime Environment (JRE) installed or the batch file will fail
and close immediately. A JRE can be downloaded from ht-
tp://java.sun.com/javase/downloads/index.jsp.

Installing the Distribution Package

http://vaadin.com/download/
http://vaadin.com/download/
http://vaadin.com/demo
http://localhost:8888/
http://localhost:8888/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

Getting Started with Vaadin

Firewall software

Executing the Content Browser locally may cause a security warning from your
firewall software because of the started web server. You need to allow connections
to port 8888 for the Content Browser to work.

Windows

Run the start.bat batch file by double-clicking on the icon. Wait until the web server and
web browser has started, it can take a while.

Linux / UNIX

Open a shell window, change to the Vaadin installation directory, and run the start.sh shell
script. You have to run it with the following command:

$ sh start.sh

Starting Vaadin in Desktop Mode.
Running in http://localhost:8888

2007-12-04 12:44:55.657::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
2007-12-04 12:44:55.745::INFO: jetty-6.1.5

2007-12-04 12:45:03.642::INFO: NO JSP Support for , did not find

org.apache. jasper.servlet.JspServilet

2007-12-04 12:45:03.821::INFO: Started SelectChannelConnector@0.0.0.0:8888

Wait until the web server and web browser has started, it can take a while.

Mac OS X

Double-click on the Start Vaadin icon. Wait until the web server and web browser has started,
it can take a while.

If the start icon fails in your environment for some reason, you can start the Content Browser by
following the instructions for Linux/UNIX above: open a shell window, change to the installation
directory, and execute sh start.sh.

Browser support

Vaadin supports the most commonly used web browsers, including Internet Explorer
6-8, Firefox 3, Safari 3 and Opera 9.6. In addition to these, most of the modern web
browsers also work event if they are not supported. The definitive list of supported
browsers can be found on http://vaadin.com/features.

2.1.3. Package Contents

At the root of installation directory, you can find the start.bat (Windows) or start.sh (Linux
and Mac) script that launches the Vaadin Content Browser, which allows you to run the demo
applications and read the documentation included in the package.

Package Contents 9

Getting Started with Vaadin

Figure 2.1. Vaadin Package Contents

Start This
) vaadin-<platform>-6.0.0 /
—@]| start.bat or start.sh - Content Browser Start Script
— | readme.txt - Instructions for Starting
G WebContent - Web Application Content
= vaadin-5.0.0.jar - Vaadin Library
— ®| release-notes.html - Release Notes
5 doc - Documentation
A] manual.pdf - Reference Manual as PDF
g manual
tﬂ index.html - Reference Manual as HTML
\ api
t:’ index.html - JavaDoc APl Documentation
L WEB-INF - Web Application Data
E_, lib - Libraries
| STC - Source Code for the Demos
— license - Information about licenses
— gwt - Google Web Toolkit

The WebContent directory contains all files related to Vaadin and the Content Browser. If you
do not wish to or can not run the Content Browser, you can open index.html in a web browser
to view the installation package contents and documentation. The demos will not be usable
though. The release-notes.html file contains information about changes in the latest release
and the release history. The [license subdirectory contains licensing guidelines
(licensing-guidelines.html) for Vaadin and licenses for other libraries included in the
installation package. The COPY ING file in the installation root also contains license information.

The Vaadin Library itself is located at WebContent/vaadin-6.x.x.jar. The JAR package
contains, in addition to the compiled files, the full source code of the library.

The WebContent/docs directory contains full documentation for Vaadin, including JavaDoc
API Reference Documentation (api subdirectory) and this manual in both HTML and printable
PDF format.

The WebContent/WEB- INF directory contains source code for the demo applications in the
src subdirectory and the required libraries in the 1ib subdirectory.

The gwt folder contains the full Google Web Toolkit installation package, including runtime lib-
raries for the selected operating system, full documentation, and examples. You will need GWT
if you intend to compile custom client-side widgets for Vaadin (described in Chapter 10, Devel-
oping Custom Components).

In addition, the installation directory contains project files to allow importing the installation
package as a project into the Eclipse IDE. See Section 2.3, “QuickStart with Eclipse” for details
on how to do this.

10

Package Contents

Getting Started with Vaadin

2.1.4. Demo Applications

The Content Browser allows you to run several demo applications included in the installation
package. The applications demonstrate how you can use Vaadin for different tasks. Below is a
selection of the included demos. Notice that the source code for all demos is included in the
installation package and you can directly modify them if you import the package as a project
in Eclipse, as instructed in Section 2.3, “QuickStart with Eclipse”.

Sampler Sampler demonstrates the various standard components
and features of Vaadin. Clicking on one of the available
sample icons will take you to the sample page, where
you can see a live version of the sample together with
a short description of feature. The Sampler allows you
to view the full source code of each sample and provides
links to the APl documentation and to related samples.
Sampler is the best place to get an overview of what is
included in Vaadin.

Address Book Tutorial This step-by-step tutorial covers everything needed to
build a Vaadin application. The tutorial shows how you
create layouts/views, implement navigation between
views, bind components to a data source, use notifica-
tions, and much more. It also includes a section on how
to create a custom theme for your application.

Reservation Application The Reservation Application demonstrates the use of
various components in a semi-real application connec-
ted to a local database. It also shows how to integrate
a Google Maps view inside an application.

Coverflow A simple example on how you can integrate Vaadin with
Flex.
VaadinTunes A non-functional application that demonstrates how you

can create complex layouts using Vaadin.

Note: starting the demo applications can take several seconds.

2.2. Setting up the Development Environment

This section gives a step-by-step guide for setting up a development environment. Vaadin
supports a wide variety of tools, so you can use any IDE for writing the code, most web browsers
for viewing the results, any operating system or processor supported by the Java 1.5 platform,
and almost any Java server for deploying the results.

In this example, we use the following toolchain:
e Windows XP [http://www.microsoft.com/windowsxp/], Linux, or Mac OS X

e SunJava 2 Standard Edition 6.0 [http://java.sun.com/javase/downloads/index.jsp] (Java
1.5 or newer is required)

¢ Eclipse IDE for Java EE Developers [http://www.eclipse.org/downloads/]

e Apache Tomcat 6.0 (Core) or newer [http://tomcat.apache.org/]

Demo Applications 11

http://www.microsoft.com/windowsxp/
http://www.microsoft.com/windowsxp/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://tomcat.apache.org/
http://tomcat.apache.org/

Getting Started with Vaadin

e Firefox 3.0.7 or newer [http://www.getfirefox.com/]
¢ Firebug 1.3.3 or newer [http://www.getfirebug.com/] (optional)
e Vaadin 6.x.x [http://vaadin.com/download/]

The above is a good choice of tools, but you can use almost any tools you are comfortable with.

Figure 2.2. Development Toolchain and Process

Mozilla Firefox
‘ (or any other browser)

ﬁ Firebug Plugin

(optional)

Developer Tools

Eclipse
(optional)

Application Server

Apache Tomcat

Web Tools Platform: Deploy and Control
Web Server Tools > or any otherweab
(optional) ‘ co?"\tainer)

User Project Web Application (WAR)

Vaadin
Library & Themes

User Executable

Vaadin
Library & Themes

Compile and Package

User Sources
& Themes

& Themes

Java SDK

Figure 2.2, “Development Toolchain and Process” illustrates the development environment and
process. You develop your application as an Eclipse project. The project must include, in addition
to your source code, the Vaadin Library. It can also include your project-specific themes.

You must compile and deploy a project to a web container before you can use use it. You can
deploy a project through the Web Tools Platform for Eclipse, which allows automatic deployment
of web applications from Eclipse. You can deploy a project also manually, by creating a web
application archive (WAR) and deploying it through the web container's interface.

2.2.1. Installing Java SDK

Java SDK is required by Vaadin and also by the Eclipse IDE. Vaadin is compatible with Java
1.5 and later editions.

Windows
1. Download Sun Java 2 Standard Edition 6.0 from http://java.sun.com/javase/down-
loads/index.jsp [http://java.sun.com/javase/downloads/index.jsp]
12 Installing Java SDK

http://www.getfirefox.com/
http://www.getfirefox.com/
http://www.getfirebug.com/
http://www.getfirebug.com/
http://vaadin.com/download/
http://vaadin.com/download/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

Getting Started with Vaadin

2. Install the Java SDK by running the installer. The default options are fine.

Linux / UNIX

1. Download Sun Java 2 Standard Edition 6.0 from http://java.sun.com/javase/down-
loads/index.jsp [http://java.sun.com/javase/downloads/index.jsp]

2. Decompress it under a suitable base directory, such as Zopt. For example, for Java
SDK, enter (either as root or with sudo in Linux):

cd /opt
sh (path-to-installation-package)/jdk-6ul-Iinux-i586.bin

and follow the instructions in the installer.

2.2.2. Installing Eclipse IDE

Windows

Eclipse is now installed in C:\dev\ecl ipse and can be started from there (by double clicking
eclipse.exe).

1. Download Eclipse IDE for Java EE Developers (Ganymede version) from http://www.ec-
lipse.org/downloads/ [http://www.eclipse.org/downloads/]

2. Decompress the Eclipse IDE package to a suitable directory. You are free to select
any directory and to use any ZIP decompressor, but in this example we decompress
the ZIP file by just double-clicking it and selecting "Extract all files" task from Windows
compressed folder task. In our installation example, we use C:\dev as the target dir-
ectory.

Linux / UNIX

You have two basic options for installing Eclipse in Linux and UNIX: you can either install it using
the package manager of your operating system or by downloading and installing the packages
manually. The manual installation method is recommended, because the latest versions of the
packages available in a Linux package repository may be incompatible with Eclipse plugins
that are not installed using the package manager.

1. Download Download Eclipse IDE for Java EE Developers (Ganymede version) from
http://www.eclipse.org/downloads/ [http://www.eclipse.org/downloads/]

2. Decompress the Eclipse package into a suitable base directory. It is important to make
sure that there is no old Eclipse installation in the target directory. Installing a new
version on top of an old one probably renders Eclipse unusable.

3. Eclipse should normally be installed as a regular user, as this makes installation of
plugins easier. Eclipse also stores some user settings in the installation directory. To
install the package, enter:

$ tar zxF (path-to-installation-package)/eclipse-jee-ganynede- SR2-1i nux-gtk.tar.gz

This will extract the package to a subdirectory with the name eclipse.

4. You may wish to add the Eclipse installation directory and the bin subdirectory in the
installation directory of Java SDK to your system or user PATH.

Installing Eclipse IDE 13

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

Getting Started with Vaadin

An alternative to the above procedure is to use the package management system of your oper-
ating system. For example, in Ubuntu Linux, which includes Sun Java SDK and Eclipse in its
APT repository, you can install the programs from a package manager GUI or from command-
line with a command such as:

$ sudo apt-get install sun-java6-jdk eclipse

This is, however, not recommended, because the Eclipse package may not include all the ne-
cessary Java EE tools, most importantly the Web Standard Tools, and it may cause incompatib-
ilities with some components that are not installed with the package management system of
your operating system.

2.2.3. Installing Apache Tomcat

Apache Tomcat is a lightweight Java web server suitable for both development and production.
There are many ways to install it, but here we simply decompress the installation package.

Apache Tomcat should be installed with user permissions. During development, you will be
running Eclipse or some other IDE with user permissions, but deploying web applications to a
Tomcat server that is installed system-wide requires administrator or root permissions.

1. Download the installation package:
Apache Tomcat 6.0 (Core Binary Distribution) from http://tomcat.apache.org/

2. Decompress Apache Tomcat package to a suitable target directory, such as C:\dev
(Windows) or Zopt (Linux or Mac OS X). The Apache Tomcat home directory will be
C:\dev\apache-tomcat-6.0.x or Jopt/apache-tomcat-6.0.Xx, respectively.

2.2.4. Firefox and Firebug

Vaadin supports many web browsers and you can use any of them for development. If you plan
to create a custom theme, customized layouts or new user interface components, we recommend
that you use Firefox together with Firebug for debugging. Vaadin contains special support for
Firebug and can show debug information in its console.

If you do not have Firefox installed already, go to www.getfirefox.com [http://www.getfirefox.com/]
and download and run the installer.

Optional. ~ After installing Firefox, use it to open http://www.getfirebug.com/
[http://www.getfirebug.com/]. Follow the instructions on the site to install the latest stable version
of Firebug available for the browser. You might need to tell Firefox to allow the installation by
clicking the yellow warning bar at the top of the browser-window.

When Firebug is installed, it can be enabled at any time from the bottom right corner of the
Firefox window. Figure 2.3, “Firebug Debugger for Firefox” shows an example of what Firebug
looks like.

14

Installing Apache Tomcat

http://www.getfirefox.com/
http://www.getfirefox.com/
http://www.getfirebug.com/
http://www.getfirebug.com/

Getting Started with Vaadin

Figure 2.3. Firebug Debugger for Firefox

Calculator - Mozilla Firefox

Eile Edit Wiew History Bookmarks Tools Help
<El ° E{> = @ ﬁ_l‘ [http:flocalhost:8888/Calc/ [~] [G-] &)

Result
3.0

e BN U
N N N Ol
BN - e
ol =lel -]

#" Inspect Clear | Al HTML €SS JS XHR Images Flash & ==}

Console HTML CSS Script DOM | Net Options -
+ splitpanel.css |ocalhost:8888 958 b B4ms

+ filterselect.css |ocalhost: 8888 3 KB 54ms

+ progressindica |ocalhost:3888 273 b 44ms

+ expandlayout. |ocalhost:8888 550 b 68ms

¥ ADDSAOAD17B |gcalhost: 8888 264 KB A

7 UIDL localhost; 5883 ? Aol

= UIDL localhost: 5888 ? SIS

Headers Post Response

) /*¥{"changes":[["change",{"format": "uidl","pid": "PID21"}.,["label",{"id": "PID21","caption": "Result"
F.'3.0"111, "meta” : {}, "resources" : {}, "locales":[]

Done I [v] l Adblock

Now that you have installed the development environment, you can proceed to creating your
first application.

2.2.5. Vaadin Plugin for Eclipse

If you are using the Eclipse IDE, using the Vaadin plugin should help greatly. The plugin includes:

e An integration plugin with wizards for creating new Vaadin-based projects, themes,
and client-side widgets and widget sets.

¢ A visual editor for editing custom composite user interface components in a WYSIWYG
fashion. With full round-trip support from source code to visual model and back, the
editor integrates seamlessly with your development process.

¢ A version of Book of Vaadin that you can browse in the Eclipse Help system.
You can install the plugin as follows:

1. Start Eclipse.

2. Select Help - Software Updates....

3. Select the Available Software tab.

4. Add the Vaadin plugin update site by clicking Add Site....

Vaadin Plugin for Eclipse 15

Getting Started with Vaadin

Location: |http:/ivaadin.com/eclipse]
@ [OK l [Cancel]

Enter the URL of the Vaadin Update Site: http://vaadin.com/eclipse and click OK. The
Vaadin site should now appear in the Software Updates window.

5. Select all the Vaadin plugins in the tree.

= Sol are Updates and Add-ons o x
installed Software | Available Software

Itype filter text] - Install...

MName B

v W GANYIIEUE UPUEE SITE Elpis

- 3 #! http:fivaadin.comfeclipse

= [%] 000 Vaadin

[% 4 Book of Vaadin Add Site...
[%] % Vaadin Eclipse Integration Manage Sites...
%] 4+ Vaadin Visual Editor (EXPERIMENTAL) @

b [&l Ml for Eelines 3 4 and 35

Y —a—] &)

[Show only the latest versions of available software

[Include items that have already been installed

Open the Automatic Updates' preference page to set up an automatic update schedule

@ Close

Finally, click Install.

Detailed and up-to-date installation instructions for the Eclipse plugin can be found at http://vaad-
in.com/eclipse.

Updating the Vaadin Plugin

If you have automatic updates enabled in Eclipse (see Window -, Preferences - Install/Up-
date - Automatic Updates), the Vaadin plugin will be updated automatically along with other
plugins. Otherwise, you can update the Vaadin plugin (there are actually multiple plugins)
manually as follows:

1. Select Help - Software Updates..., the Software Updates and Add-ons window
will open.

2. Select the Installed Software tab.

3. If you want to update only the Vaadin plugins, select them in the list by clicking the
plugins and holding the Ctrl key pressed for all but the first.

16 Vaadin Plugin for Eclipse

http://vaadin.com/eclipse
http://vaadin.com/eclipse
http://vaadin.com/eclipse

Getting Started with Vaadin

& Software Updates and Add-ons a x
Installed Software| Ayailable Software
Mame ‘Ve = [Update]
OIS O e oy oot
[Target Management Terminal Widget 20 Uninstall
1+ Usage Data Collector 1.0

3 Vaadin Eclipse Integration

3 Vaadin Visual Editor (EXPERIMENTAL)

§* Web Developer Tools 30
E Revert Configuration...

4= Weh Paae Editor (Ontional) 2.1

)

Open the Automatic Updates' preference page to set up an automatic update schedule.

@

4. Click Update.

Notice that updating the Vaadin plugin updates only the plugin and notthe Vaadin library, which
is project specific. See below for instructions for updating the library.

Updating the Vaadin Library
Updating the Vaadin plugin does not update Vaadin library. The library is project specific, as a
different version might be required for different projects, so you have to update it separately for

each project. To change the library to a newer (or some other) version, do as follows:

1. Select the project in the Project Explorer and select Project - Preferences or press
Alt-Enter.

2. In the project preferences window that opens, select Vaadin - Vaadin Version.

3. If the version that you want to use is not included in the Vaadin version drop-down
list, click Download to open the download window.

[Select Vaadin Version to Download o x

Select a Vaadin library version (* = any string, ? = any char):

| l

530
531
540

[] Show pre-release versions and nightly builds

i) (a7] [Cancel

If you want to use a development version, select Show pre-release versions and
nightly builds. Select the version that you want to download and click OK.

Vaadin Plugin for Eclipse 17

Getting Started with Vaadin

4. Select the version that you want to use from the Vaadin version down-down list and
click Apply.

You can observe that the new library appears in the WebContent/WEB-INF/1ib folder.

2.3. QuickStart with Eclipse

Eager to start developing you own applications using Vaadin? This section presents a QuickStart
into running and debugging Vaadin demos under Eclipse. The QuickStart includes a web
server, so you do not need to have a full-weight web container such as Apache Tomcat installed.

2.3.1. Starting Eclipse

If you have followed the instructions given in Section 2.2, “Setting up the Development Environ-
ment”’, you can start Eclipse by running C:\dev\eclipse\eclipse.exe (Windows) or
/opt/eclipse/eclipse (Linux or OS X). Depending on your environment, you may need to
give additional memory settings for Eclipse, as the default values are known to cause problems
often in some systems.

When starting Eclipse for the first time, it asks where to save the workspace. You can select any
directory, but here we select C:\dev\workspace (Windows) or /home/<user>/workspace
(Linux or OS X). We suggest that you also set this as the default.

Close the Eclipse "Welcome" -screen when you are ready to continue.

2.3.2. Importing Vaadin as a Project

If you have not yet downloaded the Vaadin package, instructions for downloading and unpacking
are available at Section 2.1.1, “Installing the Distribution Package”.

The installation directory of Vaadin contains all necessary files to allow importing it as a ready-
to-run Eclipse project:

1. Start Eclipse with any workspace you like. Switch to the Java Perspective through
Window - Open Perspective - Java.

2. Select File - Import... to open the import dialog.

3. In the Import dialog, select General - Existing Projects into Workspace and click
Next.

4. In the Select root directory option, click the Browse button, and select the folder
where you unpacked Vaadin, such as, c:/dev/vaadin-6.x.x. Click OK in the se-
lection window. The Projects list now shows a project named vaadin-examples. Click
Finish in the Import window to finish importing the project.

The newly imported project should look like Figure 2.4, “Vaadin demo project imported
into Eclipse”.

18

QuickStart with Eclipse

Getting Started with Vaadin

Figure 2.4. Vaadin demo project imported into Eclipse

{3} Java EE - Eclip®

File Edit MNavigate Search Project Bun Window Help

[=A [t O+ Q- | @ = o~ | |&- =

ii . i = E"\r"

B S @& 7

= 1vaadin-examples

=i JRE System Library [jdk1.6.0 01]
PEWebContent/WEB-INF/src
vaadin-6.3.3.jar

gwt-user.jar

gwt-dev.jar

= gt

= META-INF

& WebContent E_[, Markers &£ . El Propel

COPYING 0 errors, 147 warnings, 72 ¢
GWT Development Mode.launch | Description

readme.txt b & Java Problems (100 of

start.bat [Java Task (72 items)
start.sh

R A A A A A v

vaadin Development Server.launch

A 1]«
J 0+ jetty-6.1.7 jar - vaadin-examples

You can now browse the source code of the demo applications in Eclipse. The next
section describes how you can run the demos.

2.3.3. Running the Demo Applications in Eclipse

Once the project is imported, as described above, you can run the Content Browser, including
the demo applications, as follows:

1. From the main menu, select Run — Run Configurations....

Running the Demo Applications in Eclipse 19

Getting Started with Vaadin

2. From the list on the left, select Java Application — Vaadin Web Mode.
3. Click Run.

Note that after the application has been launched once, it appears in the Favorites list. You can
then click on the small dropdown arrow on the right side of the Run button on Eclipse toolbar
and select Vaadin Development Server.

B-0- Q- | &S F (B e

Bun As >
Run Configurations...
1ples Organize Favorites...

m likrane Tidll & 0 mt

Running the application in Vaadin Development Server will start an embedded web server and
open a browser window with the Content Browser. The default system web browser is opened,;
make sure that the browser is compatible with Vaadin. The Console view in the lower pane of
Eclipse will display text printed to standard output by the application. Clicking on the red Ter-
minate button will stop the server.

20

Running the Demo Applications in Eclipse

Getting Started with Vaadin

Figure 2.5. Vaadin Content Browser Started Under Eclipse

e Java EE - Eclipse
File Edit Mavigate Search Project Bun Window Help

i‘r‘?" G' %v @ = {):'v *}';, &m & =
i = =0

~ vaadin-exampl
=\ JRE System || Ele Edit View History Beeckmarks Tools Help

% WebContent] <3 - ©

s vaadin-6.3.

[@) | http:/flocalhost: 8888/

[6] Vaadin 6.3.3 | 4

I

4

I

b s gwt-userjar
P gwt-serviet.] .

b jetty-6.1.7)2 voodln }:‘-' thinking of U and |

b jetty-util-6.1

b serviet-api-

P e portal-servig

P portlet.jar

P s gwt-dewjar
I

4

I

e |Sampler

(&= METAINF
iz WebContent] See all Vaadin Framework core components
=/ COPYING and their features in action in the Sampler!

=I GWT Develoy Soyrces for all samples are available for

Table rable = new Table("ISO-3166 Countr

I HashSer<0bjects markedRows = now HashSor

| readme.txt
you to see and use.
= startbat | e s o e
start.sh | static final Action ACTION_LOG = now Act
= sratie final Action|] ACTIONS UNMARKED
5| Waadin Deve q ACTION LOG |
static finmal Action| ACTIONS MARKED n
ACTION_LOG +;
[1| i .
o* 0 items

More Reasons to Choose Vaadin

1| 1
http:/ilocalhost:8888/samplers

Note that executing the web application locally may cause a security warning from your firewall
software because of the started web server. You need to allow connections to port 8888 for the
Content Browser to work. Also, if the web service fails to start, make sure that no other service
is using port 8888.

Launching the GWT Development Mode

The Google Web Toolkit Development Mode allows debugging client-side GWT Java code in
an IDE such as Eclipse. This is made possible by the Google Web Toolkit Developer Plugin,

Running the Demo Applications in Eclipse 21

Getting Started with Vaadin

which is available for major browsers, such as Mozilla Firefox, Google Chrome, Safari, and Internet
Explorer.

To run the demo applications in the GWT Development Mode, follow the following steps:

1. If not already started, start the demo application in Vaadin Development Server as
described above. We only need the server so close the web browser which is automat-
ically opened.

2. From the main menu, select Run - Debug Configurations... .

3. From the list select Java Application -~ GWT Development Mode.
4. Click Debug. This will open the GWT Development Mode window.
5. Click Launch Default Browser.

This will open the application page in the default browser with a gwt.codesvr parameter,
which will make the application use the GWT Development Mode. If you have not yet installed
the GWT Developer Plugin, the browser will open an installation page, which allows you to
download and install the plugin. Please follow the instructions. After the installation is complete
(the browser may need to be restarted), the application will be started.

Starting demo applications under the GWT Development Mode can take considerable
time! Starting the development mode compiles the widget set of the application, which can
take 10-60 seconds, depending on the hardware. During this time, the web browser is completely
unresponsive and does not update its window - you should not think that the browser is stuck.

As with the Vaadin Development Server launcher, after you have run the GWT Development
Mode launcher once, you can click the dropdown marker on right of the Debug button in the
toolbar and find the GWT Development Mode in the dropdown list.

To use the GWT Development Mode in other projects, you need to create a launch configuration
in Eclipse. See Section 10.8.6, “GWT Development Mode” for more detailed information about
the Development Mode and how to create the launch configuration.

How to Stop the Run

To stop the launched Jetty web container that serves the Content Browser web application,
select the Console tab and click on the Terminate button.

Figure 2.6. Terminating a Launch

El console 2 CHE. 3K INE"

Terminate

To clean up all terminated launches from the Console window, click on the Remove All Ter-
minated Launches button.

Figure 2.7. Removing Terminated Launches

El console 33 B x| g e RBIASIIOA) =4 Eiv P
Remove All Terminated Launches

22

Running the Demo Applications in Eclipse

Getting Started with Vaadin

2.3.4. Debugging the Demo Applications in Eclipse

At some point when developing an application, you want to debug it. Running a web application
in debug mode is easy in Eclipse. Next, we will show you how to debug the demo applications
by inserting a breakpoint in the Calc example.

1.

Make sure to stop any previous Run command as instructed above at the end of
Section 2.3.3, "Running the Demo Applications in Eclipse”.

. Select Run - Debug Configurations... from the main menu and the Debug configur-

ation window will open.

. Select Java Application - Vaadin Web Mode and click Debug. The server will start

and the web browser will open.

. Open the source <code for the Calc program. It is located in

WebContent/WEB-INF/src/com.vaadin.demo.Calc. WebContent/WEB-INF/src
is the project's source folder, shown right below the JRE System Library. Double-click
the class to open the source code in the editor.

. Insert a breakpoint in the init() by right-clicking on the gray bar on the left of the

editor window to open the context menu, and select Toggle Breakpoint.

. Switch to the browser window and click the Calc link (below More Examples) to open

it.

. Eclipse encouters the breakpoint and asks to switch to the Debug perspective. Click

Yes. The debug window will show the current line where the execution stopped as il-
lustrated in Figure 2.8, “Execution Stopped at Breakpoint in Debug Perspective in Ec-
lipse”:

Figure 2.8. Execution Stopped at Breakpoint in Debug Perspective
in Eclipse

J// Application initislization creates UI and connects it to business logic
[override
public void init{) {

// Place the layout to the bhrowser main window
setMainWindow (new Window("Calculator Application®™, layout)):

£/ Create and add the components to the layout

layout ., addComponent (display, 0, 0, 3, 0):

for (String caption : mew String(] { "7", maT, o rgr omgeomge g gy
wEE o w{m omwpe o owsew ow_w owgw ow—w owow owgw oy

. You can now step forward or use any commands you would normally use when debug-

ging an application in Eclipse. Note that you can only debug the application code in
this way. If you are debugging the application with the GWT Development Mode, you
can also insert break-points in client side component code and debug it.

2.3.5. Using QuickStart as a Project Skeleton

If you like, you can also use the imported Vaadin demo project as a skeleton for your own project.
Just remove any unnecessary files or files related to the demo applications from the project.
The proper way of creating a new Vaadin project will be described in the next section: Section 2.4,
“Your First Project with Vaadin”.

Debugging the Demo Applications in Eclipse 23

Getting Started with Vaadin

2.4. Your First Project with Vaadin

This section gives instructions for creating a new Eclipse project using the Vaadin Plugin. The
task will include the following steps:

1. Create a new project
2. Write the source code
3. Configure and start Tomcat (or some other web server)
4. Open a web browser to use the web application
We also show how you can debug the application in the debug mode in Eclipse.
This walkthrough assumes that you have already installed the Vaadin Plugin and set up your

development environment, as instructed in Section 2.1.1, “Installing the Distribution Package”
and Section 2.2, “Setting up the Development Environment”.

2.4 1. Creating the Project

Let us create the first application project with the tools installed in the previous section. First,
launch Eclipse and follow the following steps:

1. Start creating a new project by selecting from the menu File - New - Project....
2. Inthe New Project window that opens, select Web - Vaadin Project and click Next.

(e ew e

Select a wizard

Create a Vaadin project.

Wizards:

[type filter text]
P = User Assistance [«
¥ (= Vvaadin

}> Waadin CustomComponent (composite)

1B vaadin Project

> vaadin Theme

}= vaadin widget
= Vaadin Widgetset
b = web
@ l Next = I [l [Cancel

24 Your First Project with Vaadin

Getting Started with Vaadin

3. In the Vaadin Project step, you need to set the basic web project settings. You need
to give at least the project name and the runtime; the default values should be good

for the other settings.

<

Vaadin Project

Create a Vaadin Dynamic Web project,

New Dynamic VWeb Proje: =

Project name:

myproject]

Project contents
Use default

[

Target runtime

[Apache Tomcat v6.0 -][Ngw]
Configuration
[Default Configuration for Apache Tomcat v6.0 -] [Modify..]

Vaadin

A good starting point for working with Apache Tomcat v6.0
runtime. Additional facets can later be installed to add new
functionality to the project.

Deployment configuration:

[Servlet (default)

=]

waadin version: [6.1.1

- l l Download...]

@ |

I Next = “ Finish ” Cancel]

Project name

Use default

Target runtime

Configuration

Deployment configuration

Give the project a name. The name should be a
valid identifier usable cross-platform as a filename
and inside a URL, so using only lower-case alpha-
numerics, underscore, and minus sign is recommen-
ded.

Defines the directory under which the project is
created. You should normally leave it as it is. You
may need to set the directory, for example, if you
are creating an Eclipse project on top of a version-
controlled source tree.

Defines the application server to use for deploying
the application. The server that you have installed,
for example Apache Tomcat, should be selected
automatically. If not, click New to configure a new
server under Eclipse.

Select the configuration to use; you should normally
use the default configuration for the application
server. If you need to modify the project facets, click
Modify.

This setting defines the environment to which the
application will be deployed, to generate the appro-
priate project directory layout and configuration files.
The choises are:

e Servlet (default),

Creating the Project

25

Getting Started with Vaadin

¢ Google App Engine Servlet, and
¢ Generic Portlet (Portlet 2.0).
¢ Old Portlet (Portlet 1.0).

The further steps in the New Project Wizard depend
on the selected deployment configuration; the steps
listed in this section are for the default servlet con-
figuration. See Section 11.9, “Google App Engine
Integration” and Section 11.8, “Portal Integration”
for details on the use of Vaadin in the alternative
environments.

Vaadin version Select the Vaadin version to use. The drop-down
list shows, by default, the latest available version of
Vaadin. If you want to use another version, click
Download. The dialog that opens lists all official
releases of Vaadin.

= Select Vaadin Version to Download = 4

Select a Vaadin library version (* = any string, ? = any char):

[l

530
531
540

[] Show pre-release versions and nightly builds

@ [K] [Cancel l

If you want to use a pre-release version or a nightly
development build, select Show pre-release ver-
sions and nightly builds. Select a version and click
Ok to download it. It will appear as a choise in the
drop-down list.

If you want to change the project to use another
version of Vaadin, for example to upgrade to a
newer one, you can go to project settings and
download and select the other version.

You can click Finish here to use the defaults for the rest of the settings, or click Next.

Creating the Project

Getting Started with Vaadin

4. The settings in the Web Module step define the basic servlet-related settings and the

structure of the web application project. All the settings are pre-filled, and you should
normally accept them as they are.

= New Dynamic Web Projec

Web Module

Configure web module settings i /

Context Root:

[rnypmject]
Content Directory
[WehCnntem]

Java Source Directary:

[S[C]

[%| Generate deployment descriptor

@ < Back][Mext >]l Einish H Cancel]

Context Root The context root (of the application) identifies the
application in the URL used for accessing it. For
example, if the server runs in the apps context and
the application has myproject context, the URL
would be http://example.com/app/url. The
wizard will suggest myproject for the context
name.

Content Directory The directory containing all the content to be in-
cluded in the servlet and served by the web server.
The directory is relative to the root directory of the
project.

Java Source Directory The default source directory containing the applica-
tion sources. The src directory is suggested; anoth-
er convention common in web applications is to use
WebContent/WEB-INF/src, in which case the
sources are included in the servlet (but not served
in HTTP requests).

Generate deployment Should the wizard generate the web.xml deploy-

descriptor ment descriptor required for running the servlet in
the WebContent/WEB- INF directory. Strongly re-
commended. See Section 4.8.3, “Deployment
Descriptor web . xml” for more details.

This will be the sub-path in the URL, for example
http://localhost:8080/myproject. The default for the application root will be
/ (root).

You can just accept the defaults and click Next.

Creating the Project 27

Getting Started with Vaadin

5. The Vaadin project step page has various Vaadin-specific application settings. If you
are trying Vaadin out for the first time, you should not need to change anything. You
can set most of the settings afterwards, except the creation of the portlet configuration.

= New Dynamic Web Projec (= 4

Vaadin project

Configure Vaadin specific project details f y

Application
[%| Create project template

Application name:

[Myproject Application l

Base package name:

[com.example.myproject l

Application class name:

[Myprojecmpplication l

Portlet
[] Create portlet configuration
Partlet title:
[)
@ | Einish || Cancel |
Create project template Make the wizard create an application class stub.
Application Name The name of the application appears in the browser
window title.
Base package name The name of the Java package under which the
application class is to be placed.
Application class name Name of the Vaadin application class.

Create portlet configuration When this option is selected, the wizard will create
the files needed for running the application in a
portal. See Section 11.8, “Portal Integration” for more
information on portlets.

Finally, click Finish to create the project.

6. Eclipse may ask to switch to J2EE perspective. A Dynamic Web Project uses an external
web server and the J2EE perspective provides tools to control the server and manage
application deployment. Click Yes.

2.4.2. Exploring the Project

After the New Project wizard exists, it has done all the work for us: Vaadin libraries are installed
in the WebContent/WEB-INF/1ib directory, an application class skeleton has been written
to src directory, and WebContent/WEB-INF/web.xml already contains a deployment
descriptor.

28

Exploring the Project

Getting Started with Vaadin

Figure 2.9. A New Dynamic Web Project

v E myproject
b ‘g Deployment Descriptor: myproject
¥ 7 Java Resources: src
¥ 1 com.example.myproject
v m MyprojectApplication. java
v MyprojectApplication
@ init()
¥ = Libraries
b =i Apache Tomcat vE.0 [Apache Tomcat vE.0]
=i, EAR Libraries
P =i JRE System Library [V 1.5
¥ =i, Web App Libraries
> 'P; vaadin-6.0.0 jar
P = JavaScript Support
== build
¥ [= WebContent
b = META-INF
¥ [= WEB-INF
¥ = lib
& vaadin-6.0.0 jar
¥| web.xml

The application class created by the plugin contains the following code:
package com.example._myproject;

import com.vaadin.Application;
import com.vaadin.ui.*;
public class MyprojectApplication extends Application
{
@Override
public void init(Q) {
Window mainWindow =
new Window("'Myproject Application™);
Label label = new Label("'Hello Vaadin user');
mainWindow.addComponent(label);
setMainWindow(mainWindow) ;
}
}

Let us add a button to the application to make it a bit more interesting. The resulting init()
method could look something like:

public void init(Q) {
final Window mainWindow =
new Window(*'Myproject Application™);

Label label = new Label('Hello Vaadin user');
mainWindow.addComponent(label);

mainWindow.addComponent(
new Button('What is the time?",
new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
mainWindow.showNotification(
"The time is " + new Date());

)F

Exploring the Project 29

Getting Started with Vaadin

setMainWindow(mainWindow) ;

}

The deployment descriptor WebContent/WEB- INF/web . xml defines Vaadin framework servlet,
the application class, and servlet mapping:

Example 2.1. Web.xml Deployment Descriptor for our project

<?xml version="1.0" encoding="UTF-8"7?>

<web-app xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
id=""WebApp_ID" version="2_.5">

<display-name>myproject</display-name>

<context-param>

<description>Vaadin production mode</description>
<param-name>productionMode</param-name>
<param-value>false</param-value>

</context-param>

<servlet>
<servlet-name>Myproject Application</servlet-name>
<servlet-class>
com.vaadin.terminal .gwt.server._ApplicationServlet
</servlet-class>
<init-param>
<description>Vaadin application class to start</description>
<param-name>application</param-name>
<param-value>
com.example_myproject._MyprojectApplication
</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>Myproject Application</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

For a more detailed treatment of the web . xml file, see Section 4.8.3, “Deployment Descriptor
web.xml”.

2.4.3. Setting Up and Starting the Web Server

Eclipse IDE for Java EE Developers has the Web Standard Tools package installed, which
supports control of various web servers and automatic deployment of web content to the server
when changes are made to a project.

Make sure that Tomcat was installed with user permissions. Configuration of the web server in
Eclipse will fail if the user does not have write permissions to the configuration and deployment
directories under the Tomcat installation directory.

Follow the following steps.

1. Switch to the Servers tab in the lower panel in Eclipse. List of servers should be empty
after Eclipse is installed. Right-click on the empty area in the panel and select New -
Server.

30 Setting Up and Starting the Web Server

Getting Started with Vaadin

[Z/ Problems (.Z, Tasks (Ifl Properties pﬁ‘& senvers 52 . [Data Source Explorer| & Snippets | B Conso\e} ¥ B & 8 = —0O

Server | state | status \

2. Select Apache — Tomcat v6.0 Server and set Server's host name as localhost,
which should be the default. If you have only one Tomcat installed, Server runtime
has only one choice. Click Next.

New Server P
Define a New Server
Choose the type of server to create
Server's host name: | localhost
Download additional server adapters

Select the server type:
[type filter text]

~ (= Apache
B Tomcat v3.2 Server
[Tomeat va.0 Server
Tomeat va.1 Server
& Tomeat v5.0 Server
B Tomcat v5.5 Server

b (= Basic

b (= 1BM

b & JBoss

b (= Objectweb

b (= oracle

Publishes and runs J2EE and Java EE Web projects and server configurations to a local
Tomcat server.

Server runtime: | Apache Tomcat v6.0 ~ | [installed Runtimes...

® net= |[mnish || cancel

3. Add your project to the server by selecting it on the left and clicking Add to add it to
the configured projects on the right. Click Finish.

New Server

Add and Remove Projects
Modify the projects that are configured on the server

Feree

=)

Move projects to the right to configure them on the server
vailable projects: Configured projects:

s myproject

<< Remove Al

® = Back fnish || cancel

4. The server and the project are now installed in Eclipse and are shown in the Servers
tab. To start the server, right-click on the server and select Debug. To start the server
in non-debug mode, select Start.

(E_\ Problems (.Z, Tasks (Ifl Properties pﬁ‘& senvers 52 . [Data Source Explorer| & Snippets | B Conso\e} E<3N)V IFCHN B Cha EW

Server State Status

- & Tomcat v6.0 Server at locz R Stopped Republish

s myproject

5. The server starts and the WebContent directory of the project is published to the
server on http://1ocalhost:8080/myproject/.

Setting Up and Starting the Web Server 31

Getting Started with Vaadin

(E_g Problems (@ Tasks (I’:I Properties (é?& senvers 52 . [Data Source Explorer| & Snippets | B Conso\e} E<3N) Iy EB = EW

Server State Status

- § Tomcat v6.0 Server at locs i Started Synchronized

% myproject Synchronized

2.4.4. Running and Debugging

Starting your application is as easy as selecting myproject from the Project Explorer and then
Run - Debug As - Debug on Server. Eclipse then opens the application in built-in web
browser.

Figure 2.10. Running a Vaadin Application
[3] MyprojectApplication.java m =8

[=R= o |hrrp:jflocalhost:8080;m\rprojecl.f B B

Hello Vaadin user

The time is Sun May 10 18:55:57 EEST 2009

You can insert break points in the Java code by double-clicking on the left margin bar of the
source code window. For example, if you insert a breakpoint in the buttonClick() method
and click the What is the time? button, Eclipse will ask to switch to the Debug perspective.
Debug perspective will show where the execution stopped at the breakpoint. You can examine
and change the state of the application. To continue execution, select Resume from Run menu.

T | @5 |30 Q- [®m2 47 | P 46 |Hrflro oy o [35 Debug| +2 Java EE

35 Debug 33 i Sarversw = B |[#9= variables 2) Breakpumt;] Lk ¥ =08
% O w7 ‘ 3 R P = |_'T5“2| . 7| Name |value
¥ ¥ Daemon Thread [http-8080-1] (Suspended (breakpaint at— L 3 1S Mypruje{lf\ppli(almrlﬂ (il
= MyprojectApplication$ 1.buttonClickiButton$ClickEv L U ‘ButturlSCh(kE\(El’lt el
= NativeMethodAccessorimplinvokeniMethod, Object, | e ————] FIC
f NativeMethodAccessorimpl.invoke(Object, Object() “;‘ com. example.myproject . MyprojectApplication$187379b5
= DelegatingMethodAccessorimplinvoke(Object, Objec ®
I = i iart_Ohiarr) lina- S85 11
! W Jalw!
j @ Myproject Application 1 = O] 5= outline &3 =0
l?. mmnlhndumuddCDmpDne[\t(ngw Button("What 1s the time?", = & laz ‘& \5 @ wd. -
18= new Button.ClicklListener() {
[~ 195 public void buttonClick(ClickEvent event) { # com.example.myproject
20 mainiindow P ‘= import declarations
o 71 | .showNotification("The time is " + new v E MyprojectApplication
2 - ¥ ¥ o init)
B s
24 setMainWindow(mainfWindow); v Q new ClickListener() {...}
25 } e @ . buttonClick(ClickEvent)
i
26 | 3
27 1) |
] YaTrl
Bl Consale & @Tasks} x %lEI'IQ'—EIEI@‘L’E' .78
Tomcat v6.0 Server at localhost [Apache Tomcat] /System/Library/ ks [lavaVM.fr le/Wersions/1.5/Home/bin/java (May 10, 2009 7:00:09 PM
May 1@, 2089 7:08:18 PM org.apache.tomcat.util.digester.SetPropertiesRule begin
WARNING : SatProEartlesRula éServerHSeW\:eHEngmeHHosUContext“} Setting property 'source' to 'orq.ecl\nse.‘wst.'i)ea:sQ
f alw!
J 0* | Writable J J

A

32

Running and Debugging

Getting Started with Vaadin

The procedure described above allows debugging the server-side application. For more inform-
ation on debugging client-side widgets, see Section 10.8.6, “GWT Development Mode”.

Running and Debugging 33

34

Chapter 3

Architecture

.1 OVEIVIEW i 35
3.2. Technological Background ... 38
3.3. Applications as Java Servlet SESSIONScooevviiiiiiiiiiiiii 39
3.4, Client-Side ENGINE ... 39
3.5. Events and LISTENEIS ... 41

This chapter provides an introduction to the architecture of Vaadin at somewhat technical level.

3.1. Overview

In Chapter 1, Introduction, we gave a short introduction to the general architecture of Vaadin.
Let us now look deeper into it. Figure 3.1, “Vaadin Architecture” below illustrates the architecture.

Vaadin consists of a web application API, a horde of user interface components, themes for
controlling the appearance, and a data modelthat allows binding the user interface components
directly to data. Behind the curtains it also employs a terminal adapter to receive requests from
web browsers and make responses by rendering the pages.

An application using Vaadin runs as a servlet in a Java web server, serving HTTP requests. The
terminal adapter receives client requests through the web server's Java Servlet API, and inteprets
them to user events for a particular session. An event is associated with a Ul component and
delivered to the application. As the application logic makes changes to the Ul components, the
terminal adapter renders them in the web browser by generating a response. In AJAX rendering
mode, a client-side JavaScript component receives the responses and uses them to make any
necessary changes to the page in the browser.

The top level of a user application consists of an application class that inherits com.vaadin.Ap-
plication. It creates the Ul components (see below) it needs, receives events regarding them,

Book of Vaadin 35

Architecture

Figure 3.1. Vaadin Architecture

Web Browser

Google Web Toolkit (GWT)

_

Vaadin
Client-Side Engine

Ul Events

¥

mAdapter

r-Side

ﬁ

I Component

AJAX Communications

Server-Side Framework

Ul Changes

Ul Events Ul Changes Data

Application Ul Logic

Binding

and makes necessary changes to the components. For detailed information about inheriting the
Application, see Chapter 4, Writing a Web Application.

The major parts of the architecture and their function are as follows:

User Interface Components

Client-Side Engine

The user interface consists of Ul components that are
created and laid out by the application. Each server-
side component has a client-side counterpart, with
which the user interacts. The server-side components
can serialize themselves over the client connection
using a terminal adapter. The client-side components,
in turn, can serialize user interaction back to the applic-
ation, which is received in the server-side components
as events. The components relay these events to the
application logic. Most components are bound to a
data source (see below). For a complete description
of Ul component architecture, see Chapter 5, User In-
terface Components.

The Client-Side Engine of Vaadin manages the render-
ing in the web browser using Google Web Toolkit
(GWT). It communicates user interaction and Ul
changes with the server-side Terminal Adapter using

36

Overview

Architecture

Terminal Adapter

Themes

uIDL

Events

Data Model

the User Interface Definition Language (UIDL), a JSSON-
based language. The communications are made using
asynchronous HTTP or HTTPS requests. See Sec-
tion 3.4, “Client-Side Engine”.

The Ul components do not render themselves directly
as a web page, but use a Terminal Adapter. This ab-
straction layer allows users to use Vaadin applications
with practically any web browser. Releases 3 and 4 of
[T Mill Toolkit supported HTML and simple AJAX based
rendering, while Vaadin Release 5 supports advanced
AJAX-based rendering using Google Web Toolkit
(GWT). You could imagine some other browser tech-
nology, not even based on HTML, and you - or we for
that matter - could make it work just by writing a new
adapter. Your application would still just see the
Vaadin API. To allow for this sort of abstraction, Ul
components communicate their changes to the Termin-
al Adapter, which renders them for the user's browser.
When the user does something in the web page, the
events are communicated to the terminal adapter
(through the web server) as asynchronous AJAX re-
quests. The terminal adapter delivers the user events
to the Ul components, which deliver them to the applic-
ation's Ul logic.

The user interface separates between presentation
and logic. While the Ul logic is handled as Java code,
the presentation is defined in themes as CSS. Vaadin
provides a default themes. User themes can, in addi-
tion to style sheets, include HTML templates that define
custom layouts and other resources, such as images.
Themes are discussed in detail in Chapter 8, Themes.

The Terminal Adapter draws the user interface to the
web page and any changes to it using a special User
Interface Definition Language (UIDL). The UIDL com-
munications are done using JSON (JavaScript Object
Notation), which is a lightweight data interchange
format that is especially efficient for interfacing with
JavaScript-based AJAX code in the browser. See
Section 3.2.3, “JSON” and Appendix A, User Interface
Definition Language (UIDL) for details.

User interaction with Ul components creates events,
which are first processed on the client-side with
JavaScript and then passed all the way through the
HTTP server, terminal adapter, and user component
layers to the application. See Section 3.5, “Events and
Listeners”.

In addition to the user interface model, Vaadin provides
a data model for interfacing data presented in Ul
components. Using the data model, the user interface

Overview 37

Architecture

components can update the application data directly,
without the need for any control code. All the Ul com-
ponents use this data model internally, but they can
be bound to a separate data source as well. For ex-
ample, you can bind a table component to an SQL
query response. For a complete overview of the
Vaadin Data Model, please refer to Chapter 9, Binding
Components to Data.

3.2. Technological Background

This section provides an introduction to the various technologies and designs on which Vaadin
is based: AJAX-based web applications in general, Google Web Toolkit, and JSON data inter-
change format. This knowledge is not necessary for using Vaadin, but provides some background
if you need to make low-level extensions to Vaadin.

3.2.1. AJAX

AJAX (Asynchronous JavaScript and XML) is a technique for developing web applications with
responsive user interaction, similar to traditional desktop applications. While conventional
JavaScript-enabled HTML pages can receive new content only with page updates, AJAX-enabled
pages send user interaction to the server using an asynchronous request and receive updated
content in the response. This way, only small parts of the page data can be loaded. This goal
is archieved by the use of a certain set of technologies: XHTML, CSS, DOM, JavaScript, XMLHt-
tpRequest, and XML.

AJAX, with all the fuss and pomp it receives, is essentially made possible by a simple API,
namely the XMLHttpRequest class in JavaScript. The API is available in all major browsers
and, as of 2006, the APl is under way to become a W3C standard.

Communications between the browser and the server usually require some sort of serialization
(or marshalling) of data objects. AJAX suggests the use of XML for data representation in
communications between the browser and the server. While Vaadin Release 4 used XML for
data interchange, Release 5 uses the more efficient JSON. For more information about JSON
and its use in Vaadin, see Section 3.2.3, “JSON”.

If you're a newcomer to Ajax, Section 11.1, “Special Characteristics of AJAX Applications” dis-
cusses the history and motivations for AJAX-based web applications, as well as some special
characteristics that differ from both traditional web applications and desktop applications.

3.2.2. Google Web Toolkit

Google Web Toolkit is a software development kit for developing client-side web applications
easily, without having to use JavaScript or other browser technologies directly. Applications
using GWT are developed with Java and compiled into JavaScript with the GWT Compiler.

GWT is essentially a client-side technology, normally used to develop user interface logic in the
web browser. GWT applications still need to communicate with a server using RPC calls and
by serializing any data. Vaadin effectively hides all client-server communications, allows handling
user interaction logic in a server application, and allows software development in a single
server-side application. This makes the architecture of an AJAX-based web application much
simpler.

38

Technological Background

Architecture

Vaadin uses GWT to render user interfaces in the web browser and handle the low-level tasks
of user interaction in the browser. Use of GWT is largely invisible in Vaadin for applications that
do not need any custom GWT components.

See Section 3.4, “Client-Side Engine” for a description of how GWT is used in the Client-Side
Engine of Vaadin. Chapter 10, Developing Custom Components provides information about the
integration of GWT-based user interface components with Vaadin.

3.2.3. JSON

JSON is a lightweight data-interchange format that is easy and fast to generate and parse. JSON
messages are said to be possibly a hundred times faster to parse than XML with current browser
technology. The format is a subset of the JavaScript language, which makes it possible to
evaluate JSON messages directly as JavaScript expressions. This makes JSON very easy to
use in JavaScript applications and therefore also for AJAX applications.

The Client-Side Engine of Vaadin uses JSON through Google Web Toolkit, which supports JSON
communications in the com.google.gwt.json.client package. Together with advanced update
optimization and caching, Vaadin is able to update changes in the user interface to the browser
in an extremely efficient way.

The use of JSON is completely invisible to a developer using Vaadin. Implementation of client-
server serialization in custom widgets uses abstract interfaces that may be implemented as any
low-level interchange format, such as XML or JSON. Details on JSON communications are given
in Section A.2, “*JSON Rendering”.

3.3. Applications as Java Servlet Sessions

Vaadin framework does basically everything it does on top of the Java Servlet API, which lies
hidden deep under the hood, with the terminal adapter being the lowest level layer for handling
requests from the web container.

When the web container gets the first request for a URL registered for an application, it creates
an instance of the ApplicationServlet class in Vaadin framework that inherits the HttpServlet
class defined in Java Servlet API. It follows sessions by using HttpSession interface and asso-
ciates an Application instance with each session. During the lifetime of a session, the framework
relays user actions to the proper application instance, and further to a user interface component.

3.4. Client-Side Engine

This section gives an overview of the client-side architecture of Vaadin. Knowledge of the client-
side technologies is generally not needed unless you develop or use custom GWT components.
The client-side engine is based on Google Web Toolkit (GWT), which allows the development
of the engine and client-side components solely with Java.

Chapter 10, Developing Custom Components provides information about the integration of GWT-
based user interface components with Vaadin.

JSON 39

Architecture

Figure 3.2. Architecture of Vaadin Client-Side Engine

...

i Google Web Toolkit Any GT widget -

an existing or your own

Widget =l MyWidget

Must implement E
updateFremUIDL() §
to deserialize state |
from server

i Vaadin Client-Side Integration

com.vaadin.terminal.gwt.client.
: Eﬂ;gﬁﬁg!? @ VMyWidget

Needs to call

updateVariable() to ;
to serialize state o !
server H

com.vaadin.terminal.gwt.client.

ApplicationConnection

Makes XMLHttpRequest

~ Server connection:
2 UIDL/JSON / HTTP(S)

...

" com.vaadin.terminal.server.

I CommunicationManager

com.vaadin.terminal. com.vaadin.terminal. i
Paintable VariableOwner
H paint() changeVariables() :
; com.vaadin.ui. com.vaadin.terminal.
Component PaintTarget
¢ addAttribute() |
addVariable() |
AbstractComponent ’
T Must implement
changeVariables() for

deserialization and
MyComponent paintContent() for
serialization using the
PaintTarget interface.

Figure 3.2, “Architecture of Vaadin Client-Side Engine” illustrates the architecture of the client-
side engine using a button component as an example. The user interface is managed by the
ApplicationConnection class, which handles AJAX requests to the server and renders the
user interface according to responses. Communications are done over HTTP(S) using the JSON
data interchange format and the User Interface Definition Language (UIDL). In the server-side
application, the button is used with the Button class of Vaadin. On the client-side, the user in-
terface consists of various GWT components that inherit Widget class. In the figure above, the
GWT class Button is used to render the button in the browser (the inheritance of Button is
simplified in the figure). Vaadin provides an VButton class, which implements the Paintable
interface needed for rendering the component with GWT.

40

Client-Side Engine

Architecture

The actual initial web page that is loaded in the browser is an empty page that loads the
JavaScript code of the Vaadin Client-Side Engine. After it is loaded and started, it handles the
AJAX requests to the server. All server communications are done through the ApplicationCon-
nection class.

The communication with the server is done as UIDL (User Interface Definition Language) mes-
sages using the JSON message interchange format over a HTTP(S) connection. UIDL is described
in Appendix A, User Interface Definition Language (UIDL) and JSON in Section 3.2.3, “JSON”
and Section A.2, “JSON Rendering”.

3.5. Events and Listeners

When a user does something, such as clicks a button or selects an item, the application needs
to know about it. Many Java-based user interface frameworks follow the Observer design pattern
to communicate user input to the application logic. So does Vaadin. The design pattern involves
two kinds of elements: an object and a number of observers that listen for events regarding the
object. When an event related to the object occurs, the observers receive a notification regarding
the event. In most cases there is only one observer, defined in the application logic, but the
pattern allows for multiple observers. As in the event-listener framework of Java SE, we call the
observing objects listeners.

In the ancient times of C programming, callback functions filled largely the same need as
listeners do now. In object-oriented languages, we have only classes and methods, not functions,
so the application has to give a class interface instead of a callback function pointer to the
framework. However, Vaadin supports defining a method as a listener as well.

Events can serve many kinds of purposes. In Vaadin, the usual purpose of events is handling
user interaction in a user interface. Session management can require special events, such as
time-out, in which case the event is actually the lack of user interaction. Time-out is a special
case of timed or scheduled events, where an event occurs at a specific date and time or when
a set time has passed. Database and other asynchronous communications can cause events
too.

To receive events of a particular type, an application must include a class that implements the
corresponding listener interface. In small applications, the application class itself could implement
the needed listener interfaces. Listeners are managed by the AbstractComponent class, the
base class of all user interface components. This means that events regarding any component
can listened to. The listeners are registered in the components with addListener () method.

Most components that have related events define their own event class and corresponding
listener classes. For example, the Button has Button.ClickEvent events, which can be listened
to through the Button.ClickListener interface. This allows an application to listen to many dif-
ferent kinds of events and to distinguish between them at class level. This is usually not enough,
as applications usually have many components of the same class and need to distinguish
between the particular components. We will look into that more closely later. The purpose of
this sort of class level separation is to avoid having to make type conversions in the handlers.

Notice that many listener interfaces inherit the java.util.EventListener superinterface, but it is
not generally necessary to inherit it.

Events and Listeners 41

Architecture

Figure 3.3. Class Diagram of a Button Click Listener

Vaadin Library

Component.Event AbstractCumponent}o--% EventListener

Button.ClickEvent Button Button.ClickListener

User Application
MyClass

Figure 3.3, “Class Diagram of a Button Click Listener” illustrates an example where an application-
specific class inherits the Button.ClickListener interface to be able to listen for button click
events. The application must instantiate the listener class and register it with addListener().
When an event occurs, an event object is instantiated, in this case a ClickEvent. The event
object knows the related Ul component, in this case the Button.

Section 4.4, “Handling Events with Listeners” goes into details of handling events in practice.

42

Events and Listeners

Chapter 4

Writing a Web
Application

4.1 OVEIVIEW oo 43
4.2. Managing the Main WINAOWooiiiiiiiiii e 46
4.3. Child WINAOWSoooiiiiiiiiei e 46
4.4, Handling Events with LISTENErSo.oiiiiiiiii 50
4.5. Referencing RESOUICESovviiiiiiiiiei e, 52
4.6. Shutting Down an AppliCatioN ..ot 56
4.7. Handling ErrOrs ..o 57
4.8. Setting Up the Application Environmentccccooii, 61

This chapter provides the fundamentals of web application development with Vaadin, concen-
trating on the basic elements of an application from a practical point-of-view.

If you are a newcomer to AJAX development, you may benefit from Section 11.1, “Special
Characteristics of AJAX Applications”. It explains the role of pages in AJAX web applications,
and provides some basic design patterns for applications.

4.1. Overview

An application made with Vaadin runs as a Java Servlet in a Servlet container. The entry-point
is the application class, which needs to create and manage all necessary user interface com-
ponents, including windows. User interaction is handled with event listeners, simplified by
binding user interface components directly to data. Visual appearance is defined in themes as

Book of Vaadin 43

Writing a Web Application

CSS files. Icons, other images, and downloadable files are handled as resources, which can
be external or served by the application server or the application itself.

Figure 4.1. Application Architecture

Web

Browser External

Client-Side
Engine

Resources

AJAX Requests

Serviet Container
Java

Serviet

Data
Application Ul Binding MELLELLL
Class Component Theme

Inherits Events Changes Inherits

User Event Data Application | Application
Application | Listener | Model Themes Resources

Figure 4.1, "Application Architecture” above gives the basic architecture of an application made
with the Vaadin framework, with all the major elements, which are introduced below and discussed
in detail in this chapter.

File

Resources

First of all, an application that uses Vaadin must define an application class that inherits the
abstract com.vaadin.Application class. The application class must implement the Init()
method.

public class MyApp extends com.vaadin.Application {

public void init(Q) {
. initialization code goes here ...
}

}

Besides acting as the entry-point in the servlet, the Application class provides facilities for
window access, execution control, and theme selection. The application APl may seem similar
to Java Servlet API, but that is only superficial. Vaadin framework associates requests with
sessions so that an application class instance is really a session object. Because of this, you
can develop web applications much like you would develop desktop applications.

Overview

Writing a Web Application

The most important thing in the initialization is the creation of the main window (see below),
which any application has. This, and the deployment of the application as a Java Servlet in the
Servlet container, as described in Section 4.8, “Setting Up the Application Environment”, are
the minimal requirements for an application.

Below is a short overview of the basic elements of an application:

Windows

User Interface Components

Events and Listeners

Resources

Themes

An application always has a main window, as de-
scribed in Section 4.2, “Managing the Main Window”.
An application can actually have a number of such
application-level windows, all bound to the same ap-
plication session, as described in Section 11.2, “Ap-
plication-Level Windows”. Application-level windows
can contain non-native sub-windows, which are essen-
tially floating layout components handled inside the
browser.

The user interface consists of Ul components that are
created and laid out by the application. User interaction
with the components causes events (see below) related
to the component, which the application must handle.
Most components are bound to some data using the
Data Model (see below). You can make your own Ul
components through either inheritance or composition.
For a thorough reference of Ul components, see
Chapter 5, User Interface Components, for layout
components, see Chapter 6, Managing Layout, and
for composing components, see Section 5.21, “Com-
ponent Composition with CustomComponent”.

Events, and listeners that handle events, are the basis
of handling user interaction in an application. Sec-
tion 3.5, “Events and Listeners” gave an introduction
to events and listeners from an architectural point-of-
view, while Section 4.4, “Handling Events with Listen-
ers” later in this chapter takes a more practical view.

A user interface can display images or have links to
web pages or downloadable documents. These are
resources, which can be external or provided by the
web server or the application itself. Section 4.5, “Ref-
erencing Resources” gives a practical overview of the
different types of resources.

The presentation and logic of the user interface are
separated. While the Ul logic is handled as Java code,
the presentation is defined in themes as CSS. Vaadin
provides a default theme. User-defined themes can,
in addition to style sheets, include HTML templates
that define custom layouts and other theme resources,
such as images. Themes are discussed in detail in
Chapter 8, Themes, custom layouts in Section 6.13,
“Custom Layouts”, and theme resources in Sec-
tion 4.5.4, “Theme Resources”.

Overview 45

Writing a Web Application

Data Binding Field components are essentially views to data, repres-
ented in a data model. Using the data model, the
components can update the application data directly,
without the need for any control code. A field compon-
ent model is always bound to a property, an item, or
a container, depending on the field type. While all the
components have a default data model, they can be
bound to a user-defined data source. For example,
you can bind a table component to an SQL query re-
sponse. For a complete overview of data binding in
Vaadin, please refer to Chapter 9, Binding Components
to Data.

4.2. Managing the Main Window

As explained in Section 11.1, “Special Characteristics of AJAX Applications”, an AJAX web
application usually runs in a single "web page" in a browser window. The page is generally not
reloaded after it is opened initially, but it communicates user interaction with the server through
AJAX communications. A window in an AJAX application is therefore more like a window in a
desktop application and less like a web page.

A Window is the top-level container of a user interface displayed in a browser window. As an
AJAX application typically runs on a single "page" (URL), there is usually just one window -- the
main window. The main window can be accessed using the URL of the application. You set the
main window with the setMainWindow() method of the Application class.

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {
public void initQ) {
Window main = new Window("'The Main Window');
setMainWindow(main);

. fill the nain window with conponents ..

}

You can add components to the main window, or to any other window, with the addComponent()
method, which actually adds the given component to the root layout component bound to the
window. If you wish to use other than the default root layout, you can set it with setContent(),
as explained in Section 6.2, “Window and Panel Root Layout”.

Vaadin has two basic kinds of windows: application-level windows, such as the main window,
and child windows (or sub-windows) inside the application-level windows. The child windows
are explained in the next section, while application-level windows are covered in Section 11.2,
“‘Application-Level Windows”.

4.3. Child Windows

An application-level window can have a number of floating child windows. They are managed
by the client-side JavaScript runtime of Vaadin using HTML features. Vaadin allows opening
and closing child windows, refreshing one window from another, resizing windows, and scrolling
the window content. Child windows are typically used for Dialog Windows and Multiple Document
Interface applications. Child windows are by default not modal; you can set them modal as de-
scribed in Section 4.3.3, “Modal Windows”.

46

Managing the Main Window

Writing a Web Application

As with all user interface components, the appearance of a window and its contents is defined
with themes.

User control of a child window is limited to moving, resizing, and closing the window. Maximizing
or minimizing are not yet supported.

4.3.1. Opening and Closing a Child Window

You can open a new window by creating a new Window object and adding it to the main window
with addWindow() method of the Application class.

mywindow = new Window(*'My Window');
mainwindow.addWindow(mywindow) ;

You close the window in a similar fashion, by calling the removeWindow() of the Application
class:

myapplication.removeWindow (mywindow);

The user can, by default, close a child window by clicking the close button in the upper-right
corner of the window. You can disable the button by setting the window as read-only with
setReadOnly(true). Notice that you could disable the button also by making it invisible in
CSS with a "di spl ay: none" formatting. The problem with such a cosmetic disabling is that
a malicious user might re-enable the button and close the window, which might cause problems
and possibly be a security hole. Setting the window as read-only not only disables the close
button on the client side, but also prevents processing the close event on the server side.

The following example demonstrates the use of a child window in an application. The example
manages the window using a custom component that contains a button for opening and closing
the window.

/** Component contains a button that allows opening a window. */
public class WindowOpener extends CustomComponent
implements Window.CloseListener {

Window mainwindow; // Reference to main window

Window mywindow; // The window to be opened

Button openbutton; // Button for opening the window

Button closebutton; // A button in the window

Label explanation; // A descriptive text

public WindowOpener(String label, Window main) {
mainwindow = main;

// The component contains a button that opens the window.
final VerticallLayout layout = new VerticallLayout();

openbutton = new Button(*Open Window", this,
"openButtonClick™);
explanation = new Label(*"Explanation™);
layout.addComponent(openbutton);
layout.addComponent(explanation);

setCompositionRoot(layout);

}

/** Handle the clicks for the two buttons. */

public void openButtonClick(Button.ClickEvent event) {
/* Create a new window. */
mywindow = new Window(*'My Dialog");
mywindow.setPositionX(200);
mywindow.setPositionY(100);

Opening and Closing a Child Window 47

Writing a Web Application

/* Add the window inside the main window. */
mainwindow.addWindow(mywindow) ;

/* Listen for close events for the window. */
mywindow.addListener(this);

/* Add components in the window. */
mywindow . addComponent(

new Label("A text label in the window.'));
closebutton = new Button(*'Close", this, "closeButtonClick');
mywindow .addComponent(closebutton);

/* Allow opening only one window at a time. */
openbutton.setEnabled(false);

explanation.setValue(*'Window opened™);

}

/** Handle Close button click and close the window. */

public void closeButtonClick(Button.ClickEvent event) {
/* Windows are managed by the application object. */
mainwindow. removeWindow(mywindow) ;

/* Return to initial state. */
openbutton.setEnabled(true);

explanation.setValue("'Closed with button™);

}

/** In case the window is closed otherwise. */
public void windowClose(CloseEvent e) {
/* Return to initial state. */
openbutton.setEnabled(true);

explanation.setValue(*'Closed with window controls™);
}

The example implements a custom component that inherits the CustomComponent class. It
consists of a Button that it uses to open a window and a Label to describe the state of the
window. When the window is open, the button is disabled. When the window is closed, the
button is enabled again.

You can use the above custom component in the application class with:
public void init(Q) {
Window main = new Window(*'The Main Window');
setMainWindow(main);

addComponent(new WindowOpener (*Window Opener', main));

}

When added to an application, the screen will look as illustrated in the following screenshot:

Opening and Closing a Child Window

Writing a Web Application

Figure 4.2. Opening a Child Window

File Edit Wiew History Bookmarks Tools Help
@ - - & i} [httpuocalhost:sosonestbenchy |+ | B | [[Gl-] By
Window opened
A text label in the window.
. Close '
s
Done I (]

4.3.2. Window Positioning

When created, a window will have a default size and position. You can specify the size of a
window with setHeight() and setWidth() methods. You can set the position of the window
with setPositionX() and setPositionY() methods.

/* Create a new window. */
mywindow = new Window(''My Dialog');

/* Set window size. */
mywindow.setHeight(''200px");
mywindow.setWidth(*'400px');

/* Set window position. */
mywindow.setPositionX(200);
mywindow.setPositionY(50);

Notice that the size of the main window is unknown and the getHeight and getWidth methods
will return -1.

4.3.3. Modal Windows

A modal window is a child window that has to be closed by the user before the use of the parent
window can continue. Dialog windows are typically modal. The advantage of modal windows
is the simplification of user interaction, which may contribute to the clarity of the user interface.
Modal windows are also easy to use from a development perspective, because as user interaction
is isolated to them, changes in application state are more limited while the modal window is
open. The disadvantage of modal windows is that they can restrict workflow too much.

Window Positioning 49

Writing a Web Application

Figure 4.3. Screenshot of the Modal Window Demo Application

MaodalWindow demo

Eile Edit Wiew History Bookmarks Tools Help

<.EI - - @] g ||_| http:HIocthost:8888!ModaIWindow?renderi||'| [}] "| |\]

I Button on main window |
Modal window m

You have to close this window before accessing others.

i Button on modal window ‘

Done l (v]

Depending on theme settings, the parent window may be grayed while the modal window is
open.

The demo application of Vaadin includes an example of using modal windows. Figure 4.3,
“Screenshot of the Modal Window Demo Application” above is from the demo application. The
example includes the source code.

Security Warning
/ i \ Modality of child windows is purely a client-side feature and can be circumvented

with client-side attack code. You should not trust in the modality of child windows
in security-critical situations such as login windows.

4.4. Handling Events with Listeners

Let us put into practice what we learned of event handling in Section 3.5, “Events and Listeners”.
You can handle events in three basic ways, as shown below.

The following example follows a typical pattern where you have a Button component and a
listener that handles user interaction (clicks) communicated to the application as events. Here
we define a class that listens click events.

public class TheButton implements Button.ClickListener {

Button thebutton;

/** Creates button into given container. */

public TheButton(AbstractComponentContainer container) {
thebutton = new Button ("'Do not push this button™);
thebutton.addListener(this);
container .addComponent(thebutton);

}

/** Handle button click events from the button. */

50

Handling Events with Listeners

Writing a Web Application

public void buttonClick (Button.ClickEvent event) {
thebutton.setCaption ('Do not push this button again');
}
}

As an application often receives events for several components of the same class, such as
multiple buttons, it has to be able to distinguish between the individual components. There are
several techniques to do this, but probably the easiest is to use the property of the received
event, which is set to the object sending the event. This requires keeping at hand a reference
to every object that emits events.

public class TheButtons implements Button.ClickListener {
Button thebutton;
Button secondbutton;

/** Creates two buttons in given container. */

public TheButtons(AbstractComponentContainer container) {
thebutton = new Button (*'Do not push this button™);
thebutton.addListener(this);
container .addComponent(thebutton);

secondbutton = new Button ('l am a button too');
secondbutton.addListener(this);
container.addComponent (secondbutton);

}

/** Handle button click events from the two buttons. */
public void buttonClick (Button.ClickEvent event) {
if (event.getButton() == thebutton)
thebutton.setCaption(*'Do not push this button again');
else if (event.getButton() == secondbutton)
secondbutton.setCaption(*'l am not a number');

}

Another solution to handling multiple events of the same class involves attaching an event source
to a listener method instead of the class. An event can be attached to a method using another
version of the addListener () method, which takes the event handler method as a parameter
either as a name of the method name as a string or as a Method object. In the example below,
we use the name of the method as a string.

public class TheButtons2 {
Button thebutton;
Button secondbutton;

/** Creates two buttons in given container. */
public TheButtons2(AbstractComponentContainer container) {
thebutton = new Button (‘Do not push this button');
thebutton.addListener(Button.ClickEvent.class, this,
"theButtonClick');
container.addComponent(thebutton);

secondbutton = new Button ("I am a button too'");

secondbutton.addListener(Button.ClickEvent.class, this,
"'secondButtonClick");

container.addComponent (secondbutton);

}

public void theButtonClick (Button.ClickEvent event) {
thebutton.setCaption ("'Do not push this button again');
3

public void secondButtonClick (Button.ClickEvent event) {
secondbutton.setCaption ("'l am not a number!');

Handling Events with Listeners 51

Writing a Web Application

}

Adding a listener method with addListener() is really just a wrapper that creates a
com.vaadin.event.ListenerMethod listener object, which is an adapter from a listener class
to a method. It implements the java.util.EventListener interface and can therefore work for
any event source using the interface. Notice that not all listener classes necessarily inherit the
EventListener interface.

The third way, which uses anonymous local class definitions, is often the easiest as it does not
require cumbering the managing class with new interfaces or methods. The following example
defines an anonymous class that inherits the Button.ClickListener interface and implements
the buttonClick() method.

public class TheButtons3 {
Button thebutton;
Button secondbutton;

/** Creates two buttons in given container. */
public TheButtons3(AbstractComponentContainer container) {
thebutton = new Button (‘Do not push this button');

/* Define a listener in an anonymous class. */
thebutton.addListener(new Button.ClickListener() {
/* Handle the click. */
public void buttonClick(ClickEvent event) {
thebutton.setCaption (
Do not push this button again™);

3
D

container.addComponent(thebutton);

secondbutton = new Button ('l am a button too");
secondbutton.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
secondbutton.setCaption ('l am not a number!');

3
D

container.addComponent (secondbutton);

}

Other techniques for separating between different sources also exist. They include using object
properties, names, or captions to separate between them. Using captions or any other visible
text is generally discouraged, as it may create problems for internationalization. Using other
symbolic strings can also be dangerous, because the syntax of such strings is checked only
runtime.

Events are usually emitted by the framework, but applications may need to emit them too in
some situations, such as when updating some part of the Ul is required. Events can be emitted
using the FireEvent(Component.Event) method of AbstractComponent. The event is
then relayed to all the listeners of the particular event class for the object. Some components
have a default event type, for example, a Button has a nested Button.ClickEvent class and
a corresponding Button.ClickListener interface. These events can be triggered with
fireComponentEvent().

4.5. Referencing Resources

Web applications work over the web and have various resources, such as images or download-
able files, that the web browser has to get from the server. These resources are typically used

52 Referencing Resources

Writing a Web Application

in Embedded (images) or Link (downloadable files) user interface components. Various com-
ponents, such as TabSheet, can also include icons, which are also handled as resources.

A web server can handle many of such requests for static resources without having to ask them
from the application, or the Application object can provide them. For dynamic resources, the
user application must be able to create them dynamically. Vaadin provides resource request
interfaces for applications so that they can return various kinds of resources, such as files or
dynamically created resources. These include the StreamResource class and URI and para-
meter handlers described in Section 11.5.1, “URI Handlers” and Section 11.5.2, “Parameter
Handlers”, respectively.

Vaadin provides also low-level facilities for retrieving the URI and other parameters of a HTTP
request. We will first look into how applications can provide various kinds of resources and then
look into low-level interfaces for handling URIs and parameters to provide resources and func-
tionalities.

Notice that using URI or parameter handlers to create "pages" is not meaningful in Vaadin or in
AJAX applications generally. Please see Section 11.1, “Special Characteristics of AJAX Applic-
ations” for a detailed explanation.

4.5.1. Resource Interfaces and Classes

Vaadin has two interfaces for resources: a generic Resource interface and a more specific
ApplicationResource interface for resources provided by the application.

Figure 4.4. Resource Interface and Class Diagram

Resource ApplicationResource

ApplicationResource resources are managed by the Application class. When you create
such a resource, you give the application object to the constructor. The constructor registers
the resource in the application using the addResource method.

Application manages requests for the resources and allows accessing resources using a URI.
The URI consists of the base name of the application and a relative name of the resource. The
relative name is ""APP/""+resourceid+"/"+Ffilename, for example ""APP/1/myimage.png"".
The resourceid is a generated numeric identifier to make resources unique, and filename
is the file name of the resource given in the constructor of its class. However, the application
using a resource does not usually need to consider its URI. It only needs to give the resource
to an appropriate Embedded or Link or some other user interface component, which manages
the rendering of the URI.

4.5.2. File Resources

File resources are files stored anywhere in the file system. The use of file resources generally
falls into two main categories: downloadable files and embedded images.

Resource Interfaces and Classes 53

Writing a Web Application

A file object that can be accessed as a file resource is defined with the standard java.io.File
class. You can create the file either with an absolute or relative path, but the base path of the
relative path depends on the installation of the web server. For example, in Apache Tomcat, the
default current directory is the installation path of Tomcat.

4.5.3. Class Loader Resources

The ClassResource allows resources to be loaded from the deployed package of the application
using Java Class Loader. The one-line example below loads an image resource from the applic-
ation package and displays it in an Embedded component.

mainwindow.addComponent(new Embedded (***,
new ClassResource(“'smiley.jpg",
mainwindow.getApplication())));

4.5.4. Theme Resources

Theme resources are files included in a theme, typically images. See Chapter 8, Themes for
more information on themes.

4.5.5. Stream Resources

Stream resources are application resources that allow creating dynamic resource content. Charts
are typical examples of dynamic images. To define a stream resource, you need to implement
the StreamResource.StreamSource interface and its getStream method. The method needs
to return an InputStream from which the stream can be read.

The following example demonstrates the creation of a simple image in PNG image format.
import java.awt.image.*;

public class MylmageSource
implements StreamResource.StreamSource {
ByteArrayOutputStream imagebuffer = null;
int reloads = 0;

/* We need to implement this method that returns

* the resource as a stream. */

public InputStream getStream () {
/* Create an image and draw something on it. */
Bufferedlmage image = new Bufferedlmage (200, 200,

BufferedImage.TYPE_INT_RGB);

Graphics drawable = image.getGraphics();
drawable.setColor(Color.lightCGray);
drawable.fillRect(0,0,200,200);
drawable.setColor(Color.yellow);
drawable.fillOval (25,25,150,150);
drawable.setColor(Color.blue);
drawable.drawRect(0,0,199,199);
drawable.setColor(Color.black);
drawable.drawString(*'Reloads="+reloads, 75, 100);
reloads++;

try {
/* Write the image to a buffer. */
imagebuffer = new ByteArrayOutputStream();
ImagelO.write(image, "png', imagebuffer);

/* Return a stream from the buffer. */
return new ByteArraylnputStream(
imagebuffer.toByteArray());

54

Class Loader Resources

Writing a Web Application

} catch (10Exception e) {
return null;

}
}

The content of the generated image is dynamic, as it updates the reloads counter with every
call. The ImagelO.write() method writes the image to an output stream, while we had to return
an input stream, so we stored the image contents to a temporary buffer.

You can use resources in various ways. Some user interface components, such as Link and
Embedded, take their parameters as a resource.

Below we display the image with the Embedded component. The StreamResource constructor
gets a reference to the application and registers itself in the application's resources. Assume
that main is a reference to the main window and this is the application object.

// Create an instance of our stream source.
StreamResource.StreamSource imagesource = new MylmageSource ();

// Create a resource that uses the stream source and give it a name.
// The constructor will automatically register the resource in
// the application.
StreamResource imageresource =
new StreamResource(imagesource, 'myimage.png', this);

// Create an embedded component that gets its contents

// from the resource.
main.addComponent(new Embedded(*'Image title', imageresource));

The image will look as follows:

Figure 4.5. Screenshot of the stream resource example with an embedded
image

Image title

Feloads="5

We named the resource as my image . png. The application adds a resource key to the file name
of the resource to make it wunique. The full URI will be like
http://localhost:8080/testbench/APP/1/myimage.png. The end
APP/1/myimage .png is the relative part of the URI. You can get the relative part of a resource's
URI from the application with Application.getRelativelLocation().

Another solution for creating dynamic content is an URI handler, possibly together with a para-
meter handler. See Section 11.5.1, “URI Handlers” and Section 11.5.2, “Parameter Handlers”.

Stream Resources 55

Writing a Web Application

4.6. Shutting Down an Application

A user can log out or close the web page or browser, so a session and the associated application
instance can end. Ending an application can be initiated by the application logic. Otherwise, it
will be ended automatically when the Servlet session times out.

4.6.1. Closing an Application

If the user quits the application through the user interface, an event handler should call the
close() method in the Application class to shutdown the session.

In the following example, we have a Logout button, which ends the user session.
Button closeButton = new Button(''Logout');

closeButton.addListener(new Button.ClickListener() {
@0verride
public void buttonClick(ClickEvent event) {
getMainWindow() -.getApplication().close();
3
»:;

main.addComponent(closeButton);

You will soon notice that closing the application simply reloads the application with a new Ap-
plication instance. You can set the window to redirect to a different URL (that does not reload
the application) with setLogoutURL. In your application class, write:

setLogoutURL(""/logout_html'™);

4.6.2. Handling the Closing of a Window

Closing the main window (or all application-level windows) does not close session and the ap-
plication instance will be left hanging. You need to program such behaviour by handling the
close events of the windows.

If the user closes a browser window, such as the main window or any other application-level
window, the window will send a final AJAX request to the server, which will fire a Win-
dow.CloseEvent for the closed window. You can handle the event with a Window.CloseListen-
er. In case the user closes the browser, the event is fired for every open window.

// Close the application if the main window is closed.
main.addListener(new Window.CloseListener(){
@0verride
public void windowClose(CloseEvent e) {
System.out.printin(*'Closing the application™);
getMainWindow() .getApplication().close();
3
DB

Notice that refreshing a window means closing and reopening it. Therefore, if you have a close
handler as above, the user loses the possibility to refresh the browser window.

In the likely case that the browser crashes, no close event is communicated to the server. As
the server has no way of knowing about the problem, and the session will be left hanging until
the session timeout expires. During this time, the user can restart the browser, open the applic-
ation URL, and the main window will be rendered where the user left off. This can be desired
behaviour in many cases, but sometimes it is not and can create a security problem.

56

Shutting Down an Application

Writing a Web Application

4.7. Handling Errors

4.71. Error Indicator and message

All components have a built-in error indicator that can be set explicitly with
setComponentError() or can be turned on implicitly if validating the component fails. As
with component caption, the placement of the indicator is managed by the layout in which the
component is contained. Usually, the error indicator is placed right of the caption text. Hovering
the mouse pointer over the field displays the error message.

The following example shows how you can set the component error explicitly. The example es-
sentially validates field value without using an actual validator.

// Create a field.
final TextField textfield = new TextField("Enter code™);
main.addComponent(textfield);

// Let the component error be initially clear.
textfield.setComponentError(null); // (actually the default)

// Have a button right of the field (and align it properly).

final Button button = new Button(''Ok!');

main.addComponent(button);

((VerticallLayout)main.getLayout())
-setComponentAlignment(button, Alignment.BOTTOM_LEFT);

// Handle button clicks
button.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
// 1T the field value is bad, set its error.
// (Allow only alphanumeric characters.)
it (1 ((String) textfield.getValue()).-matches(""\\w*$'")) {
// Put the component in error state and
// set the error message.
textfield.setComponentError(
new UserError(*'Must be letters and numbers'™));
} else {
// Otherwise clear it.
textfield.setComponentError(null);

}
D:;

Figure 4.6. Error indicator active

Enter code |

Some text '.._J

S| st be lettars and numbers

The Form component handles and displays also the errors of its contained fields so that it dis-
plays both the error indicator and the message in a special error indicator area. See Section 5.17,
“Form” and Section 5.17.3, “Validating Form Input” for details on the Form component and
validation of form input.

4.7.2. Notifications

Notifications are error or information boxes that appear typically at the center of the screen. A
notification box has a caption and optional description and icon. The box stays on the screen

Handling Errors 57

Writing a Web Application

either for a defined time or until the user clicks it. The notification type defines the default appear-
ance and behaviour of a notification.

Notifications are always associated with a window object, which can be a child window (the
positioning is always relative to the entire browser view). The Window class provides a
showNotification() method for displaying notifications. The method takes the caption and
an optional description and notification type as parameters. The method also accepts a notific-
ation object of type Window.Notification, as described further below.

mainwindow.showNotification("'This is the caption’,
"This is the description™);

Figure 4.7. Notification

(@ | Application window - Mozilla Firefox <2 C =

File Edit \iew History Bookmarks Tools Help

@ 5 - (© € 2 |Entpsocahest:zcs |+ | Gl -] q

ThiS iS the Caption This is the description

Done [#] + [

The caption and description are, by default, written on the same line. If you want to have a line
break between them, use the XHTML line break markup '
". You can use any XHTML
markup in the caption and description of a notification. If it is possible to get the notification
content from user input, you should sanitize the content carefully, as noted in Section 11.10.1,
“Sanitizing User Input to Prevent Cross-Site Scripting”.

main.showNotification("'This is a warning",

""
This is the <i>last</i> warning",
Window.Notification.TYPE_WARNING_MESSAGE) ;

Figure 4.8. Notification with Formatting

This is a warning

This is the last warning

The notification type defines the overall default style and behaviour of a notification. If no notific-
ation type is given, the "humanized" type is used as the default. The natification types, listed
below, are defined in the Window.Notification class.

TYPE_HUNMANI ZED MESSAGE A user-friendly message that does not annoy too much:

] it does not require confirmation by clicking and disap-
Humanized message pears quickly. It is centered and has a neutral gray
For minimal annoyance color.

TYPE_WARNI NG_MESSAGE Warnings are messages of medium importance. They
. are displayed with colors that are neither neutral nor
Warning message too distractive. A warning is displayed for 1.5 seconds,
For notifications of medium importance but the user can click the message box to dismiss it.

The user can continue to interact with the application
while the warning is displayed.

58

Notifications

Writing a Web Application

TYPE_ERROR MESSAGE Error messages are notifications that require the

® highest user attention, with alert colors and by requiring
Error message the user to click the message to dismiss it. The error
For important notifications message box does not itself include an instruction to

click the message, although the close box in the upper
right corner indicates it visually. Unlike with other noti-
fications, the user can not interact with the application
while the error message is displayed.

TYPE_TRAY_NOTI FI CATI ON Tray notifications are displayed in the "system tray"

area, that is, in the lower-right corner of the browser

view. As they do not usually obsure any user interface,

Stays up langer - but away they are displayed longer than humanized or warning
messages, 3 seconds by default. The user can contin-
ue to interact with the application normally while the
tray notification is displayed.

Tray notification

All of the features of specific natification types can be controlled with the attributes of Window.No-
tification. You can pass an explicitly created notification object to the showNotification()
method.

// Create a notification with default settings for a warning.
Window.Notification notif = new Window.Notification(
""Be warned!",
"This message lurks in the top-left corner!"™,
Window.Notification.TYPE_WARNING_MESSAGE) ;

// Set the position.
notif._.setPosition(Window._.Notification.POSITION_TOP_LEFT);

// Let it stay there until the user clicks it
notif.setDelayMsec(-1);

// Show it in the main window.
main.showNotification(notif);

The setPosition() method allows setting the positioning of the naotification. The method takes
as its parameter any of the constants:

W ndow. Not i fi cati on. POSI TI ON_CENTERED

W ndow. Not i fi cati on. POSI TI ON_CENTERED TCP

W ndow. Not i fi cati on. POSI TI ON_CENTERED BOTTOM
W ndow. Not i fi cati on. POSI TI ON_TOP_LEFT

W ndow. Noti ficati on. POSI TI ON_TOP_RI GHT

W ndow. Not i fi cati on. POSI TI ON_BOTTOM LEFT

W ndow. Not i fi cati on. PCSI TI ON_BOTTOM Rl GHT

The setDelayMSec() allows you to set the time in milliseconds for how long the notification is
displayed. Parameter value -1 means that the message is displayed until the user clicks the
message box. It also prevents interaction with other parts of the application window, as is default
behaviour for error messages. It does not, however, add a close box that the error notification
has.

Notifications 59

Writing a Web Application

4.7.3. Handling Uncaught Exceptions

Application development with Vaadin follows the event-driven programming model. Mouse and
keyboard events in the client cause (usually higher-level) events on the server-side, which can
be handled with listeners, and that is how most of the application logic works. Handling the
events can result in exceptions either in the application logic or in the framework itself, but some
of them may not be caught properly.

For example, in the following code excerpt, we throw an error in an event listener but do not
catch it, so it falls to the framework.

final Button button = new Button (“'Fail Me');

button.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
// Throw some exception.
throw new RuntimeException(‘'You can®"t catch this.");

3
D

Any such exceptions that occur in the call chain, but are not caught at any other level, are
eventually caught by the terminal adapter in ApplicationServlet, the lowest-level component
that receives client requests. The terminal adapter passes all such caught exceptions as events
to the error listener of the Application instance through the Terminal.ErrorListener interface.
The Application class does not, by default, throw such exceptions forward.

The reason for this error-handling logic lies in the logic that handles component state synchron-
ization between the client and the server. We want to handle all the serialized variable changes
in the client request, because otherwise the client-side and server-side component states would
become unsynchronized very easily, which could put the entire application in an invalid state.

The default implementation of the Terminal.ErrorListener interface in the Application class
simply prints the error to console. It also tries to find out a component related to the error. If the
exception occurred in a listener attached to a component, that component is considered as the
component related to the exception. If a related component is found, the error handler sets the
component error for it, the same attribute which you can set with setComponentError().

In Ul, the component error is shown with a small red "I" -sign (in the default theme). If you hover
the mouse pointer over it, you will see the entire backtrace of the exception in a large tooltip
box, as illustrated in Figure 4.9, “Uncaught Exception in Component Error Indicator” for the
above code example.

Figure 4.9. Uncaught Exception in Component Error Indicator

I Fail M~
Exception

com.itmill.toolkit.event.ListenerMethodiMethodException

Cause: Jjava.lang.RuntimeException: ¥ou can't ecateh this.
at com.itmill.toolkit.event.ListenerMethod.receiveEven
at com.itmill.toolkit.event.EventRouter.fireEvent (Even
at com.itmill.toolkit.ui.AbstractCome
at com.itmill.toolk

60 Handling Uncaught Exceptions

Writing a Web Application

You can change the logic of handling the terminal errors easily by overriding the
terminalError () method in your application class (the one that inherits Application) or by
setting a custom error listener with the setErrorHandler method. You can safely discard the
default handling or extend its usage with your custom error handling or logging system. In the
example code below, the exceptions are also reported as notifications in the main window.

@override

public void terminalError(Terminal .ErrorEvent event) {
// Call the default implementation.
super.terminalError(event);

// Some custom behaviour.
it (getMainWindow() != null) {
getMainWindow() .showNotification(
"An unchecked exception occured!",
event.getThrowable().toString(),
Notification.TYPE_ERROR_MESSAGE);

}

Handling other exceptions works in the usual way for Java Servlets. Uncaught exceptions are
finally caught and handled by the application server.

4.8. Setting Up the Application Environment

While more and more server based frameworks, libraries, standards, and architectures for Java
are invented to make the programmer's life easier, software deployment seems to get harder
and harder. For example, Java Enterprise Beans tried to make the creation of persistent and
networked objects easy and somewhat automatic, but the number of deployment descriptions
got enormous. As Vaadin lives in a Java Servlet container, it must follow the rules, but it tries to
avoid adding extra complexity.

All Vaadin applications are deployed as Java web applications, which can be packaged as
WAR files. For a detailed tutorial on how web applications are packaged, please refer to any
Java book that discusses Servlets. Sun has an excellent reference online at ht-
tp://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
[http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html].

4.8.1. Creating Deployable WAR in Eclipse

To deploy an application to a web server, you need to create a WAR package. Here we give
the instructions for Eclipse.

Open project properties and first set the name and destination of the WAR file in Tomcat Export
to WAR settings tab. Exporting to WAR is done by selecting Export to WAR from Tomcat
Project in project context menu (just click calc with the right mouse button on Package contents
tree).

4.8.2. Web Application Contents
The following files are required in a web application in order to run it.

Web application organization

WEB-INF/web . xml This is the standard web application descriptor that
defines how the application is organized. You can refer

Setting Up the Application Environment 61

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html

Writing a Web Application

to any Java book about the contents of this file. Also
see an example in Example 4.1, “web.xml”.

WEB-INF/lib/vaadin-6.2.0.jar This is the Vaadin library. It is included in the product
package in 1ib directory.

Your application classes You must include your application classes either in a
JAR file in WEB-INF/lib or as classes in
WEB-INF/classes

Your own theme files (OPTION- If your application uses a special theme (look and feel),
AL) y ou mu st include it in
WEB-INF/1ib/themes/themename directory.

4.8.3. Deployment Descriptor web . xml

The deployment descriptor is an XML file with the name web .xml in the WEB- INF directory of
a web application. It is a standard component in Java EE describing how a web application
should be deployed. The structure of the deployment descriptor is illustrated by the following
example. You simply deploy applications as servlets implemented by the special
com.vaadin.terminal .gwt.server _ApplicationServlet wrapper class. The class of
the actual application is specified by giving the appl i cat i on parameter with the name of the
specific application class to the servlet. The servlet is then connected to a URL in a standard
way for Java Servlets.

Example 4.1. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app
id=""WebApp_ID" version="2_4"
xmIns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_ 4 _xsd">

<servlet>
<servlet-name>nyser vl et </servlet-name>
<servlet-class>
com.vaadin.terminal .gwt.server_ApplicationServlet
</servlet-class>
<init-param>
<param-name>application</param-name>
<param-value>M/Appl i cati onCl ass</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>nyser vl et </servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

The descriptor defines a servlet with name myservlet. The servlet class, com.vaadin.termin-
al.gwt.server.ApplicationServlet, is provided by Vaadin framework and it should be the same
for all Vaadin projects. The servlet takes the class name Calc of the user application class as
a parameter, including the full package path to the class. If the class is in the default package
the package path is obviously not used.

62

Deployment Descriptor web . xml

Writing a Web Application

The url-pattern is defined above as /*. This matches to any URL under the project context.
We defined above the project context as myproject so the application URL will be
http://localhost:8080/myproject/. If the project were to have multiple applications or
servlets, they would have to be given different names to distinguish them. For example,
url-pattern /myapp/* would match a URL such as
http://1ocalhost:8080/myproject/myapp/. Notice that the slash and the asterisk must
be included at the end of the pattern.

Notice also that if the URL pattern is other than root /* (such as /myapp/*), you will also need
to make a servlet mapping to /VAADIN/* (unless you are serving it statically as noted below).
For example:

<servlet-mapping>
<servlet-name>nyser vl et </servlet-name>
<url-pattern>/myurl/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>nyser vl et </servlet-name>
<url-pattern>/VAADIN/*</url-pattern>
</servlet-mapping>

You do not have to provide the above /VAADIN/* mapping if you serve both the widget sets
and (custom and default) themes statically in WebContent/VAADIN/ directory. The mapping
simply allows serving them dynamically from the Vaadin JAR. Serving them statically is recom-
mended for production environments as it is much faster.

For a complete example on how to deploy applications, see the demos included in the Vaadin
installation package, especially the WebContent/WEB- INF directory.

Deployment Descriptor Parameters

Deployment descriptor can have many parameters and options that control the execution of a
servlet. You can find a complete documentation of the deployment descriptor in Java Servlet
Specification at http://java.sun.com/products/serviet/.

By default, Vaadin applications run in debug mode, which should be used during development.
This enables various debugging features. For production use, you should have put in your
web . xml the following parameter:

<context-param>
<param-name>productionMode</param-name>
<param-value>true</param-value>
<description>Vaadin production mode</description>
</context-param>

The parameter and the debug and production modes are described in detail in Section 11.4,
“Debug and Production Mode”.

One often needed option is the session timeout. Different servlet containers use varying defaults
for timeouts, such as 30 minutes for Apache Tomcat. You can set the timeout with:

<session-config>
<session-timeout>30</session-timeout>
</session-config>

After the timeout expires, the close() method of the Application class will be called. You
should implement it if you wish to handle timeout situations.

Deployment Descriptor web . xml 63

64

Chapter 5

User Interface
Components

5.1 OVBIVIBW oo 66
5.2. Interfaces and ADSIraCtioNSc..oviiiiiii i 67
5.3. Common Component FEAtUIEScoooiiiiiiiiiiii 72
D LAl ..o 82
B D LINK o 85
5.6. TextRield ... 86
5.7, RICRATEXLArCa ... 87
5.8. Date and Time INPULooiiiii e 88
D 0. BUBON . 89
5.10. CRECKBOXoveiiiii e 90
5.171. Selecting ITeMIS ... 91
B2, Table ... 102
D, T o 116
DA, MeNUBAAN ... oo 117
515 Embedded ... 119
5.16. UPIload ... 121
D T B O MY 123
5.18. ProgressIndicator ... 131
519, SHAE ..o 132
5.20. LOGINFOIrM ... 134

Book of Vaadin 65

User Interface Components

5.21. Component Composition with CustomComponent 137

This chapter provides an overview and a detailed description of all non-layout components in
Vaadin.

5.1. Overview

Vaadin provides a comprehensive set of user interface components and allows you to define
custom components. Figure 5.1, “Ul Component Inheritance Diagram” illustrates the inheritance
hierarchy of the Ul component classes and interfaces. Interfaces are displayed in gray, abstract
classes in orange, and regular classes in blue. An annotated version of the diagram is featured
in the Vaadin Cheat Sheet.

Figure 5.1. Ul Component Inheritance Diagram

Component Field
M

o) AbstractComponent AbstractField (_m CheckBox
NTAN
Progressindicator _m RichTextArea
Upload
DateField InlineDateField

Embedded

MenuBar

=
—
e

Slider

ComponentContainer

1

PopupDateField

CustomComponent

AbstractComponentContainer AbstractSelect
N

ﬁ Popu pView TabSheet

AbstractLayout AbsoluteLayout

Splitpanel m

AbstractOrderedLayout

NativeSelect

TwinColSelect

OptionGroup

HorizontalLayout VerticalLayout

Tree

Banint

At the top of the interface hierarchy, we have the Component interface. At the top of the class
hierarchy, we have the AbstractComponent class. It is inherited by two other abstract classes:
AbstractField, inherited further by field components, and AbstractComponentContainer,
inherited by various container and layout components. Components that are not bound to a
content data model, such as labels and links, inherit AbstractComponent directly.

66

Overview

User Interface Components

The layout of the various components in a window is controlled, logically, by layout components,
just like in conventional Java Ul toolkits for desktop applications. In addition, with the Custom-
Layout component, you can write a custom layout as an XHTML template that includes the
locations of any contained components. Looking at the inheritance diagram, we can see that
layout components inherit the AbstractComponentContainer and the Layout interface. Layout
components are described in detail in Chapter 6, Managing Layout.

Looking at it from the perspective of an object hierarchy, we would have a Window object,
which contains a hierachy of layout components, which again contain other layout components,
field components, and other visible components.

You can browse the built-in Ul components of Vaadin library in the Sampler application of the
Vaadin Demo. The Sampler shows a description, JavaDoc documentation, and a code samples
for each of the components.

In addition to the built-in components, many components are available as add-ons, either from
the Vaadin Directory or from independent sources. Both commercial and free components exist.
The installation of add-ons is described in Section 11.14, “Using Add-on Components”.

5.2. Interfaces and Abstractions

Vaadin user interface components are built on a skeleton of interfaces and abstract classes that
define and implement the features common to all components and the basic logic how the
component states are serialized between the server and the client.

This section gives details on the basic component interfaces and abstractions. The layout and
other component container abstractions are described in Chapter 6, Managing Layout. The in-
terfaces that define the Vaadin data model are described in Chapter 9, Binding Components
to Data.

Figure 5.2. Component Interfaces and Abstractions

VariableOwner Paintable
Property
Focusable
Sizeable Component Field
Event
Listener

ComponentContainer

Layout

Cantalner

Interfaces and Abstractions 67

User Interface Components

All components also implement the Paintable interface, which is used for serializing ("painting")
the components to the client, and the reverse VariableOwner interface, which is needed for
deserializing component state or user interaction from the client.

In addition to the interfaces defined within the Vaadin framework, all components implement the
java.io.Serializable interface to allow serialization. Serialization is needed in many clustering
and cloud computing solutions.

5.2.1. Component Interface

The Component interface is paired with the AbstractComponent class, which implements all
the methods defined in the interface.

Component Tree Management

Components are laid out in the user interface hierarchically. The layout is managed by layout
components, or more generally components that implement the ComponentContainer interface.
Such a container is the parent of the contained components.

The getParent() method allows retrieving the parent component of a component. While there
is asetParent(), you rarely need it as you usually add components with the addComponent()
method of the ComponentContainer interface, which automatically sets the parent.

A component does not know its parent when the component is created, so you can not refer to
the parent in the constructor with getParent(). Also, it is not possible to fetch a reference to
the application object with getApplication() before having a parent. For example, the fol-
lowing is invalid:

public class AttachExample extends CustomComponent {
public AttachExample() {
// ERROR: We can"t access the application object yet.
ClassResource r = new ClassResource(‘'smiley.jpg",
getApplication());
Embedded image = new Embedded(*'Image:", r);
setCompositionRoot(image);

}

Adding a component to an application triggers calling the attach() method for the component.
Correspondingly, removing a component from a container triggers calling the detach()
method. If the parent of an added component is already connected to the application, the
attach() is called immediately from setParent().

public class AttachExample extends CustomComponent {
public AttachExample() {

}

@Override
public void attach(Q) {
super.attach(); // Must call.

// Now we know who ultimately owns us.

ClassResource r = new ClassResource(*'smiley.jpg",
getApplication());

Embedded image = new Embedded(**Image:'', r);

setCompositionRoot(image);

68

Component Interface

User Interface Components

The attachment logic is implemented in AbstractComponent, as described in Section 5.2.2,
“‘AbstractComponent”.

5.2.2. AbstractComponent

AbstractComponent is the base class for all user interface components. It is the (only) imple-
mentation of the Component interface, implementing all the methods defined in the interface.

AbstractComponent has a single abstract method, getTag(), which returns the serialization
identifier of a particular component class. It needs to be implemented when (and only when)
creating entirely new components. AbstractComponent manages much of the serialization of
component states between the client and the server. Creation of new components and serializ-
ation is described in Chapter 10, Developing Custom Components, and the server-side serializ-
ation APl in Appendix A, User Interface Definition Language (UIDL).

5.2.3. Field Components (Field and AbstractField)

Fields are components that have a value that the user can change through the user interface.
Figure 5.3, “Field Components” illustrates the inheritance relationships and the important inter-
faces and base classes.

AbstractComponent 69

User Interface Components

Figure 5.3. Field Components

Property
Editor ValueChangelistener

Focusable

Component Field

AbstractComponent AbstractField

Progressindicator TextField RichTextArea
DateField InlineDateField

PopupDateField

AbstractSelect

OptionGroup ListSelect

NativeSelect

TwinColSelect

Field components are built upon the framework defined in the Field interface and the Abstract-
Field base class.

Fields are strongly coupled with the Vaadin data model. The field value is handled as a Property
of the field component. Selection fields allow management of the selectable items through the

Container interface.

The description of the field interfaces and base classes is broken down in the following sections.

Field Interface

The Field interface inherits the Component superinterface and also the Property interface to
have a value for the field. AbstractField is the only class implementing the Field interface dir-
ectly. The relationships are illustrated in Figure 5.4, “Field Interface Inheritance Diagram”.

70

Field Components (Field and AbstractField)

User Interface Components

Figure 5.4. Field Interface Inheritance Diagram

Viewer Property ValueChangeEvent
Editor ValueChangelListener
Focusable
Event Component Field

Listener

You can set the field value with the setValue () and read with the getValue () method defined
in the Property interface. The actual value type depends on the component.

The Field interface defines a number of attributes, which you can retrieve or manipulate with
the corresponding setters and getters.

description All fields have a description. Notice that while this attribute is defined
in the Field component, it is implemented in AbstractField, which
does not directly implement Field, but only through the AbstractField
class.

required A field can be marked as required and a required indicator marker
(usually * character) is displayed in front of the field. If such fields are
validated but are empty, the error indicator is shown and the compon-
ent error is set to the text defined with the requiredError attribute
(see below). Without validation, the required indicator is merely a
visual guide.

requiredError Definesthe error message to show when a value is required for a field
but no value is given. The error message is set as the component error
for the field and is usually displayed in a tooltip. The Form component
can display the error message in a special error indicator area.

Handling Field Value Changes

Field inherits Property.ValueChangelListener to allow listening for field value changes and
Property.Editor to allow editing values.

When the value of a field changes, a Property.ValueChangeEvent is triggered for the field.
You should not implement the valueChange () method in a class inheriting AbstractField, as
it is already implemented in AbstractField. You should instead implement the method explicitly
by adding the implementing object as a listener.

Field Components (Field and AbstractField) 71

User Interface Components

AbstractField Base Class

AbstractField is the base class for all field components. In addition to the component features
inherited from AbstractComponent, it implements a number of features defined in Property,
Buffered, Validatable, and Component.Focusable interfaces.

5.3. Common Component Features

The component base classes and interfaces provide a large number of features. Let us look at
some of the most commonly needed features. Features not documented here can be found
from the Java API Reference.

The interface defines a number of properties, which you can retrieve or manipulate with the
corresponding setters and getters.

5.3.1. Caption

A caption is an explanatory textual label accompanying a user interface component, usually
shown above, left of, or inside the component. The contents of a caption are automatically
quoted, so no raw XHTML can be rendered in a caption.

The caption can usually be given as the first parameter of a constructor or later with the
setCaption() method.

// New text field with caption "Name"
TextField name = new TextField(*'Name');
layout.addComponent(name);

The caption of a component is, by default, managed and displayed by the layout component
or component container in which the component is placed. For example, the VerticalLayout
component shows the captions left-aligned above the contained components, while the Form-
Layout component shows the captions on the left side of the vertically laid components, with
the captions and their associated components left-aligned in their own columns. The Custom-
Component does not manage the caption of its composition root, so if the root component has
a caption, it will not be rendered.

Figure 5.5. Caption Management by VerticalLayout and FormLayout
components.

A Text Field
Second Text Field

Third Text Field

AText Field
Second Text Field

Third Text Field

Some components, such as Button and Panel, manage the caption themselves and display it
inside the component.

Icon (see Section 5.3.4, “Icon”) is closely related to caption and is usually displayed horizontally
before or after it, depending on the component and the containing layout.

72

Common Component Features

User Interface Components

An alternative way to implement a caption is to use another component as the caption, typically
a Label, a TextField, or a Panel. A Label, for example, allows highlighting a shortcut key with
XHTML markup or to bind the caption to a data source. The Panel provides an easy way to add
both a caption and a border around a component.

Setting the caption with setCaption() will cause updating the component. A reimplementation
of setCaption() should call the superclass implementation.

CSS Style Rules

A caption will be rendered inside an HTML element that has the <component>-caption CSS
style class, where <component> is the identifier of the component to which the caption is at-
tached. For example, the caption of a TextField would have v-textfield-caption style.
The containing layout may enclose a caption inside other caption-related elements.

5.3.2. Description and Tooltips

All components (that inherit AbstractComponent) have a description separate from their caption.
The description is usually shown as a tooltip that appears when the mouse pointer hovers over
the component for a short time.

You can set the description with setDescription() and retrieve with getDescription().

Button button = new Button(''A Button'™);
button.setDescription("'This is the tooltip™);

The tooltip is shown in Figure 5.6, “Component Description as a Tooltip”.

Figure 5.6. Component Description as a Tooltip
LlBUtbtg fMSisthetGGMp

A description is rendered as a tooltip in most components. Form shows it as text in the top area
of the component, as described in Section 5.17.1, “Form as a User Interface Component”.

When a component error has been set with setComponentError (), the error is usually also
displayed in the tooltip, below the description (Form displays it in the bottom area of the form).
Components that are in error state will also display the error indicator. See Section 4.7.1, “Error
Indicator and message”.

The description is actually not plain text, but you can use XHTML tags to format it. Such a rich
text description can contain any HTML elements, including images.

button.setDescription(
""'<h2>"+
"A richtext tooltip</h2>"+
""+
Use rich formatting with XHTML</l1i>"+
Include images from themes"+
etc."+
v");

The result is shown in Figure 5.7, “A Rich Text Tooltip”.

Description and Tooltips 73

User Interface Components

Figure 5.7. A Rich Text Tooltip

A Buflﬁ:
A richtext tooltip
e Use rich formatting with XHTML

+ Include images from themes
« efc

Notice that the setter and getter are defined for all fields in the Field interface, not for all com-
ponents in the Component interface.

5.3.3. Enabled

The enabled property controls whether the user can actually use the component. A disabled
component is visible, but grayed to indicate the disabled state.

Components are always enabled by default. You can disable a component with
setEnabled(false).

Button enabled = new Button(''Enabled™);

enabled.setEnabled(true); // The default

layout.addComponent(enabled);

Button disabled = new Button(''Disabled");

disabled.setEnabled(false);
layout.addComponent(disabled);

Figure 5.8, “An Enabled and Disabled Button” shows the enabled and disabled buttons.

Figure 5.8. An Enabled and Disabled Button

Enabled

A disabled component is automatically put in read-only state. No client interaction with such a
component is sent to the server and, as an important security feature, the server-side component
does not receive state updates from the client.

CSS Style Rules

Disabled components have the v-disabled CSS style in addition to the component-specific
style. To match a component with both the styles, you have to join the style class names with a
dot as done in the example below.

.v-textfield.v-disabled {
border: dotted;
b

This would make the border of all disabled text fields dotted.

TextField disabled = new TextField(''Disabled");
disabled.setValue(‘'Read-only value');
disabled.setEnabled(false);
layout.addComponent(disabled);

The result is illustrated in Figure 5.9, “Styling Disabled Components”.

74

Enabled

User Interface Components

Figure 5.9. Styling Disabled Components

5.3.4. lcon

An icon is an explanatory graphical label accompanying a user interface component, usually
shown above, left of, or inside the component. Icon is closely related to caption (see Section 5.3.1,
“Caption”) and is usually displayed horizontally before or after it, depending on the component
and the containing layout.

The icon of a component can be set with the setlcon() method. The image is provided as a
resource, perhaps most typically a ThemeResource.

// Component with an icon from a custom theme
TextField name = new TextField(''Name');
name.setlcon(new ThemeResource(*'icons/user.png'));
layout.addComponent(name) ;

// Component with an icon from another theme (“runo®)
Button ok = new Button("OK");

ok.setlcon(new ThemeResource('../runo/icons/16/o0k.png"));
layout.addComponent(ok) ;

The icon of a component is, by default, managed and displayed by the layout component or
component container in which the component is placed. For example, the VerticalLayout
component shows the icons left-aligned above the contained components, while the FormLayout
component shows the icons on the left side of the vertically laid components, with the icons and
their associated components left-aligned in their own columns. The CustomComponent does
not manage the icon of its composition root, so if the root component has an icon, it will not be
rendered.

Figure 5.10. Displaying an Icon from a Theme Resource.

A MName
v 0K

Some components, such as Button and Panel, manage the icon themselves and display it inside
the component.

CSS Style Rules

An icon will be rendered inside an HTML element that has the v—icon CSS style class. The
containing layout may enclose an icon and a caption inside elements related to the caption,
such as v-caption.

5.3.5. Locale

The locale property defines the country and language used in a component. You can use the
locale information in conjunction with an internationalization scheme to acquire localized re-
sources. Some components, such as DateField, use the locale for component localization.

You can set the locale of a component (or the application) with setLocale().

// Component for which the locale is meaningful
InlineDateField date = new InlineDateField(''Datum');

lcon 75

User Interface Components

// German language specified with 1SO 639-1 language
// code and ISO 3166-1 alpha-2 country code.
date.setLocale(new Locale(''de', "DE'™));

date.setResolution(DateField .RESOLUTION_DAY);
layout._addComponent(date);

The resulting date field is shown in Figure 5.11, “Set Locale for InlineDateField”.

Figure 5.11. Set Locale for InlineDateField

Datum
“« 4 Marz 2010 ro»
MO DI Ml DO FR SA SO
2 3 4 5
g 10 11 12 1
16 17 18 19 20
23 24 25 26 2

i AN

[
b3 om =
RaoR3 =
m = e

w

You can get the locale of a component with getLocale(). If the locale is undefined for a
component, that is, not explicitly set, the locale of the parent component is used. If none of the
parent components have a locale set, the locale of the application is used, and if that is not set,
the default system locale is set, as given by Locale.getDefaul t().

Because of the requirement that the component must be attached to the application, it is awkward
to use getLocale() for internationalization. You can not use it in the constructor, so you would
have to get the locale in attach() as shown in the following example:

Button cancel = new Button() {
@0verride
public void attach(Q) {
ResourceBundle bundle = ResourceBundle.getBundle(
MyAppCaptions.class.getName(), getLocale());
setCaption(bundle._getString(*'CancelKey™));
}
}:

layout.addComponent(cancel);

It is normally a better practice to get the locale from an application-global parameter and use
it to get the localized resource right when the component is created.

// Captions are stored in MyAppCaptions resource bundle
// and the application object is known in this context.
ResourceBundle bundle =
ResourceBundle.getBundle(MyAppCaptions.class.getName(),
getApplication().getLocale());

// Get a localized resource from the bundle

Button cancel = new Button(bundle.getString(*'CancelKey'));
layout.addComponent(cancel);

Selecting a Locale

A common task in many applications is selecting a locale. This is done in the following example
with a Select component.

// The locale in which we want to have the language

// selection list

Locale displayLocale = Locale.ENGLISH;

// All known locales

76 Locale

User Interface Components

final Locale[] locales = Locale.getAvailableLocales();
//
//
//

Allow selecting a language. We are in a constructor of a
CustomComponent, so preselecting the current
language of the application can not be done before
// this (and the selection) component are attached to
// the application.
final Select select = new Select('Select a language') {
@Override
public void attach(Q) {
setValue(getLocale());

}

(int i=0; i<locales.length;

select.addltem(locales[i]);

select.setltemCaption(locales[i],
locales[i].getDisplayName(displayLocale));

¥

for

i++) {

// Automatically select the current locale
if (locales[i]-equals(getLocale()))
select.setValue(locales[i]);

}
layout.addComponent(select);

// Locale code of the selected locale
final Label localeCode = new Label('"");
layout.addComponent(localeCode);

// A date field which language the selection will change
final InlineDateField date =

new InlineDateField("Calendar in the selected language');
date.setResolution(DateField.RESOLUTION_DAY);
layout._addComponent(date);

// Handle language selection
select.addListener(new Property.ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
Locale locale = (Locale) select.getValue();
date.setLocale(locale);
localeCode.setValue(*'Locale code: " +
locale._getLanguage() +
locale.getCountry());

n_n +

3
D:;

select.setlmmediate(true);

The user interface is shown in Figure 5.12, “Selecting a Locale”.

Figure 5.12. Selecting a Locale

Select a language
Finnish -
Locale code: fi_

Calendarin the selected language
“« 4 maaliskuu 2010 ro»
M4 TI KE To FPE LA SU

g 10 11 12 13

[

17

-
2

31

Locale

User Interface Components

5.3.6. Read-Only

The property defines whether the user can change the value of a component. As only Field
components have a value that can be input or edited by the user, this method is mainly applicable
to field components. The read-only property does not prevent changing the value of a component
programmatically.

TextField readwrite = new TextField("'Read-Write™);
readwrite.setValue(''You can change this™);
readwrite.setReadOnly(false); // The default
layout.addComponent(readwrite);

TextField readonly = new TextField(*'Read-Only');
readonly.setValue(*'You can"t touch this!');
readonly.setReadOnly(true);
layout.addComponent(readonly);

The resulting read-only text field is shown in Figure 5.13, “A Read-Only Component.”.

Figure 5.13. A Read-Only Component.

Read-Write Read-0Only
You can change this ‘fou can'ttouch this!

Even when a component is read-only, the user may be able to interact with some component
features, such as scrolling.

Client-side state modifications will not be communicated to the server-side and, more important,
server-side field components will not accept changes to the value of a read-only component.
This is an important security feature, because a malicious user can not fabricate state changes
in a read-only component. Notice that this occurs at the level of AbstractField in setValue()
and therefore only applies to the property value of the component; a component could itself
accept some variable changes from the client-side.

CSS Style Rules

The appearance of the component can change to indicate that the value is not editable. A read-
only component will have the v-readonly style. The following CSS rule would make the text
in all read-only TextField components appear in italic.

.v-textfield.v-readonly {
font-style: italic;
b

An icon will be rendered inside an HTML element that has the v—icon CSS style class. The
containing layout may enclose an icon and a caption inside elements related to the caption,
such as v-caption.

5.3.7. Style Name

The style name property defines one or more custom CSS style class names for the component.
The getStyleName() returns the current style names as a space-separated list. The
setStyleName() replaces all the styles with the given style name or a space-separated list
of style names. You can also add and remove individual style names with addStylename()
and removeStyleName (). A style name must be a valid CSS style name.

78

Read-Only

User Interface Components

Label label = new Label(*'This text has a lot of style");
label _.addStyleName("'mystyle');
layout.addComponent(label);

The style name will appear in the component's HTML element in two forms: literally as given
and prefixed with the component class specific style name. For example, if you add a style
name mystyle to a Button, the component would get both mystyle and v-button-mystyle
styles. Neither form may conflict with built-in style names of Vaadin or GWT. For example, focus
style would conflict with a built-in style of the same name, and an option style for a Select
component would conflict with the built-in v—-select-option style.

The following CSS rule would apply the style to any component that has the mystyle style.

-mystyle {
font-family: fantasy;
font-style: italic;
font-size: 25px;
font-weight: bolder;
line-height: 30px;

b

The resulting styled component is shown in Figure 5.14, “Component with a Custom Style”

Figure 5.14. Component with a Custom Style

This text has style

5.3.8. Visible

Components can be hidden by setting the visible property to false. Also the caption, icon and
any other component features are made hidden. Hidden components are not just invisible, but
their content is not communicated to the browser at all. That is, they are not made invisible
cosmetically with only CSS rules. This feature is important for security if you have components
that contain security-critical information that must only be shown in specific application states.

TextField readonly = new TextField(*'Read-Only');
readonly.setValue(*'You can"t see this!");
readonly.setVisible(false);
layout.addComponent(readonly);

The resulting invisible component is shown in Figure 5.15, “An Invisible Component.”.

Figure 5.15. An Invisible Component.

If you need to make a component only cosmetically invisible, you should use a custom theme
to set it display: none style. This is mainly useful for certain special components such as
Progressindicator, which have effects even when made invisible in CSS. If the hidden com-
ponent has undefined size and is enclosed in a layout that also has undefined size, the containing
layout will collapse when the component disappears. If you want to have the component keep
its size, you have to make it invisible by setting all its font and other attributes to be transparent.
In such cases, the invisible content of the component can be made visible easily in the browser.

An invisible component has no particular CSS style class to indicate that it is hidden. The element
does exist though, but has display: none style, which overrides any CSS styling.

Visible 79

User Interface Components

5.3.9. Sizing Components

Vaadin components are sizeable; not in the sense that they were fairly large or that the number
of the components and their features are sizeable, but in the sense that you can make them
fairly large on the screen if you like, or small or whatever size.

The Sizeable interface, shared by all components, provides a number of manipulation methods
and constants for setting the height and width of a component in absolute or relative units, or
for leaving the size undefined.

The size of a component can be set with setWidth() and setHeight() methods. The
methods take the size as a floating-point value. You need to give the unit of the measure as the
second parameter for the above methods. The available units are listed in Table 5.1, “Size Units”
below.

mycomponent.setWidth(100, Sizeable.UNITS_PERCENTAGE);
mycomponent.setWidth(400, Sizeable_ UNITS_PIXELS);

Alternatively, you can speficy the size as a string. The format of such a string must follow the
HTML/CSS standards for specifying measures.

mycomponent.setWidth(*'100%") ;
mycomponent.setHeight(*'400px');

The "100%" percentage value makes the component take all available size in the particular dir-
ection (see the description of Si zeabl e. UNI TS_PERCENTAGE in the table below). You can
also use the shorthand method setSizeFul I () to set the size to 100% in both directions.

The size can be undefined in either or both dimensions, which means that the component will
take the minimum necessary space. Most components have undefined size by default, but some
layouts have full size in horizontal direction. You can set the height or width as undefined with
Si zeabl e. SI ZE_UNDEFI NED parameter for setWidth() and setHeight().

You always need to keep in mind that a layout with undefined size may not contain components
with defined relative size, such as "full size". See Section 6.12.1, “Layout Size” for details.

The Table 5.1, “Size Units” lists the available units and their codes defined in the Sizeable in-
terface.

80

Sizing Components

User Interface Components

5.3.10.

Table 5.1. Size Units

UNI TS_PI XELS px |The pixelis the basic hardware-specific measure of one physical
display pixel.
UNI TS PO NTS pt |The pointis a typographical unit, which is usually defined as 1/72

inches or about 0.35 mm. However, on displays the size can vary
significantly depending on display metrics.

UNI TS_PI CAS pc |The picais atypographical unit, defined as 12 points, or 1/7 inches
or about 4.233 mm. On displays, the size can vary depending on
display metrics.

UNI TS _EM em |A unit relative to the used font, the width of the upper-case "M" letter.
UNI TS _EX ex |A unit relative to the used font, the height of the lower-case "x" letter.
UNI TS MM mm |A physical length unit, millimeters on the surface of a display device.

However, the actual size depends on the display, its metrics in the
operating system, and the browser.

UNI TS CM cm |A physical length unit, centimeters on the surface of a display
device. However, the actual size depends on the display, its metrics
in the operating system, and the browser.

UNI TS | NCH in |A physical length unit, inches on the surface of a display device.
However, the actual size depends on the display, its metrics in the
operating system, and the browser.

UNI TS _PERCENTACE|% |A relative percentage of the available size. For example, for the top-
level layout 100%would be the full width or height of the browser
window. The percentage value must be between 0 and 100.

If a component inside HorizontalLayout or VerticalLayout has full size in the namesake direc-
tion of the layout, the component will expand to take all available space not needed by the other
components. See Section 6.12.1, “Layout Size” for details.

Managing Input Focus

When the user clicks on a component, the component gets the input focus, which is indicated
by highlighting according to style definitions. If the component allows inputting text, the focus
and insertion point are indicated by a cursor. Pressing the Tab key moves the focus to the
component next in the focus order.

Focusing is supported by all Field components and also by Form and Upload.

The focus order or tab index of a component is defined as a positive integer value, which you
can set with setTablIndex() and get with getTablndex(). The tab index is managed in the
context of the application-level Window in which the components are contained. The focus order
can therefore jump between two any lower-level component containers, such as sub-windows
or panels.

The default focus order is determined by the natural hierarchical order of components in the
order in which they were added under their parents. The default tab index is 0 (zero).

Giving a negative integer as the tab index removes the component from the focus order entirely.

Managing Input Focus 81

User Interface Components

CSS Style Rules

The component having the focus will have an additional style class with the —focus prefix. For
example, a TextField would have style v—textFfield-focus.

For example (if we have the focusexampl e style defined for a parent of a text field), the following
would make a text field blue when it has focus.

-Focusexample .v-textfield-focus {

background: lightblue;
}

5.4. Label

Label is a text component that you can use to display non-editable text. The text will wrap around
if the width of the containing component limits the length of the lines (except for preformatted

text).

// A container for the Label.

Panel panel = new Panel("'Panel Containing a Label™);
panel _setWidth(*'200px'"); // Defined width.

main.addComponent(panel);

panel _.addComponent(

new Label('This is a Label inside a Panel. There is enough " +
"text in the label to make the text wrap if it " +
"exceeds the width of the panel.™));

As the size of the Panel in the above example is fixed, the text in the Label will wrap to fit the
panel, as shown in Figure 5.16, “The Label Component”.

Figure 5.16. The Label Component

Panel Containing a Label

This is a Label inside a Panel. There is enoughtext
in the label to make the text wrap if itexceeds the
width of the panel.

The contents of a label are formatted depending on the content mode. By default, the text is
assumed to be plain text and any contained XML-specific characters will be quoted appropriately
to allow rendering the contents of a label in XHTML in a web browser. The content mode can
be set in the constructor or with setContentMode (), and can have the following values:

CONTENT_DEFAULT

CONTENT_PREFORMATTED

CONTENT_RAW

The default content mode is CONTENT_TEXT (see below).

Content mode, where the label contains preformatted text.
It will be, by default, rendered with a fixed-width typewriter
font. Preformatted text can contain line breaks, written in
Java with the \n escape sequence for a newline character
(ASCII 0x0a), or tabulator characters written with \t (ASCII
0x08).

Content mode, where the label contains raw text. Output is
not required to be valid XML. It can be, for example, HTML,
which can be unbalanced or otherwise invalid XML. The
example below uses the
 tag in HTML. While XHTML

82

Label

User Interface Components

CONTENT_TEXT

CONTENT_XHTML

CONTENT_XML

CONTENT_UIDL

should be preferred in most cases, this can be useful for
some specific purposes where you may need to display
loosely formatted HTML content. The raw mode also pre-
serves character entities, some of which might otherwise be
interpreted incorrectly.

Content mode, where the label contains only plain text. All
characters are allowed, including the special <, >, and &
characters in XML or HTML, which are quoted properly in
XHTML while rendering the component. This is the default
mode.

Content mode, where the label contains XHTML. The content
will be enclosed in a DIV element having the namespace
"hetp://ww w3 org/TR/xhtml 1/DTD/xhtml 1-strict.dtd".

Content mode, where the label contains well-formed and
well-balanced XML. Each of the root elements must have
their default namespace specified.

Formatted content mode, where the contents are XML that
is restricted to UIDL 1.0, the internal language of Vaadin for
AJAX communications between the server and the browser.
Obsolete since IT Mill Toolkit 5.0.

Warning

Vi j \ Notice that the validity of XML or XHTML in a Label is not checked in the server
when rendering the component and any errors can result in an error in the browser!
You should validate the content before displaying it in the component, especially if
it comes from an uncertain source.

The following example demonstrates the use of Label in different modes.

GridLayout labelgrid = new GridLayout (2,1);

labelgrid.addComponent (new Label (*'CONTENT_DEFAULT™));

labelgrid.addComponent (

new Label ("This is a label in default mode: <plain text>",
Label .CONTENT_DEFAULT));

labelgrid.addComponent (new Label (*'CONTENT_PREFORMATTED™));

labelgrid.addComponent (

new Label ("This is a preformatted label.\n"+
“The newline character \\n breaks the line.",
Label .CONTENT_PREFORMATTED)) ;

labelgrid.addComponent (new Label ('CONTENT_RAW™));

labelgrid.addComponent (

new Label ("This is a label in raw mode.
lt can contain, "+
"for example, unbalanced markup.",
Label .CONTENT_RAW));

labelgrid.addComponent (new Label ('CONTENT_TEXT™));

labelgrid.addComponent (

new Label ("This is a label in (plain) text mode",
Label .CONTENT_TEXT));

labelgrid.addComponent (new Label ('CONTENT_XHTML™));

labelgrid.addComponent (

Label 83

User Interface Components

new Label ('<i>This</i> is an XHTML formatted label",
Label .CONTENT_XHTML));

labelgrid.addComponent (new Label (*'CONTENT_XML™));
labelgrid.addComponent (
new Label ('This is an <myelement>XML</myelement> "'+
“formatted label™,
Label .CONTENT_XML));

main.addComponent(labelgrid);

The rendering will look as follows:

Figure 5.17. Label Modes Rendered on Screen

CONTENT_DEFAULT This is a label in default mode: <plain text>

This is a preformatted label.

CONTENT—PREFORMATI—EDThe newline character \n breaks the line.

This is a label in raw mode

CONTENT_RAW It can contain, for example, unbalanced markup.

CONTENT_TEXT This is a label in (plain) text mode
CONTENT_XHTML This is an XHTML formatted label
CONTENT_XML This is an XML formatted labe

Using the XHTML, XML, or raw modes allow inclusion of, for example, images within the text
flow, which is not possible with any regular layout components. The following example includes
an image within the text flow, with the image coming from a class loader resource.

ClassResource labelimage = new ClassResource (“'labelimage.jpg",
this);
main.addComponent(new Label(*'Here we have an image <img src=\""" +
this._getRelativelLocation(labelimage) +
"\"/> within text.",
Label .CONTENT_XHTML));

When you use a class loader resource, the image has to be included in the JAR of the web ap-
plication. In this case, the label image . jpg needs to be in the default package. When rendered
in a web browser, the output will look as follows:

Figure 5.18. Referencing An Image Resource in Label

Here we have an image within some text.

Another solution would be to use the CustomLayout component, where you can write the
component content as an XHTML fragment in a theme, but such a solution may be too heavy
for most cases, and not flexible enough if the content needs to be dynamically generated.

Notice that the rendering of XHTML depends on the assumption that the client software and the
terminal adapter are XHTML based. It is possible to write a terminal adapter for a custom thin
client application, which may not be able to render XHTML at all. There are also differences
between web browsers in their support of XHTML.

84

Label

User Interface Components

Spacing with a Label

You can use a Label to create vertical or horizontal space in a layout. If you need a empty "line"
in a vertical layout, having just a label with empty text is not enough, as it will collapse to zero
height. The same goes for a label with only whitespace as the label text. You need to use a non-
breaking space character, either or :

layout.addComponent(new Label ("' ", Label .CONTENT_XHTML));

Using the Label . CONTENT_PREFORMATTED mode has the same effect; preformatted spaces
do not collapse in a vertical layout. In a HorizontalLayout, the width of a space character may
be unpredictable if the label font is proportional, so you can use the preformatted mode to add
em-width wide spaces.

If you want a gap that has adjustable width or height, you can use an empty label if you specify
a height or width for it. For example, to create vertical space in a VerticalLayout:

Label gap = new Label();
gap.-setHeight('lem™);
verticallLayout.addComponent(gap);

You can make a flexible expanding spacer by having a relatively sized empty label with 100%
height or width and setting the label as expanding in the layout.

// A wide component bar
HorizontallLayout horizontal = new HorizontallLayout();
horizontal .setWidth(*'100%") ;

// Have a component before the gap (a collapsing cell)
Button buttonl = new Button(l1"m on the left");
horizontal .addComponent(buttonl);

// An expanding gap spacer

Label expandingGap = new Label();
expandingGap.setWidth(*'100%"");

horizontal .addComponent(expandingGap);
horizontal .setExpandRatio(expandingGap, 1.0F);

// A component after the gap (a collapsing cell)
Button button2 = new Button(*l1"m on the right");
horizontal .addComponent(button2);

CSS Style Rules

The Label component has a v-label overall style.

The Reindeer theme includes a number of predefined styles for typical formatting cases. These
include "h1" (Reindeer . LABEL_H1) and 'h2" (Reindeer.LABEL_H2) heading styles and
"light' (Reindeer .LABEL_SMALL) style.

5.5. Link

The Link component allows making references to resources that are either external or provided
by the web server or by the application itself. While a Link appears like a hyperlink, it is not
handled in the web browser. When a user clicks a link, the server receives an event and typically
opens the referenced resource in the target window of the link. Resources are explained in
Section 4.5, “Referencing Resources”.

Links to external resources can be made by using a URI as follows:

Spacing with a Label 85

User Interface Components

Link link = new Link ("link to a resource",
new ExternalResource('http://www.vaadin.com/*)));

With the simple contructor used in the above example, the link is opened in the current window.
Using the constructor that takes the target window as a parameter, or by setting the window
with setWindow, you can open the resource in another window, such as a native popup window
or a FrameWindow. As the target window can be defined as a target string managed by the
browser, the target can be any window, including windows not managed by the application itself.

When the user clicks the link, the application will receive an event regarding the click and handle
it to provide the resource. The link is therefore not an <a href> element in HTML and it does
not have an URI. This has some additional consequences, such as that a link can not be marked
as "visited" by the browser, unlike normal hyperlinks. If you wish to have an actual HTML anchor
element, you need to customize the rendering of the component or use a Label with XHTML
content mode and write the anchor element by yourself.

CSS Style Rules

The Link component has v- | i nk style by default.

.v-link { }

When the mouse pointer hovers over the link, it will also have the over style.

5.6. TextField

TextField is one of the most common user interface components and is highly versatile. It
supports both single- and multi-line editing, password input, and buffering.

The following example creates two simple text fields: a single-line and a multi-line TextField.

/* Add a single-line text field. */
TextField subject = new TextField("'Subject");
subject.setColumns(40);
main.addComponent(subject);

/* Add a multi-line text field. */

TextField message = new TextField("'Message');
message.setRows(7);

message .setColumns(40);
main.addComponent(message);

Figure 5.19. Single- and Multi-Line Text Field Example

Subject
This is a singleine text field
Message
his 1s a text field component with -

multiple lines. By default, the lines
111 wrap at the end of a line. H
If there are enough lines, the scrollba

111 appear and allow writing long
texts.
One more line, -

Notice how font size affects the width of the text fields even though the width was set with the
same number of columns. This is a feature of HTML.

86 CSS Style Rules

User Interface Components

5.7. RichTextArea

The RichTextArea field allows entering or editing formatted text. The toolbar provides all basic
editing functionalities. The text content of RichTextArea is represented in HTML format. Rich-
TextArea inherits TextField and does not add any API functionality over it. You can add new
functionality by extending the client-side components VRichTextArea and VRichTextToolbar.

As with TextField, the textual content of the rich text area is the Property of the field and can
be set with setValue() and read with getValue().

// Create a rich text area

final RichTextArea rtarea = new RichTextArea();

rtarea.setCaption(*'"My Rich Text Area');

// Set initial content as HTML

rtarea.setValue(''<hl>Hello</h1>\n" +
"<p>This rich text area contains some text.</p>");

Figure 5.20. Rich Text Area Component

My Rich Text Area

B J UX, Y =E=S=/+=+=—i=i=a=c2 T
Background Foreground Font Size

Hello

This rich text area contains some text.

Above, we used context-specific tags such as <h1> in the initial HTML content. The rich text
area component does not allow creating such tags, only formatting tags, but it does preserve
them unless the user edits them away. Any non-visible whitespace such as the new line character
(\n) are removed from the content. For example, the value set above will be as follows when
read from the field with getValue():

<hl>Hello</hl1l> <p>This rich text area contains some text.</p>

The rich text area is one of the few components in Vaadin that contain textual labels. The selection
boxes in the toolbar are in English, and not be localized currently otherwise but by inheriting or
reimplementing the client-side VRichTextToolbar widget. The buttons can be localized simply
with CSS by downloading a copy of the toolbar background image, editing it, and replacing the
default toolbar. The toolbar is a single image file from which the individual button icons are
picked, so the order of the icons is different from the rendered. The image file depends on the
client-side implementation of the toolbar.

.v-richtextarea-richtextexample .gwt-ToggleButton
-gwt-Image {
background-image: url(img/richtextarea-toolbar-fi.png)
lTimportant;

RichTextArea 87

User Interface Components

Figure 5.21. Regular English and a Localized Rich Text Area Toolbar

=X X R ea T =i =

A=x" X, ¥ @L*E %E

=

K gr==—c21L

Cross-Site Scripting with RichTextArea

The user input from a RichTextArea is transmitted as XHTML from the browser to server-side
and is not sanitized. As the entire purpose of the RichTextArea component is to allow input of
formatted text, you can not sanitize it just by removing all HTML tags. Also many attributes, such
as st yl e, should pass through the sanitization.

See Section 11.10.1, “Sanitizing User Input to Prevent Cross-Site Scripting” for more details on
Cross-Site scripting vulnerabilities and sanitization of user input.

CSS Style Rules

.v-richtextarea { }
.v-richtextarea .gwt-RichTextToolbar { }
.v-richtextarea .gwt-RichTextArea { }

The rich text area consists of two main parts: the toolbar with overall style
-gwt-RichTextToolbar and the editor area with style .gwt-RichTextArea. The editor area
obviously contains all the elements and their styles that the HTML content contains. The toolbar
contains buttons and drop-down list boxes with the following respective style names:

-gwt-ToggleButton { }
-gwt-ListBox { }

5.8. Date and Time Input

The DateField component provides the means to display and input date and time. The field
comes in two variations: PopupDateField with numeric input fields and a popup calendar view
and InlineDateField with the calendar view always visible and the numeric input fields only for
time. The DateField base class defaults to the popup variation.

The example below illustrates the use of the DateField with the default style. We set the time
of the DateField to current time with the default constructor of the java.util.Date class.

/* Create a DateField with the default style. */
DateField date = new DateField();

/* Set the date and time to present. */
date.setValue(new java.util.Date());

Figure 5.22. Example of the Date Field with Default Style

Here is a date field

24.07.2007 | ... | 19 ~=|14 ~||29 ~||369 =]

The default style provides date input using a text box for the date and combo boxes for the time,
down to milliseconds. Pressing the "..." button right of the date opens a month view for selecting
the date.

88

Cross-Site Scripting with RichTextArea

User Interface Components

You probably will not need milliseconds in most applications, and might not even need the time,
but just the date. The visibility of the input components is controlled by resolution of the field
which can be set with setResolution() method. The method takes as its parameters the
lowest visible component, typically RESCLUTI ON_DAY for just dates and RESCLUTI ON_M Nfor
dates with time in hours and minutes. Please see the API Reference for a complete list of resol-
ution parameters.

5.8.1. Calendar

The cal endar style of the DateField provides a date picker component with a month view,
just like the one in the default style that opens by clicking the "..." button. The user can navigate
months and years by clicking the appropriate arrows.

// Create a DateField with the calendar style.

DateField date = new DateField(*'Here is a calendar field");

date.setStyle(*'calendar™);

// Set the date and time to present.
date.setValue(new java.util._Date());

main.addComponent(date);

Figure 5.23. Example of the Date Field with Calendar Style

Here is a calendar field

7 July, Z007

“ 4 Today » »

whk |Mon Tue Wed Thu Fri Sat Sun
26 1
27 2 3 4 5 [7

28 9 10 11 12 13 14 15
29 16 17 18 19 20 21 22
30| 2 24| 25 26 2 2 2

31| 30 31

Select date

5.8.2. DateField Locale

The date fields use the locale set for the component, which defaults to the system locale. You
can set a custom locale with the setLocale() method of AbstractComponent.

5.9. Button

The Button is a user interface component that is normally used for finalizing input and initiating
some action. When the user clicks a button, a Button.ClickEvent is emitted. A listener that in-
herits the Button.ClickListener interface can handle clicks with the buttonClick() method.

public class TheButton extends CustomComponent
implements Button.ClickListener {
Button thebutton;

public TheButton() {
// Create a Button with the given caption.
thebutton = new Button ("'Do not push this button™);

// Listen for ClickEvents.
thebutton.addListener(this);

Calendar 89

User Interface Components

setCompositionRoot(thebutton);
}

/** Handle click events for the button. */
public void buttonClick (Button.ClickEvent event) {
thebutton.setCaption ('Do not push this button again');

}
}

Figure 5.24. An Example of a Button

Do not push this button |

As a user interface often has several buttons, you can differentiate between them either by
comparing the Button object reference returned by the getButton() method of Button.Click-
Event to a kept reference or by using a separate listener method for each button. The listening
object and method can be given to the constructor. For a detailed description of these patterns
together with some examples, please see Section 3.5, “Events and Listeners”.

CSS Style Rules

.v-button { }

The exact CSS style name can be different if a Button has the swi t chMode attribute enabled.
See the alternative CSS styles below.

Adding the "smal " style name enables a smaller style for the Button. You can also use the
BUTTON_SMALL constantin Runo and Reindeer theme classes as well. The BaseTheme class
also has a BUTTON_LI NK style, with "Iink" style name, which makes the button look like a hy-
perlink.

5.10. CheckBox

CheckBox is a two-state selection component that can be either checked or unchecked. The
caption of the check box will be placed right of the actual check box. Vaadin provides two ways
to create check boxes: individual check boxes with the CheckBox component described in this
section and check box groups with the OptionGroup component in multiple selection mode,
as described in Section 5.11.4, “Radio Button and Check Box Groups with OptionGroup”.

Clicking on a check box will change its state. The state is the Boolean property of the Button,
and can be set with setValue () and obtained with getValue() method of the Property in-
terface. Changing the value of a check box will cause a ValueChangeEvent, which can be
handled by a ValueChangelListener.

// A check box with default state (not checked, false).
final CheckBox checkboxl = new CheckBox(‘'My CheckBox');
main.addComponent(checkbox1);

// Another check box with explicitly set checked state.
final CheckBox checkbox2 = new CheckBox(''‘Checked CheckBox');
checkbox2.setValue(true);

main.addComponent(checkbox?2);

// Make some application logic. We use anonymous listener
// classes here. The above references were defined as final
// to allow accessing them from inside anonymous classes.
checkbox1.addListener(new ValueChangeListener() {

90

CSS Style Rules

User Interface Components

public void valueChange(ValueChangeEvent event) {
// Copy the value to the other checkbox.
checkbox2.setValue(checkboxl.getValue());

3
D:;

checkbox2.addListener(new ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
// Copy the value to the other checkbox.
checkboxl.setValue(checkbox2.getValue());

3
D:;

Figure 5.25. An Example of a Check Box

I~ My CheckBox
I chercked CheckBox

For an example on the use of check boxes in a table, see Section 5.12, “Table”.

CSS Style Rules

.v-checkbox { }

5.11. Selecting ltems

Vaadin gives many alternatives for selecting one or more items from a list, using drop-down and
regular lists, radio button and check box groups, tables, trees, and so on.

The core library includes the following selection components, all based on the AbstractSelect

class:

Select

ComboBox

ListSelect

NativeSelect

OptionGroup

TwinColSelect

A drop-down list for single selection. The component contains a text
input area, which the user can use to filter the displayed items.

A drop-down list for single selection. Otherwise as Select, but the
user can also enter new items. The component also provides an input
prompt.

A vertical list box for selecting items in either single or multiple selec-
tion mode.

Provides selection using the native selection component of the
browser, typically a drop-down list for single selection and a multi-line
list in multiselect mode. This uses the <select> element in HTML.

Shows the items as a vertically arranged group of radio buttons in the
single selection mode and of check boxes in multiple selection mode.

Shows two list boxes side by side where the user can select items
from a list of available items and move them to a list of selected items
using control buttons.

In addition, the Tree and Table components allow special forms of selection. They also inherit

the AbstractSelect.

CSS Style Rules 91

User Interface Components

5.11.1. Binding Selection Components to Data

The selection components are strongly coupled with the Vaadin Data Model. The selectable
items in all selection components are objects that implement the Item interface and are contained
in a Container. The current selection is bound to the Property interface.

Even though the data model is used, the selection components allow simple use in the most
common cases. Each selection component is bound to a default container type, which supports
management of items without need to implement a container.

See Chapter 9, Binding Components to Data for a detailed description of the data model, its
interfaces, and built-in implementations.

Adding New Items

New items are added with the add 1tem() method defined in the Container interface.

// Create a selection component
Select select = new Select (“'Select something here');

// Add some items and give each an item ID
select.addltem(*'"Mercury');
select.addltem(*'Venus™);
select.addltem(Earth™);

The add1tem() method creates an empty Item, which is identified by its item identifier (11D)
object, given as the parameter. This item ID is by default used also as the caption of the item,
as explained in the next section. The identifier is typically a String. The item is of a type specific
to the container and has itself little relevance for most selection components, as the properties
of an item may not be used in any way (except in Table), only the item ID.

The item identifier can be of any object type. We could as well have given integers for the item
identifiers and set the captions explicitly with setl1temCaption(). You could also add an item
with the parameterless add Item(), which returns an automatically generated item ID.

// Create a selection component
Select select = new Select("'My Select');

// Add an item with a generated ID
Object itemld = select.addltem();
select.setltemCaption(itemld, "The Sun');

// Select the item
select.setValue(itemld);

Some container types may support passing the actual data object to the add method. For ex-
ample, you can add items to a BeanltemContainer with addBean(). Such implementations
can use a separate item ID object, or the data object itself as the item ID, as is done in
addBean(). In the latter case you can not depend on the default way of acquiring the item
caption; see the description of the different caption modes later.

The following section describes the different options for determining the item captions.
Item Captions
The displayed captions of items in a selection component can be set explicitly with

setltemCaption() or determined from the item IDs or item properties. This behaviour is
defined with the caption mode, which you can set the caption mode with

92 Binding Selection Components to Data

User Interface Components

setltemCaptionMode ().

The default mode is

| TEM CAPTI ON_MODE_EXPLI CI T_DEFAULTS | D, which uses the item identifiers for the cap-

tions, unless given explicitly.

In addition to a caption, an item can have an icon. The icon is set with setltemlcon().

Caption Modes for Selection Components

ITEM CAPTION MITE BXFLICIT [EFAUTS ID

ITEM_CAPTION_MODE_EXPLICIT

ITEM_CAPTION_MODE_ICON_ONLY

ITEM_CAPTION_MODE_ID

This is the default caption mode and its flexibility allows
using it in most cases. By default, the item identifier
will be used as the caption. The identifier object does
not necessarily have to be a string; the caption is re-
trieved with toString() method. If the caption is
specified explicitly with setltemCaption(), it over-
rides the item identifier.

Select select = new Select(''Moons of Mars'™);

// Use the item ID also as the caption of this item
select.addltem(new Integer(1));

// Set item caption for this item explicitly
select.addltem(2); // same as ''new Integer(2)"
select.setltemCaption(2, "Deimos™);

Captions must be explicitly specified with
setltemCaption(). If they are not, the caption will
be empty. Such items with empty captions will never-
theless be displayed in the Select component as
empty items. If they have an icon, they will be visible.

Only icons are shown, captions are hidden.

String representation of the item identifier object is
used as caption. This is useful when the identifier is a
string, and also when the identifier is an complex object
that has a string representation. For example:

Select select = new Select("Inner Planets™);
select.setltemCaptionMode(Select. ITEM _CAPTION_MODE_ID);

// A class that implements toString()
class Planetld extends Object implements
Serializable {
String planetName;
Planetld (String name) {
planetName = name;

public String toString () {
return "The Planet " + planetName;
}
}

// Use such objects as item identifiers

String planets[] = {"Mercury", "Venus', "Earth",

“"Mars''};

for (int i=0; i<planets.length; i++)
select.addltem(new Planetld(planets[i]));

Binding Selection Components to Data 93

User Interface Components

ITEM_CAPTION_MODE_ INDEX

ITEM_CAPTION_MODE_ITEM

ITEM_CAPTION_MODE_PROPERTY

Index number of item is used as caption. This caption
mode is applicable only to data sources that implement
the Container.Indexed interface. If the interface is not
available, the component will throw a ClassCastExcep-
tion. The Select component itself does not implement
this interface, so the mode is not usable without a
separate data source. An IndexedContainer, for ex-
ample, would work.

String representation of item, acquired with
toString(), is used as the caption. This is applicable
mainly when using a custom ltem class, which also
requires using a custom Container that is used as a
data source for the Select component.

Item captions are read from the String representation
of the property with the identifier specified with
setltemCaptionPropertyld(). This is useful, for
example, when you have a container that you use as
the data source for a Select, and you want to use a
specific property for caption.

In the example below, we bind a selection component
to a bean container and use a property of the bean as
the caption.

/* A bean with a "name" property. */
public class Planet implements Serializable {
String name;

public Planet(String name) {
this_name = name;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;
}
}

void propertyModeExample() {
VerticallLayout layout = new VerticallLayout();

// Have a bean container to put the beans in
BeanltemContainer<Planet> container =
new
BeanltemContainer<Planet>(Planet.class);

// Put some example data in it
container._addltem(new Planet('Mercury'));
container._addltem(new Planet(*'Venus'™));
container._addltem(new Planet(Earth'™));
container._addltem(new Planet(*'Mars'™));

// Create a selection component bound to the
container

Select select = new Select("'Planets",
container);

94

Binding Selection Components to Data

User Interface Components

// Set the caption mode to read the caption
directly
// from the "name® property of the bean
select.setltemCaptionMode(
Select. ITEM_CAPTION_MODE_PROPERTY);
select.setltemCaptionPropertyld(*'name™);

layout._addComponent(select);

Getting and Setting Selection

A selection component provides the current selection as the property of the component (with
the Property interface). The property value is an item identifier object that identifies the selected
item. You can get the identifier with getValue() of the Property interface.

You can select an item with the corresponding setValue() method. In multiselect mode, the
property will be an unmodifiable set of item identifiers. If no item is selected, the property will
be nul | in single selection mode or an empty collection in multiselect mode.

The Select and NativeSelect components will show "-* selection when no actual item is selected.
This is the null selection item identifier. You can set an alternative ID with
setNullSelectionltemld(). Setting the alternative null ID is merely a visual text; the
getValue() will still return nul I value if no item is selected, or an empty set in multiselect
mode.

The item identifier of the currently selected item will be set as the property of the Select object.
You can access it with the getValue() method of the Property interface of the component.
Also, when handling changes in a Select component with the Property.ValueChangelListener
interface, the Property.ValueChangeEvent will have the selected item as the property of the
event, accessible with the getProperty () method.

Figure 5.26. Selected Item

Th

Select component
hd
Currently selected item 1D: 2

Class of the Item ID: java.lang.Integer
Caption: Earth

5.11.2. Basic Select Component

The Select component allows, in single selection mode, selecting an item from a drop-down
list, or in multiple selection mode, from a list box that shows multiple items.

Basic Select Component 95

User Interface Components

Figure 5.27. The Select Component

Single Selection Mode Multiple Selection Mode
- Y
Mercury
WVenus
y Earth

Mercury Mars

Venus Jupiter
.

Earth Saturn
Uranus

Mars Neptune

Jupiter %

Saturn

Uranus

Neptune

1-9/9

Combo Box Behaviour

The Select component will act as a combo box in single selection mode, allowing either to
choose the value from the drop-down list or to write the value in the text field part of the compon-
ent.

Filtered Selection

The Select component allows filtering the items available for selection. The component shows
as an input box for entering text. The text entered in the input box is used for filtering the available
items shown in a drop-down list. Pressing Enter will complete the item in the input box. Pressing
Up- and Down-arrows can be used for selecting an item from the drop-down list. The drop-
down list is paged and clicking on the scroll buttons will change to the next or previous page.
The list selection can also be done with the arrow keys on the keyboard. The shown items are
loaded from the server as needed, so the number of items held in the component can be quite
large.

Vaadin provides two filtering modes: FI LTERI NGVODE_CONTAI NS matches any item that contains
the string given in the text field part of the component and FI LTERI NGMODE_STARTSW TH
matches only items that begin with the given string. The filtering mode is set with
setFilteringMode(). Setting the filtering mode to the default value FI LTERI NGMODE_OFF
disables filtering.

Select select = new Select("Enter containing substring');
select.setFilteringMode(AbstractSelect.Filtering.FILTERINGMODE_CONTAINS);

/* Fill the component with some items. */

final String[] planets = new String[] {
"Mercury", "Venus', "Earth", "Mars",
“Jupiter', "Saturn', "Uranus', "Neptune" };

for (int 1 = 0; 1 < planets.length; i++)
for (int j = 0; j < planets.length; j++) {
select.addltem(planets[j] + " to " + planets[i]);

96

Basic Select Component

User Interface Components

The above example uses the containment filter that matches to all items containing the input
string. As shown in Figure 5.28, “Filtered Selection” below, when we type some text in the input
area, the drop-down list will show all the matching items.

Figure 5.28. Filtered Selection

Enter containing substring Enter containing substring
Earth

Earth to Mercury

Mercury to Mercury Earth to Venus
Venus to Mercury Mercury to Earth
Earth to Mercury Venus to Earth
Mars to Mercury Earth to Earth
Jupiter to Mercury Mars to Earth
Saturn to Mercury Jupiter to Earth
Uranus to Mercury Saturn to Earth
Neptune to Mercury Uranus to Earth

Mercury to Venus
1-9/186

1-10/65

The FilterSelect demo in the Vaadin Demo Application provides an example of filtering items in
a Select component.

CSS Style Rules

-.v-filterselect { }
-v-filterselect-input { }
-v-filterselect-button { }
-v-filterselect-suggestpopup { }
-.v-filterselect-prefpage-off { }
.v-filterselect-suggestmenu { }
-.v-filterselect-status { }

In its default state, only the input field of the Select component is visible. The entire component
is enclosed in v—-Filterselect style, the input field has v-Fi lterselect-input style and
the button in the right end that opens and closes the drop-down result list has
v-Filterselect-button style.

The drop-down result list has an overall v—filterselect-suggestpopup style. It contains
the list of suggestions with v—Fi I terselect-suggestmenu style and a status bar in the bottom
with v—Filterselect-status style. The list of suggestions is padded with an area with
v-Filterselect-prefpage-off style above and below the list.

5.11.3. Native Selection Component NativeSelect

NativeSelect offers the native selection component in web browsers, using an HTML <select>
element. In single selection mode, the component is shown as a drop-down list, and in multiple
selection mode as a list box.

Native Selection Component NativeSelect 97

User Interface Components

CSS Style Rules

.v-select-optiongroup {}
.v-checkbox, .v-select-option {}
.v-radiobutton, .v-select-option {}

The v—select-optiongroup is the overall style for the component. Each check box will have
the v—checkbox style and each radio button the v-radiobutton style. Both the radio buttons
and check boxes will also have the v-select-option style that allows styling regardless of
the option type.

5.11.4. Radio Button and Check Box Groups with OptionGroup

The OptionGroup class provides selection from alternatives using a group of radio buttons in
single selection mode. In multiple selection mode, the items show up as check boxes.

OptionGroup optiongroup = new OptionGroup(*'My Option Group');

// Use the multiple selection mode.
myselect.setMultiSelect(true);

Figure 5.29, “Option Button Group in Single and Multiple Selection Mode” shows the Option-
Group in both single and multiple selection mode.

Figure 5.29. Option Button Group in Single and Multiple Selection Mode

Single Selection Mode Multiple Selection Mode

r‘Menuw r-Menun
" venus = venus

* Earth ™ Earth
 Mars = mars

" Jupiter I Jupiter
" Saturn F saturn
" Uranus I~ uranus
. Neptune r Neptune

You can create check boxes individually using the CheckBox class, as described in Section 5.10,
“CheckBox”. The advantages of the OptionGroup component are that as it maintains the indi-
vidual check box objects, you can get an array of the currently selected items easily, and that
you can easily change the appearance of a single component.

Disabling Items

You can disable individual items in an OptionGroup with setltemEnabled(). The user can
not select or deselect disabled items in multi-select mode, but in single-select mode the use
can change the selection from a disabled to an enabled item. The selections can be changed
programmatically regardless of whether an item is enabled or disabled. You can find out
whether an item is enabled with isltemEnabled().

The setltemEnabled() identifies the item to be disabled by its item ID.

// Have an option group

OptionGroup group = new OptionGroup(*'My Disabled Group™);
group.addltem('One™);

group.addltem(*Two™);

group.addltem(*'Three™);

98

Radio Button and Check Box Groups with OptionGroup

User Interface Components

// Disable one item
group.setltemEnabled(*'Two", false);

The item IDs are also used for the captions in this example. The result is shown in Figure 5.30,
“‘OptionGroup with a Disabled Iltem”.

Figure 5.30. OptionGroup with a Disabled Item

My Disahled Group
@ one

O Three
Setting an item as disabled turns on the v-disabled style for it.

CSS Style Rules

-v-select-optiongroup {}
.v-select-option.v-checkbox {}
.v-select-option.v-radiobutton {}

The v-select-optiongroup is the overall style for the component. Each check box will have
the v-checkbox style, borrowed from the CheckBox component, and each radio button the
v-radiobutton style. Both the radio buttons and check boxes will also have the
v-select-option style that allows styling regardless of the option type. Disabled items have
additionally the v-disabled style.

The options are normally laid out vertically. You can use horizontal layout by setting display:
inline-block for the options. Notice, however, that the options will wrap when they reach the
available width in the containing layout, and the layout must not have an undefined width.

.v-select-option {
display: inline-block;
}

5.11.5. Twin Column Selection with TwinColSelect

The TwinColSelect class provides a multiple selection component that shows two lists side by
side. The user can select items from the list on the left and click on the ">>" button to move them
to the list on the right. ltems can be moved back by selecting them and clicking on the "<<"
button.

Figure 5.31. Twin Column Selection

Mercury [~ i==i||Venus |«
Earth v | Jupiter
Mars —| Uranus
Saturn

MNeptune

Twin Column Selection with TwinColSelect 99

User Interface Components

CSS Style Rules

.v-select-twincol {}
.v-select-twincol-options {}
.v-select-twincol-selections {}
.v-select-twincol-buttons {}
.v-select-twincol-deco {}

5.11.6. Allowing Adding New ltems

The selection components allow the user to add new items, with a user interface similar to combo
boxes in desktop user interfaces. You need to enable the newi t ens Al | owed mode with the
setNewltemsAl lowed() method.

myselect.setNewltemsAllowed(true);

The user interface for adding new items depends on the selection component and the selection
mode. The regular Select component in single selection mode, which appears as a combo
box, allows you to simply type the new item in the combo box and hit Enter to add it. In most
other selection components, as well as in the multiple selection mode of the regular Select
component, a text field that allows entering new items is shown below the selection list, and
clicking the + button will add the item in the list, as illustrated in Figure 5.32, “Select Component
with Adding New ltems Allowed”.

Figure 5.32. Select Component with Adding New ltems Allowed

Add-a-Planet

Mercury =
VEnus

Earth

Mars

Jupiter

Saturn

Uranus

Meptune

Ny Own Planet That | Just Added Here [«

-

Iy Other Planet +

The identifier of an item added by the user will be a String object identical to the caption of the
item. You should consider this if the item identifier of automatically filled items is some other
type or otherwise not identical to the caption.

Adding new items is possible in both single and multiple selection modes and in all styles.
Adding new items may not be possible if the Select is bound to an external Container that
does not allow adding new items.

5.11.7. Multiple Selection Mode

Setting the Select, NativeSelect, or OptionGroup components to multiple selection mode
with the setMultiSelect() method changes their appearance to allow selecting multiple
items.

Select and NativeSelect These components appear as a native HTML selection
list, as shown in Figure 5.32, “Select Component with
Adding New ltems Allowed”. By holding the Ctrl or Shift
key pressed, the user can select multiple items.

100

Allowing Adding New ltems

User Interface Components

OptionGroup The option group, which is a radio button group in single
selection mode, will show as a check box group in
multiple selection mode. See Section 5.11.4, “Radio
Button and Check Box Groups with OptionGroup”.

The TwinColSelect, described in Section 5.11.5, “Twin Column Selection with TwinColSelect”,
is a special multiple selection mode that is not meaningful for single selection.

myselect.setMultiSelect(true);

As in single selection mode, the selected items are set as the property of the Select object. In
multiple selection mode, the property is a Collection of currently selected items. You can get
and set the property with the getValue() and setValue() methods as usual.

A change in the selection will trigger a ValueChangeEvent, which you can handle with a
Propery.ValueChangelistener. As usual, you should use setlmmediate(true) to trigger
the event immediately when the user changes the selection. The following example shows how
to handle selection changes with a listener.

public class SelectExample
extends CustomComponent
implements Property.ValueChangelListener {
// Create a Select object with a caption.
Select select = new Select("This is a Select component™);

VerticallLayout layout = new VerticallLayout();
Label status = new Label("-");

SelectExample) {
setCompositionRoot (layout);
layout._addComponent(select);

// Fill the component with some items.

final String[] planets = new String[] {
“"Mercury', "Venus', "Earth", "Mars",
“Jupiter', "Saturn', "Uranus', "Neptune"};

for (int i=0; i<planets.length; i++)
select.addltem(planets[i]);

// By default, the change event is not triggered
// immediately when the selection changes.

// This enables the immediate events.
select.setlmmediate(true);

// Listen for changes in the selection.
select.addListener(this);

layout._addComponent(status);

}

/* Respond to change in the selection. */
public void valueChange(Property.ValueChangeEvent event) {
// The event.getProperty() returns the Item ID (11D)
// of the currently selected item in the component.
status.setValue(''Currently selected item ID: " +
event.getProperty());

Multiple Selection Mode 101

User Interface Components

5.11.8. Other Common Features

Item lcons

You can set an icon for each item with setltemlcon(), or define an item property that provides
the icon resource with setltemlconPropertyld(), in a fashion similar to captions. Notice,
however, that icons are not supported in NativeSelect, TwinColSelect, and some other selection
components and modes. This is because HTML does not support images inside the native
select elements. Icons are also not really visually applicable.

5.12. Table

The Table component is intended for presenting tabular data organized in rows and columns.
The Table is one of the most versatile components in Vaadin. Table cells can include text or
arbitrary Ul components. You can easily implement editing of the table data, for example clicking
on a cell could change it to a text field for editing.

The data contained in a Table is managed using the Data Model of Vaadin (see Chapter 9,
Binding Components to Data), through the Container interface of the Table. This makes it
possible to bind a table directly to a data source, such as a database query. Only the visible
part of the table is loaded into the browser and moving the visible window with the scrollbar
loads content from the server. While the data is being loaded, a tooltip will be displayed that
shows the current range and total number of items in the table. The rows of the table are items
in the container and the columns are properties. Each table row (item) is identified with an item
identifier (11D), and each column (property) with a property identifier (PID).

When creating a table, you first need to define columns with addContainerProperty(). This
method comes in two flavors. The simpler one takes the property ID of the column and uses it
also as the caption of the column. The more complex one allows differing PID and header for
the column. This may make, for example, internationalization of table headers easier, because
if a PID is internationalized, the internationalization has to be used everywhere where the PID is
used. The complex form of the method also allows defining an icon for the column from a re-
source. The "default value" parameter is used when new properties (columns) are added to the
table, to fill in the missing values. (This default has no meaning in the usual case, such as below,
where we add items after defining the properties.)

/* Create the table with a caption. */
Table table = new Table("This is my Table');

/* Define the names and data types of columns.

* The "default value" parameter is meaningless here. */
table.addContainerProperty("'First Name', String.class, null);
table.addContainerProperty(*'Last Name'™, String.class, null);
table.addContainerProperty("'Year", Integer.class, null);

/* Add a few items in the table. */
table.addltem(new Object[] {

“"Nicolaus","Copernicus",new Integer(1473)}, new Integer(l));
table.addltem(new Object[] {

"Tycho", "Brahe", new Integer(1546)}, new Integer(2));
table.addltem(new Object[] {

""Giordano","Bruno", new Integer(1548)}, new Integer(3));
table.addltem(new Object[] {

"Galileo", "Galilei", new Integer(1564)}, new Integer(4));
table.addltem(new Object[] {

"Johannes","Kepler", new Integer(1571)}, new Integer(5));
table.addltem(new Object[] {

"lsaac", “"Newton", new Integer(1643)}, new Integer(6));

102

Other Common Features

User Interface Components

In this example, we used an increasing Integer object as the Item Identifier, given as the second
parameter to add I'tem(). The actual rows are given simply as object arrays, in the same order
in which the properties were added. The objects must be of the correct class, as defined in the
addContainerProperty() calls.

Figure 5.33. Basic Table Example

This is my Table

First Name Last Name Year

Nicolaus Copernicus 1473
Tycho Brahe 1546
Giordano Bruno 1548
Galileo Galilei 1564
Johannes Kepler 1571 =

Scalability of the Table is largely dictated by the container. The default IndexedContainer is
relatively heavy and can cause scalability problems, for example, when updating the values.
Use of an optimized application-specific container is recommended. Table does not have a
limit for the number of items and is just as fast with hundreds of thousands of items as with just
a few. With the current implementation of scrolling, there is a limit of around 500 000 rows, de-
pending on the browser and the pixel height of rows.

5.12.1. Selecting Items in a Table

The Table allows selecting one or more items by clicking them with the mouse. When the user
selects an item, the IID of the item will be set as the property of the table and a ValueChan-
geEvent is triggered. To enable selection, you need to set the table selectable. You will also
need to set it as immediate in most cases, as we do below, because without it, the change in
the property will not be communicated immediately to the server.

The following example shows how to enable the selection of items in a Table and how to handle
ValueChangeEvent events that are caused by changes in selection. You need to handle the
event with the valueChange () method of the Property.ValueChangelistener interface.

// Allow selecting items from the table.
table.setSelectable(true);

// Send changes in selection immediately to server.
table.setlmmediate(true);

// Shows feedback from selection.
final Label current = new Label('Selected: -"");

// Handle selection change.
table.addListener(new Property.ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
current.setValue('Selected: " + table.getValue());
}
D:

Selecting Items in a Table 103

User Interface Components

Figure 5.34. Table Selection Example

First Name Last Name Year

Nicolaus Copernicus 1473 -
Tycho Brahe 1546
Giordano Bruno 1548
Galileo Galilei 1564
Johannes Kepler 1571 =

Saelacted: 2

If the user clicks on an already selected item, the selection will deselected and the table property
will have null value. You can disable this behaviour by setting
setNulISelectionAl lowed(false) for the table.

The selection is the value of the table's property, so you can get it with getValue(). You can
get it also from a reference to the table itself. In single selection mode, the value is the item
identifier of the selected item or nul | if no item is selected. In multiple selection mode (see
below), the value is a Set of item identifiers. Notice that the set is unmodifiable, so you can not
simply change it to change the selection.

Multiple Selection Mode

Atable can also be in multiselect mode, where a user can select multiple items by clicking them
with left mouse button while holding the Ctrl key (or Meta key) pressed. If Ctrl is not held,
clicking an item will select it and other selected items are deselected. The user can select a
range by selecting an item, holding the Shift key pressed, and clicking another item, in which
case all the items between the two are also selected. Multiple ranges can be selected by first
selecting a range, then selecting an item while holding Ctrl, and then selecting another item
with both Ctrl and Shift pressed.

The multiselect mode is enabled with the setMultiSelect() method of the Select interface
of Table. Setting table in multiselect mode does not implicitly set it as selectable, so it must be
set separately.

The setMultiSelectMode() property affects the control of multiple selection:
Mul ti Sel ect Mbde. DEFAULT is the default behaviour, which requires holding the Ctrl (or
Meta) key pressed while selecting items, while in Mul t i Sel ect Mode. SI MPLE holding the Ctrl
key is not needed. In the simple mode, items can only be deselected by clicking them.

5.12.2. Table Features

Page Length and Scrollbar

The default style for Table provides a table with a scrollbar. The scrollbar is located at the right
side of the table and becomes visible when the number of items in the table exceeds the page
length, that is, the number of visible items. You can set the page length with setPagelLength().

Setting the page length to zero makes all the rows in a table visible, no matter how many rows
there are. Notice that this also effectively disables buffering, as all the entire table is loaded to
the browser at once. Using such tables to generate reports does not scale up very well, as there
is some inevitable overhead in rendering a table with Ajax. For very large reports, generating
HTML directly is a more scalable solution.

104

Table Features

User Interface Components

Resizing Columns

You can set the width of a column programmatically from the server-side with
setColumnWidth(). The column is identified by the property ID and the width is given in pixels.

The user can resize table columns by dragging the resize handle between two columns. Resizing
a table column causes a ColumnResizeEvent, which you can handle with a Table.Colum-
nResizelListener. The table must be set in immediate mode if you want to receive the resize
events immediately, which is typical.

table.addListener(new Table.ColumnResizeListener() {
public void columnResize(ColumnResizeEvent event) {
// Get the new width of the resized column
int width = event.getCurrentWidth();

// Get the property ID of the resized column
String column = (String) event.getPropertyld(Q);

// Do something with the information
table.setColumnFooter(column, String.valueOf(width) + "px');
b
bH:

// Must be immediate to send the resize events immediately
table.setlmmediate(true);

See Figure 5.35, “Resizing Columns” for a result after the columns of a table has been resized.

Figure 5.35. Resizing Columns

ColumnResize Events

NAME ¥ BORNIN
Vaisala 1881
Valtaoja 1951
Galileo 1564
124px 248px

Reordering Columns

If setColumnReorderingAllowed(true) is set, the user can reorder table columns by
dragging them with the mouse from the column header,

Collapsing Columns

When setColumnCol lapsingAl lowed(true) is set, the right side of the table header shows
a drop-down list that allows selecting which columns are shown. Collapsing columns is different
than hiding columns with setVisibleColumns(), which hides the columns completely so
that they can not be made visible (uncollapsed) from the user interface.

You can collapse columns programmatically with setColumnCol lapsed(). Collapsing must
be enabled before collapsing columns with the method or it will throw an lllegalAccessExcep-
tion.

// Allow the user to collapse and uncollapse columns
table.setColumnCol lapsingAl lowed(true);

// Collapse this column programmatically

try {
table.setColumnCol lapsed(*'born*, true);

Table Features 105

User Interface Components

} catch (1llegalAccessException e) {
// Can"t occur - collapsing was allowed above
System.err_printIn(**'Something horrible occurred™);

}

// Give enough width for the table to accommodate the
// initially collapsed column later
table.setWidth(*'250px™);

See Figure 5.36, “Collapsing Columns”.

Figure 5.36. Collapsing Columns

Column Collapsing

HAME DIED -
Galileo 1642 ® MName
Vaisala 1971 ® Died
Yaltaoja

If the table has undefined width, it minimizes its width to fit the width of the visible columns. If
some columns are initially collapsed, the width of the table may not be enough to accomodate
them later, which will result in an ugly horizontal scrollbar. You should consider giving the table
enough width to accomodate columns uncollapsed by the user.

Components Inside a Table

The cells of a Table can contain any user interface components, not just strings. If the rows are
higher than the row height defined in the default theme, you have to define the proper row height
in a custom theme.

When handling events for components inside a Table, such as for the Button in the example
below, you usually need to know the item the component belongs to. Components do not
themselves know about the table or the specific item in which a component is contained.
Therefore, the handling method must use some other means for finding out the ltem ID of the
item. There are a few possibilities. Usually the easiest way is to use the setData() method to
attach an arbitrary object to a component. You can subclass the component and include the
identity information there. You can also simply search the entire table for the item with the
component, although that solution may not be so scalable.

The example below includes table rows with a Label in XHTML formatting mode, a multiline
TextField, a CheckBox, and a Button that shows as a link.

// Create a table and add a style to allow setting the row height in theme.
final Table table = new Table();
table.addStyleName(‘'components-inside');

/* Define the names and data types of columns.
* The "default value'" parameter is meaningless here. */

table.addContainerProperty(*'Sum", Label .class, null);
table.addContainerProperty(*'Is Transferred'”, CheckBox.class, null);
table.addContainerProperty(‘'‘Comments", TextField.class, null);
table.addContainerProperty(‘'Details", Button.class, null);

/* Add a few items in the table. */
for (int i=0; i<100; i++) {
// Create the fields for the current table row
Label sumField = new Label(String.format(
"Sum is $%04.2Ff
<i>(VAT incl.)</i>",
new Object[] {new Double(Math.random()*1000)}),

106

Table Features

User Interface Components

Label .CONTENT_XHTML) ;
CheckBox transferredField = new CheckBox("is transferred");

// Multiline text field. This required modifying the
// height of the table row.

TextField commentsField = new TextField();
commentsField.setRows(3);

// The Table item identifier for the row.
Integer itemld = new Integer(i);

// Create a button and handle its click. A Button does not
// know the item it is contained in, so we have to store the
// item 1D as user-defined data.
Button detailsField = new Button(‘“'show details');
detailsField.setData(itemld);
detailsField.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
// Get the item identifier from the user-defined data.
Integer itemld = (Integer)event.getButton().getData();
getWindow() -showNotification(*'Link "'+
itemld.intvValue(QQ+" clicked.");

}
D:
detailsField.addStyleName(*'link');

// Create the table row.
table.addltem(new Object[] {sumField, transferredField,
commentsField, detailsField},
itemld);
}

// Show just three rows because they are so high.
table.setPageLength(3);

The row height has to be set higher than the default with a style rule such as the following:
/* Table rows contain three-row TextField components. */
-v-table-components-inside .v-table-cell-content {
height: 54px;
}

The table will look as shown in Figure 5.37, “Components in a Table”.

Figure 5.37. Components in a Table

Sum Is Transferred Comments Details

sum is $777,60 ¥lis transferred We sent this money show details é
(VAT incl.) already in last week

sum is $9500,40 is transferrad show details

(VAT incl.)

Sum is $836,10 is transferrad show details

(VAT incl.) =

Table Features

107

User Interface Components

Editing the Values of a Table

Normally, a Table simply displays the items and their fields as text. If you want to allow the user
to edit the values, you can either put them inside components as we did above, or you can
simply call setEditable(true) and the cells are automatically turned into editable fields.

Let us begin with a regular table with a some columns with usual Java types, namely a Date,
Boolean, and a String.

// Create a table. It is by default not editable.
final Table table = new Table();

// Define the names and data types of columns.
table.addContainerProperty("'Date", Date.class, null);
table.addContainerProperty(""Work", Boolean.class, null);
table.addContainerProperty("'Comments", String.class, null);

// Add a few items in the table.

for (int i=0; i<100; i++) {
Calendar calendar = new GregorianCalendar(2008,0,1);
calendar.add(Calendar.DAY_OF_YEAR, 1);

// Create the table row.
table.addltem(new Object[] {calendar.getTime(),
new Boolean(false),

new Integer(i)); }/ Item identifier

}

table.setPagelLength(8);
layout.addComponent(table);

You could put the table in editable mode right away if you need to. We'll continue the example
by adding a mechanism to switch the Table from and to the editable mode.

final CheckBox switchEditable = new CheckBox(*'Editable™);
switchEditable.addListener(new Property.ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
table.setEditable(((Boolean)event.getProperty()
-getvValue()) -booleanvalue());

}
H:
switchEditable.setlmmediate(true);
layout.addComponent(switchEditable);

Now, when you check to checkbox, the components in the table turn into editable fields, as
shown in Figure 5.38, “A Table in Normal and Editable Mode”.

Figure 5.38. A Table in Normal and Editable Mode

Date Work Comments Date Work Comments
Tue Jan 01 00:00:00 GMT+02.00 2008 false é 11,2008 = & Hello |L|
Wed Jan 02 00:00:00 GMT+02:00 2008 false 2.1.2008
Thu Jan 03 00:00:00 GMT+02:00 2008 false 31,2008 tammikuu 2008
Fri Jan 04 00:00:00 GMT+02:00 2008 false 4.1.2008] ma ti |¢f tao Pj :1 S}I
Sat Jan 05 00:00:00 GMT+02:00 2008 false 5.1.2008] - "
Sun Jan 06 00:00:00 GMT+02:00 2008 fal: - { 7 8 @ 0om o2
sun Jan . ! GMT+02Z: 2 alse -

= 6.1.2008 |14 15 16 17 18 1902
Mon Jan 07 00:00:00 GMT+02:00 2008 false 7.1.2008 21 92 7 4 35 % 97

4/

Tue Jan 08 00:00:00 GMT+02:00 2008 false 8.1.2008 9 3 31
Editable vl Editable

108

Table Features

User Interface Components

The field components that allow editing the values of particular types in a table are defined in
a field factory that implements the TableFieldFactory interface. The default implementation is
DefaultFieldFactory, which offers the following crude mappings:

Table 5.2. Type to Field Mappings in DefaultFieldFactory

Property Type|Mapped to Field Class

Date A DateField.
Boolean A CheckBox.
Item A Form. The fields of the form are automatically created from the item's

properties using a FormFieldFactory. The normal use for this property type
is inside a Form and is less useful inside a Table.

others A TextField. The text field manages conversions from the basic types, if
possible.

Field factories are covered with more detail in Section 5.17.2, “Binding Form to Data”. You could
just implement the TableFieldFactory interface, but we recommend that you extend the De-
faultFieldFactory according to your needs. In the default implementation, the mappings are
defined in the createFieldByPropertyType() method (you might want to look at the source
code) both for tables and forms.

Iterating Over a Table

As the items in a Table are not indexed, iterating over the items has to be done using an iterator.
The getltemlds() method of the Container interface of Table returns a Collection of item
identifiers over which you can iterate using an lterator. For an example about iterating over a
Table, please see Section 9.4, “Collecting items in Containers”. Notice that you may not modify
the Table during iteration, that is, add or remove items. Changing the data is allowed.

5.12.3. Column Headers and Footers
Table supports both column headers and footers; the headers are enabled by default.

Headers

The table header displays the column headers at the top of the table. You can use the column
headers to reorder or resize the columns, as described earlier. By default, the header of a column
is the property ID of the column, unless given explicitly with setColumnHeader ().

// Define the properties
table.addContainerProperty(*'lastname', String.class, null);
table.addContainerProperty("'born", Integer.class, null);
table.addContainerProperty(*'died"”, Integer.class, null);

// Set nicer header names
table.setColumnHeader ("' lastname'™, "‘Name');
table.setColumnHeader('born™, "Born'™);
table.setColumnHeader("'died", "Died™);

The text of the column headers and the visibility of the header depends on the column header
mode. The header is visible by default, but you can disable it with
setColumnHeaderMode(Table.COLUMN_HEADER_MODE_HIDDEN).

Column Headers and Footers 109

User Interface Components

Footers

The table footer can be useful for displaying sums or averages of values in a column, and so
on. The footer is not visible by default; you can enable it with setFooterVisible(true).
Unlike in the header, the column headers are empty by default. You can set their value with
setColumnFooter (). The columns are identified by their property ID.

The following example shows how to calculate average of the values in a column:

// Have a table with a numeric column

Table table = new Table(""Custom Table Footer™);
table.addContainerProperty(*'Name', String.class, null);
table.addContainerProperty("'Died At Age', Integer.class, null);

// lInsert some data
Object people[l1[] = {{"Galileo", 77},
{"'Monnier", 83},
{"vaisala", 79},
{"Oterma", 86}};
for (int i=0; i<people.length; i++)
table.addltem(people[i], new Integer(i));

// Calculate the average of the numeric column
double avgAge = O;
for (int i=0; i<people.length; i++)
avgAge += (Integer) people[i]l[1];
avgAge /= people.length;
// Set the footers
table.setFooterVisible(true);
table.setColumnFooter(*'Name", "Average');
table.setColumnFooter(*'Died At Age", String.valueOf(avgAge));

// Adjust the table height a bit
table.setPageLength(table.size());

The resulting table is shown in Figure 5.39, “A Table with a Footer”.

Figure 5.39. A Table with a Footer

Custom Tahle Footer

HAME DIED AT AGE
Galileo iv
Monnier 83
YWaisala 79
Oterma B6

Average 81.25

Handling Mouse Clicks on Headers and Footers

Normally, when the user clicks a column header, the table will be sorted by the column, assuming
that the data source is Sortable and sorting is not disabled. In some cases, you might want
some other functionality when the user clicks the column header, such as selecting the column
in some way.

Clicks in the header cause a HeaderClickEvent, which you can handle with a Table.Header-
ClickHandler that you set with setHeaderCl ickHandler (). Click events on the table header
are, like button clicks, sent immediately to server, so there is no need to set setImmediate().

110

Column Headers and Footers

User Interface Components

5.12.4.

// Handle the header clicks
table.setHeaderClickHandler(new Table._HeaderClickHandler() {
public void handleHeaderClick(HeaderClickEvent event) {
String column = (String) event.getPropertyld();
getWindow() -showNotification(*"'Clicked " + column +
"with " + event.getButtonName());

3
D:;

// Disable the default sorting behavior
table.setSortDisabled(false);

Setting a click handler does not automatically disable the sorting behavior of the header; you
need to disable it explicitly with setSortDisabled(true).

The HeaderClickEvent object provides the identity of the clicked column with
getPropertyld(). The getButton() reports the mouse button with which the click was
made: BUTTON_LEFT, BUTTON_RI GHT, or BUTTON_M DDLE. The getButtonName() a human-
readable button name in English: "l eft", "'right", or "m ddl e". The isShiftKey(),
isCtriKey(), etc., methods indicate if the Shift, Ctrl, Alt or other modifier keys were pressed
during the click.

Header click events are not sent when the user clicks the column resize handlers to drag them.

Clicks in the footer cause a FooterClickEvent, which you can handle with a Table.FooterClick-
Handler that you set with setFooterClickHandler (). Footers do not have any default click
behavior, like the sorting in the header. Otherwise, handling clicks in the footer are equivalent
to handling clicks in the header.

The header and footer must, rather obviously, be visible to be able to cause click events.

Generated Table Columns

You might want to have a column that has values calculated from other columns. Or you might
want to format table columns in some way, for example if you have columns that display curren-
cies. The ColumnGenerator interface allows defining custom generators for such columns.

You add new generated columns to a Table with addGeneratedColumn(). It takes the column
identifier as its parameters. Usually you want to have a more user-friendly and possibly interna-
tionalized column header. You can set the header and a possible icon by calling
addContainerProperty() before adding the generated column.

// Define table columns.
table.addContainerProperty(

"date", Date.class, null, "Date", null, null);
table.addContainerProperty(

"quantity', Double.class, null, "Quantity (1), null, null);
table.addContainerProperty(

“price”, Double.class, null, "Price (e/1)", null, null);
table.addContainerProperty(
"total", Double.class, null, "Total (e)", null, null);

// Define the generated columns and their generators.
table.addGeneratedColumn(*'date",

new DateColumnGenerator());
table.addGeneratedColumn(*'quantity",

new ValueColumnGenerator(*%.2F 1'"));
table.addGeneratedColumn(*'price”,

new PriceColumnGenerator());
table.addGeneratedColumn(‘'total",

new ValueColumnGenerator(*%.2F e'));

Generated Table Columns 111

User Interface Components

Notice that the addGeneratedColumn() always places the generated columns as the last
column, even if you defined some other order previously. You will have to set the proper order
with setVisibleColumns().

table.setVisibleColumns(new Object[] {''date', 'quantity', 'price', "total'"});

The generators are objects that implement the Table.ColumnGenerator interface and its
generateCel 1 () method. The method gets the identity of the item and column as its paramet-
ers, in addition to the table object. It has to return a component object.

The following example defines a generator for formatting Double valued fields according to a
format string (as in java.util.Formatter).

/** Formats the value in a column containing Double objects. */
class ValueColumnGenerator implements Table.ColumnGenerator {
String format; /* Format string for the Double values. */

/**
* Creates double value column formatter with the given
* format string.
*/
public ValueColumnGenerator(String format) {
this.format = format;
}

/**
* Generates the cell containing the Double value.
* The column is irrelevant in this use case.
*/
public Component generateCell(Table source, Object itemld,
Object columnid) {
// Get the object stored in the cell as a property
Property prop =
source.getltem(itemld).getltemProperty(columnid);
if (prop.getType()-equals(Double.class)) {
Label label = new Label(String.format(format,
new Object[] { (Double) prop.getvalue() }));

// Set styles for the column: one indicating that it"s
// a value and a more specific one with the column

// name in it. This assumes that the column name

// is proper for CSS.

label _.addStyleName(*'column-type-value™);

label _.addStyleName(*'column-"" + (String) columnld);
return label;

}

return null;

}

The generator is called for all the visible (or more accurately cached) items in a table. If the user
scrolls the table to another position in the table, the columns of the new visible rows are generated
dynamically. The columns in the visible (cached) rows are also generated always when an item
has a value change. It is therefore usually safe to calculate the value of generated cells from
the values of different rows (items).

When you set a table as edi t abl e, regular fields will change to editing fields. When the user
changes the values in the fields, the generated columns will be updated automatically. Putting
a table with generated columns in editable mode has a few quirks. The editable mode of Table
does not affect generated columns. You have two alternatives: either you generate the editing
fields in the generator or, in case of formatter generators, remove the generator in the editable
mode. The example below uses the latter approach.

112

Generated Table Columns

User Interface Components

// Have a check box that allows the user
// to make the quantity and total columns editable.
final CheckBox editable = new CheckBox(
"Edit the input values - calculated columns are regenerated');

editable.setlmmediate(true);
editable._addListener(new ClickListener() {
public void buttonClick(ClickEvent event) {
table.setEditable(editable.booleanvValue());

// The columns may not be generated when we want to
// have them editable.
if (editable._booleanvalue()) {
table.removeGeneratedColumn(*'quantity');
table.removeGeneratedColumn(*"total™);
} else { // Not editable
// Show the formatted values.
table.addGeneratedColumn(*'quantity",
new ValueColumnGenerator(*%.2F 1"));
table.addGeneratedColumn(*"total™,
new ValueColumnGenerator(*%.2F e'));
3
// The visible columns are affected by removal
// and addition of generated columns so we have
// to redefine them.
table.setVisibleColumns(new Object[] {'date', "quantity",
"price", "total', "consumption', 'dailycost'});
}
D:

You will also have to set the editing fields in i nmedi at e mode to have the update occur imme-
diately when an edit field loses the focus. You can set the fields in i nmedi at e mode with the
a custom TableFieldFactory, such as the one given below, that just extends the default imple-
mentation to set the mode:

public class ImmediateFieldFactory extends DefaultFieldFactory {
public Field createField(Container container,
Object itemld,
Object propertyld,
Component uiContext) {
// Let the DefaultFieldFactory create the fields...
Field field = super.createField(container, itemld,
propertyld, uiContext);

// ...and just set them as immediate.
((AbstractField)field).setlmmediate(true);

return field;

}
}

table.setFieldFactory(new ImmediateFieldFactory());

If you generate the editing fields with the column generator, you avoid having to use such a field
factory, but of course have to generate the fields for both normal and editable modes.

Figure 5.40, “Table with Generated Columns in Normal and Editable Mode” shows a table with
columns calculated (blue) and simply formatted (black) with column generators.

Generated Table Columns 113

User Interface Components

5.12.5.

Figure 5.40. Table with Generated Columns in Normal and Editable Mode

Date Quantity (] Price (£/1) Total (€] Consumption (/day] Daily Cost [€/day)
2005-02-1% 44,96 | 1,14 £ 51,21 € N/& YTy
2005-03-30 44,911 1,20 £ 53,67 € 1,151 1,38 € |8
2005-04-20 42,961 1,14 £ 49,06 € 2,051 2,34 £ |
2005-05-23 47,37 1 1,17 £ 55,28 € 1,44 | 1,68 £ M
2005-06-08 35,34 | 1,17 £ 41,52 € 2,521 2,97 £
2005-06-30 16,07 | 1,24 £ 20,00 € 0,67 1 0,B3£
2005-07-02 36,40 | 0,99 £ 36,19 € 18,20 | 18,10 € |=
Date Quantity (] Price (£/1) Total (€] Consumption (/day] Daily Cost [€/day)
2005-02-19 44,96 1,14 € |51.21 N/A NiA =
2005-03-30 44.M 1,20 £ |53.67 1,151 1,38 € |8
2005-04-20 42,96 1,14 £ 49.06 2,051 2,34 £ |
2005-05-23 47.37 1,17 € |55.28 1,44 | 1,68 € B
2005-06-06 35.34 1,17 € |41.52 2,521 2,97 £
2005-06-30 16.07 1,24 £ |20.0 0,67 1 0,83 €
2005-07-02 36.4 0,99 € |36.19 18,20 | 18,10 € |~

-

You can find the complete generated columns example in the Feature Browser demo application
in the installation package, in com.vaadin.demo.featurebrowser.GeneratedColum-
nExample.java.

CSS Style Rules

Styling the overall style of a Table can be done with the following CSS rules.

-.v-table {}
.v-table-header-wrap {}
.v-table-header {}
.v-table-header-cell {}
.v-table-resizer {} /* Column resizer handle. */
.v-table-caption-container {}
-.v-table-body {}
-v-table-row-spacer {}
.v-table-table {}
-v-table-row {}
.v-table-cell-content {}

Notice that some of the widths and heights in a table are calculated dynamically and can not
be set in CSS.

Setting Individual Cell Styles

The Table.CellStyleGenerator interface allows you to set the CSS style for each individual
cell in a table. You need to implement the getStyle(), which gets the row (item) and column
(property) identifiers as parameters and can return a style name for the cell. The returned style
name will be concatenated to prefix "v-table-cel l-content-".

114

CSS Style Rules

User Interface Components

Alternatively, you can use a Table.ColumnGenerator (see Section 5.12.4, “Generated Table
Columns”) to generate the actual Ul components of the cells and add style names to them. A
cell style generator is not used for the cells in generated columns.

Table table = new Table("Table with Cell Styles™);
table.addStyleName(*'checkerboard™);

// Add some columns in the table. In this example, the property
// 1Ds of the container are integers so we can determine the
// column number easily.
table.addContainerProperty(*'0", String.class, null, ", null, null);
for (int i=0; i<8; i++)
table.addContainerProperty("""'+(i+1l), String.class, null,
String.valueOf((char) (65+i)), null, null);

// Add some items in the table.
table.addltem(new Object[]1{

1, UR™, N, UBU, "QU, "K', "B, "N, "R"}, new Integer(0));
table.addltem(new Object[]1{

2t UPT, UPT, OUPT, UPT, UPT, TP, P, "P"}, new Integer(l));
for (int i=2; i<6; i++)

table.addltem(new Object[]{String.valueOf(i+l),

e, ey e, e, ", new Integer(i));

table.addltem(new Object[]1{

7, UPTL,OUPT, OUPT, O UPT,OUPT, TP, VP, PU}, new Integer(6));
table.addltem(new Object[]1{

"8, "R™, "N, "B, "Q", "K", "B", "N, "R"}, new Integer(7));
table.setPageLength(8);

// Set cell style generator
table.setCellStyleGenerator(new Table.CellStyleGenerator() {
public String getStyle(Object itemld, Object propertyld) {
int row = ((Integer)itemld).intvValue();
int col = Integer.parselnt((String)propertyld);

// The first column.
if (col == 0)
return "rowheader";

// Other cells.
if ((row+col)%2 == 0)
return "black";
else
return "white";
T
»:

You can then style the cells, for example, as follows:

/* Center the text in header. */
-v-table-header-cell {
text-align: center;

}

/* Basic style for all cells. */
-v-table-checkerboard .v-table-cell-content {
text-align: center;
vertical-align: middle;
padding-top: 12px;
width: 20px;
height: 28px;
}

/* Style specifically for the row header cells. */
-v-table-cell-content-rowheader {
background: #E7EDF3

CSS Style Rules 115

User Interface Components

url(../default/table/img/header-bg.png) repeat-x scroll 0 O;
}

/* Style specifically for the "white" cells. */
-.v-table-cell-content-white {

background: white;

color: black;

}

/* Style specifically for the "black"™ cells. */
-v-table-cell-content-black {

background: black;

color: white;
}

»

The table will look as shown in Figure 5.41, “Cell Style Generator for a Table”.

Figure 5.41. Cell Style Generator for a Table

(8]

5.13. Tree

The Tree component allows a natural way to represent data that has hierarchical relationships,
such as filesystems or message threads. The Tree component in Vaadin works much like the
tree components of most modern desktop user interface toolkits, for example in directory
browsing.

The typical use of the Tree component is for displaying a hierachical menu, like a menu on the
left side of the screen, as in Figure 5.42, “A Tree Component as a Menu”, or for displaying
filesystems or other hierarchical datasets. The nenu style makes the appearance of the tree
more suitable for this purpose.

final Object[]1[]1 planets = new Object[]1[1{

new Object[]{"'Mercury"},

new Object[]{'Venus"},

new Object[]{" Earth”, "The Moon"},

new Object[]{"'Mars', "Phobos", "Deimos"},

new Object[]{"Jupiter™, "lo", "Europa', "Ganymedes",
“"Callisto"},

new Object[]{"Saturn”, "Titan", "Tethys", "Dione",
"Rhea', "lapetus"},

new Object[]{"Uranus", "Miranda", "Ariel", "Umbriel",
“Titania'", "Oberon"},

new Object[]{"'Neptune", "Triton", "Proteus", "Nereid",

116

Tree

User Interface Components

“Larissa''}};
Tree tree = new Tree("'The Planets and Major Moons');

/* Add planets as root items in the tree. */

for (int i=0; i<planets.length; i++) {
String planet = (String) (planets[i][0]);
tree_addltem(planet);

if (planets[i]-length == 1) {
// The planet has no moons so make it a leaf.
tree._setChildrenAllowed(planet, false);
} else {
// Add children (moons) under the planets.
for (int j=1; j<planets[i].length; j++) {
String moon = (String) planets[i][j];

// Add the item as a regular item.
tree._.addltem(moon);

// Set it to be a child.
tree.setParent(moon, planet);

// Make the moons look like leaves.
tree.setChildrenAllowed(moon, false);

}

// Expand the subtree.
tree._expandltemsRecursively(planet);

}

main.addComponent(tree);

Figure 5.42, “A Tree Component as a Menu” below shows the tree from the code example in
a practical situation.

You can read or set the currently selected item by the value property of the Tree component,
that is, with getvValue() and setValue(). When the user clicks an item on a tree, the tree
will receive an ValueChangeEvent, which you can catch with a ValueChangeListener. To
receive the event immediately after the click, you need to set the tree as setimmediate(true).

The Tree component uses Container data sources much like the Table component, with the
addition that it also utilizes hierarchy information maintained by a HierarchicalContainer. The
contained items can be of any item type supported by the container. The default container and
its addI'tem() assume that the items are strings and the string value is used as the item ID.

5.14. MenuBar

The MenuBar component allows creating horizontal dropdown menus, much like the main menu
in desktop applications.

// Create a menu bar
final MenuBar menubar = new MenuBar();
main.addComponent(menubar);

You insert the top-level menu items to a MenuBar object with the add1tem() method. It takes
a string label, an icon resource, and a command as its parameters. The icon and command are
not required and can be nul | .

MenuBar .Menultem beverages =
menubar.addltem(*'Beverages™, null, null);

MenuBar 117

User Interface Components

Figure 5.42. A Tree Component as a Menu

The Planets and Major Moons Details on The Moon

Mercury
Wenus
Earth

Mars

Phobos Where is the cat?
Deimos
upter The cat is in The Moon.
E-LII'-3|Z-a
Ganymedes
Callisto
Saturn
Titan -
Tethys b

The command is called when the user clicks the item. A menu command is a class that imple-
ments the MenuBar.Command interface.

// A feedback component
final Label selection = new Label('-"");
main.addComponent(selection);

// Define a common menu command for all the menu items.
MenuBar.Command mycommand = new MenuBar.Command() {
public void menuSelected(Menultem selectedltem) {
selection.setValue(''Ordered a " +
selectedltem.getText() +
" from menu.");
}
}:

The add1tem() method returns a MenuBar.Menultem object, which you can use to add sub-
menu items. The Menultem has an identical add I tem() method.

// Put some items in the menu hierarchically
MenuBar .Menultem beverages =
menubar.addltem(*'Beverages'™, null, null);
MenuBar .Menultem hot_beverages =
beverages.addltem("'Hot", null, null);
hot_beverages.addltem(*'Tea"™, null, mycommand);
hot_beverages.addltem(*'Coffee", null, mycommand);
MenuBar .Menultem cold_beverages =
beverages.addltem(*'Cold"™, null, null);
cold_beverages.addltem("Milk", null, mycommand);

// Another top-level item

MenuBar._.Menultem snacks =
menubar.addltem(*'Snacks"™, null, null);

snacks.addltem(""Weisswurst'”, null, mycommand);

snacks.addltem("'Salami', null, mycommand);

// Yet another top-level item

MenuBar_Menultem services =
menubar.addltem(*'Services", null, null);

services.addltem(*'Car Service", null, mycommand);

The menu will look as follows:

118 MenuBar

User Interface Components

Figure 5.43. Menu Bar
Beverages Snacks Services

et Tea

el Coffes

CSS Style Rules

.v-menubar { }
-gwt-Menultem {}
-gwt-Menultem-selected {}

The menu bar has the overall style name .v-menubar. Each menu item has .gwt-Menultem
style normally and .gwt-Menultem-selected when the item is selected.

5.15. Embedded

The Embedded component allows displaying embedded media objects, such as images, an-
imations, or any embeddable media type supported by the browser. The contents of an Embed-
ded component are managed as resources. For documentation on resources, see Section 4.5,
“Referencing Resources”.

The following example displays an image from the same Java package as the class itself using
the class loader.

Embedded image = new Embedded(*'Yes, logo:",
new ClassResource(*'vaadin-logo.png', this));
main.addComponent(image) ;

Figure 5.44. Embedded Image

Yes, logo:

vaadin

The Embedded component supports several different content types, which are rendered differ-
ently in HTML. You can set the content type with setType(), although for images, as in the
above example, the type is determined automatically.

Enbedded. TYPE_OBJECT The default embedded type, allows embedding certain file
types inside HTML <object> and <embed> elements.

Enbedded. TYPE_| MAGE Embeds an image inside a HTML element.

CSS Style Rules 119

User Interface Components

Enbedded. TYPE BROAMSER Embeds a browser frame inside a HTML <iframe> ele-
ment.

5.15.1. Embedded Objects

5.15.2.

The Enbedded. TYPE_OBJECT is the default and most generic embedded type, which allows
embedding media objects inside HTML <object> and <embed> elements. You need define
the MIME type for the object type.

Currently, only Shockwave Flash animations are supported (MIME type
application/x-shockwave-flash).

// Create a Shockware Flash resource
final ClassResource flashResource =
new ClassResource("itmill_spin.swf", getApplication());

// Display the resource in a Embedded compoant
final Embedded embedded =
new Embedded('Embedded Caption", flashResource);

// This is the default type, but we set it anyway.
embedded.setType(Embedded.TYPE_OBJECT);

// This is recorgnized automatically, but set it anyway.
embedded.setMimeType("'appl ication/x-shockwave-flash™);

You can set object parameters with setParameter (), which takes a parameter's name and
value as strings. The object parameters are included in the HTML as <param> elements.

Embedded Images

Images are embedded with the type Enbedded. TYPE_| MAGE, although you do not normally
need to set the type explicitly, as it is recognized automatically from the MIME type of the re-
source, as in the example above.

You can find another example of displaying an image from FileResource in Section 5.16,
“Upload”. Another example, in Section 4.5.5, “Stream Resources”, shows how you can generate
the content of an Embedded component dynamically using a StreamResource.

If you have a dynamically generated image, for example with a StreamResource, and the data
changes, you need to reload the image in the browser. Because of how caching is handled in
some browsers, you are best off by renaming the filename of the resource with a unique name,
such as one including a timestamp. You should set cache time to zero with setCacheTime()
for the resource object when you create it.

// Create the stream resource with some initial filename.
StreamResource imageResource =
new StreamResource(imageSource, "initial-filename.png",
getApplication());

// Instruct browser not to cache the image.
imageResource.setCacheTime(0);

// Display the image in an Embedded component.
Embedded embedded = new Embedded('''', imageResource);

When refreshing, you also need to call requestRepaint() for the Embedded object.

// This needs to be done, but is not sufficient.
embedded. requestRepaint();

120

Embedded Objects

User Interface Components

5.15.3.

// Generate a filename with a timestamp.
SimpleDateFormat df = new SimpleDateFormat(*'yyyyMMddHHmmsSSSSS™) ;
String filename = "myfilename-" + df.format(new Date()) + ".png";

// Replace the filename in the resource.
imageResource.setFilename(makelmageFilename());

You can find more detailed information about the StreamResource in Section 4.5.5, “Stream
Resources”.

Browser Frames

The browser frame type allows you to embed external content inside an HTML <iframe> element.
You can refer to a URL with an ExternalResource object. URLs are given with the standard
Java URL class.

URL url = new URL('http://dev.vaadin.com/'");

Embedded browser = new Embedded(***, new ExternalResource(url));
browser.setType(Embedded.TYPE_BROWSER) ;
main.addComponent(browser);

5.16. Upload

The Upload component allows a user to upload files to the server. It displays a file name entry
box, a file selection button, and an upload submit button. The user can either write the filename
in the text area or click the Browse button to select a file. After the file is selected, the user
sends the file by pressing the upload submit button.

// Create the Upload component.
Upload upload = new Upload(*"Upload the file here', this);

Figure 5.45. Upload Component

I Browse. .. I Upload I

You can set the text of the upload button with setButtonCaption(), asin the example above,
but it is difficult to change the look of the Browse button. This is a security feature of web
browsers. The language of the Browse button is determined by the browser, so if you wish to
have the language of the Upload component consistent, you will have to use the same language
in your application.

upload.setButtonCaption(*"Upload Now'™);

The uploaded files are typically stored as files in a file system, in a database, or as temporary
objects in memory. The upload component writes the received data to an java.io.OutputStream
so you have plenty of freedom in how you can process the upload content.

To use the Upload component, you need to define a class that implements the Upload.Receiver
interface. The receiveUpload() method is called when the user clicks the submit button. The
method must return an OutputStream. To do this, it typically creates a File or a memory buffer
where the stream is written. The method gets the file name and MIME type of the file, as reported
by the browser.

When an upload is finished, successfully or unsuccessfully, the Upload component will emit
the Upload.FinishedEvent event. To receive it, you need to implement the Upload.Finished-
Listener interface, and register the listening object in the Upload component. The event object

Browser Frames 121

User Interface Components

will also include the file name, MIME type, and length of the file. Notice that the more specific
Upload.FailedEvent and Upload.SucceededEvent events will be called in the cases where
the upload failed or succeeded, respectively.

The following example allows uploading images to /tmp/uploads directory in (UNIX) filesystem
(the directory must exist or the upload fails). The component displays the last uploaded image
in an Embedded component.

import java.io.File;

import java.io.FileOutputStream;

import java.io.OutputStream;

import com.vaadin.terminal .FileResource;
import com.vaadin.ui.*;

public class MyUploader extends CustomComponent
implements Upload.SucceededListener,
Upload.FailedListener,
Upload.Receiver {

Panel root; // Root element for contained components.
Panel imagePanel; // Panel that contains the uploaded image.
File fTile; // File to write to.

MyUploader() {
root = new Panel(*'"My Upload Component');
setCompositionRoot(root);

// Create the Upload component.
final Upload upload =
new Upload(*'Upload the file here', this);

// Use a custom button caption instead of plain "Upload".
upload.setButtonCaption(*"'Upload Now™);

// Listen for events regarding the success of upload.
upload.addListener((Upload.SucceededListener) this);
upload.addListener((Upload.FailedListener) this);

root.addComponent(upload);
root.addComponent(new Label(**Click "Browse® to "+
"select a file and then click “"Upload®."));

// Create a panel for displaying the uploaded image.
imagePanel = new Panel(*'Uploaded image');
imagePanel .addComponent(

new Label ("'No image uploaded yet'));
root.addComponent(imagePanel);

}

// Callback method to begin receiving the upload.
public OutputStream receiveUpload(String filename,
String MIMEType) {
FileOutputStream fos = null; // Output stream to write to
file = new File("'/tmp/uploads/" + filename);
try {
// Open the file for writing.
fos = new FileOutputStream(file);
} catch (final java.io.FileNotFoundException e) {
// Error while opening the file. Not reported here.
e.printStackTrace();
return null;

}

return fos; // Return the output stream to write to

122

Upload

User Interface Components

// This is called if the upload is finished.
public void uploadSucceeded(Upload.SucceededEvent event) {
// Log the upload on screen.
root.addComponent(new Label('File "™ + event.getFilename()
+ " of type "" + event.getMIMEType()
+ """ uploaded."));

// Display the uploaded file in the image panel.
final FileResource imageResource =
new FileResource(file, getApplication());
imagePanel . removeAl 1Components();
imagePanel .addComponent(new Embedded(**'', imageResource));

}

// This is called if the upload fails.
public void uploadFailed(Upload.FailedEvent event) {
// Log the failure on screen.
root.addComponent(new Label(*'Uploading "
+ event.getFilename() + " of type *"
+ event.getMIMEType() + """ failed.™));

}

The example does not check the type of the uploaded files in any way, which will cause an error
if the content is anything else but an image. The program also assumes that the MIME type of
the file is resolved correctly based on the file name extension. After uploading an image, the
component will look as show in Figure 5.46, “Image Upload Example” below. The browser shows
the Browse button localized.

Figure 5.46. Image Upload Example
My Upload Component

Upload the file here
-stylefimg/itmill-logo-small.gif| Selaa... Upload Mow
Click Browse' to select a file and then click ‘Upload’.

Uploaded image

AIT MILL

File itmill-logo-small. gif of type image/ gif uploaded.

5.17. Form

Most web applications need forms. The Form component in Vaadin offers an easy way to create
forms where the fields can be automatically generated from a data source that is bound to the
form. The Beanltem adapter allows the data sources to be just JavaBeans or Plain Old Java
Objects (POJOs) with just the setter and getter methods. Form manages buffering so that the
form contents can be committed to the data source only when filling the form is complete, and
before that, the user can discard any changes.

Form 123

User Interface Components

The Form component is also a layout, with a bounding box, a caption, a description field, and
a special error indicator. As such, it can also be used within logical forms to group input fields.

5.17.1. Form as a User Interface Component

To begin with the Form, it is a Ul component with a layout suitable for its purpose. A Form has
a caption, a description, a layout that contains the fields, an error indicator, and a footer, as il-
lustrated in Figure 5.47, “Layout of the Form Component” below. Unlike with other components,
the caption is shown within the border. (See the details below on how to enable the border with
CSS, as it may not be enabled in the default style.)

Figure 5.47. Layout of the Form Component

—Form Caption

This is a description of the Form that is displayed in the
upper part of the form. You normally enter some
descriptive text about the form and its use here.

A Field

Another Field

!' This is the error indicator of the Form.

This is the footer area of the Form. You can use amy
layout here, This is nice for buttons.
oK | Reset | Cancel'

Unlike most components, Form does not accept the caption in the constructor, as forms are
often captionless, but you can give the caption with the setCaption(). While the description
text, which you can set with setDescription(), is shown as a tooltip in most other components,
a Form displays it in top of the form box as shown in the figure above.

Form form = new Form(Q);

form.setCaption(*'Form Caption');

form.setDescription(""'This is a description of the Form that is " +
"displayed in the upper part of the form. You normally * +
"enter some descriptive text about the form and its " +
"'use here.");

Form has FormLayout as its default layout, but you can set any other layout with
setContent(). See Section 6.5, “FormLayout” for more information. Note that the Form itself
handles layout for the description, the footer and other common elements of the form. The user-
set layout only manages the contained fields and their captions.

The Form is most of all a container for fields so it offers many kinds of automation for creating
and managing fields. You can, of course, create fields directly in the layout, but it is usually more
desirable to bind the fields to the connected data source.

/1 Add a field directly to the layout. This field will
/1 not be bound to the data source Itemof the form
form.getLayout() .addComponent(new TextField("A Field™));

/1 Add a field and bind it to an naned item property
form.addField("'another', new TextField(''Another Field"));

Binding forms and their fields to data objects is described further in Section 5.17.2, “Binding
Form to Data” below.

124

Form as a User Interface Component

User Interface Components

The Form has a special error indicator inside the form. The indicator can show the following
types of error messages:

® Errors set with the setComponentError () method of the form. For example:

form._setComponentError(new UserError(*'This is the error indicator of the Form.'™));

* Errors caused by a validator attached to the Form with addVal idator ().

e Errors caused by validators attached to the fields inside forms, if
setValidationVisible(true) is set for the form. This type of validation is explained
futher in Section 5.17.3, “Validating Form Input” below.

¢ Frrors from automatic validation of fields set as required with setRequired(true) if
an error message has also been set with setRequiredError().

Only a single error is displayed in the error indicator at a time.

Finally, Form has a footer area. The footer is a HorizontalLayout by default, but you can change
it with setFooter().

/1 Set the footer |ayout.
form.setFooter(new Verti cal Layout ());

form.getFooter() .addComponent(
new Label (""This is the footer area of the Form. "+
"You can use any layout here. "+
"This is nice for buttons."));

// Have a button bar in the footer.

Hori zont al Layout okbar = new Hori zont al Layout () ;
okbar.setHeight(*'25px");

form.getFooter() .addComponent(okbar);

/1 Add an Ok (commit), Reset (discard), and Cancel buttons
/1 for the form

But t on okbutton = new Button("OK", form, "commit™);

okbar .addComponent(okbutton);

okbar .setComponentAlignment(okbutton, Alignment.TOP_RIGHT);
okbar.addComponent(new Button(‘''Reset', form, '"discard));
okbar .addComponent(new Button(‘''Cancel'));

CSS Style Rules

.v-form {}

-.v-form legend

.v-form fieldset {}
.v-form-error {}
.v-form-errormessage {}
.v-form-description {}

The top-level style name of a Form component is v-Fform. It is important to notice that the form
is implemented as a HTML <fieldset>, which allows placing the caption (or "legend") inside
the border. It would not be so meaningful to set a border for the top-level form element. The
following example sets a border around the form, as is done in Figure 5.47, “Layout of the Form
Component” above.

-v-form fieldset {
border: thin solid;

}

Form as a User Interface Component 125

User Interface Components

5.17.2.

The top-level element of the form has the style name v-form-error if a component error has
been set for the form.

Binding Form to Data

The main purpose of the Form component is that you can bind it to a data source and let the
Form generate and manage fields automatically. The data source can be any class that imple-
ments the Iltem interface, which is part of the Vaadin Data Model, as described in Chapter 9,
Binding Components to Data. You can either implement the ltem interface yourself, which can
be overly complicated, or use the ready Beanltem adapter to bind the form to any JavaBean
object. You can also use Propertysetltem to bind the form to an ad hoc set of Property objects,
resembling a Map.

Let us consider the following simple JavaBean with proper setter and getter methods for the
member variables.

/** A simple JavaBean. */
public class PersonBean {
String name;
String city;

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;
¥

public void setCity(String city) {
this.city = city;
¥

public String getCity({
return city;
s

}

We can now bind this bean to a Form using the Beanltem adapter as follows.

/]l Create a formand use FormLayout as its |ayout.
final Form form = new Form();

/1l Set formcaption and description texts

form.setCaption(*'Contact Information™);

form.setDescription("'Please specify name of the person and the city where the person
lives in.");

/'l Create the custom bean
Per sonBean bean = new PersonBean();

/Il Create a bean itemthat is bound to the bean
Beanl tem item = new Beanlt em(bean);

/1 Bind the bean itemas the data source for the form
form.setltemDataSource(item);

The Form uses FormLayout layout by default and automatically generates the fields for each
of the bean properties, as shown in Figure 5.48, “Form Automatically Generated from a Bean”
below.

126

Binding Form to Data

User Interface Components

Figure 5.48. Form Automatically Generated from a Bean

— Contact Information

Please specify name of the person and the city
where the person lives in.

name

city

The automatically determined order of the fields can be undesirable. To set the order properly,
you can use the setVisibleltemProperties() method of the Form, which takes an ordered
collection as its parameter. Fields that are not listed in the collection are not included in the form.

/1 Set the order of the itens in the form
Vector order = new Vector();
order.add(*'city'™);

order.add(*'name™);
form.setVisibleltemProperties(order);

The form uses the property identifiers as the captions of the fields by default. If you want to have
more proper captions for the fields, which is often the case, you need to use a FieldFactory to
create the fields, as is shown in the section below.

Generating Proper Fields with a FormFieldFactory

The form generates the fields automatically using very coarse logic. A String, int, or double
will result in a TextField alike, regardless of the meaning of the field. You might want to have a
city name to be input with a combo box, for example. You can create such custom fields by
implementing the createField() method in the FormFieldFactory interface.

The default implementation, DefaultFieldFactory is shared with the Table component: it also
implements the TableFieldFactory interface. This allows the DefaultFieldFactory to create
the fields for both purposes with the same logic. It is usually simplest to just extend the default
implementation instead of implementing the interfaces from scratch. You should consult the
source code of DefaultFieldFactory to see how it works; you may want to reimplement
createFieldByPropertyType(), which actually creates the fields by type, instead of the
createField().

Below is an example of implementing the FormFieldFactory interface for a specific form, using
the names of the fields of the form to create the editable field components.

class MyFieldFactory implements FormFieldFactory {
public Field createField(ltem item, Object propertyld,
Component uiContext) {

// ldentify the fields by their Property ID.

String pid = (String) propertyld;

if (pid.equals('name™)) {
return new TextField(*'Name'™);

} else if (pid.equals('city™)) {
Select select = new Select("'City");
select.addltem('Berlin');
select.addltem("'Helsinki');
select.addltem(*'London™);
select.addltem("New York');
select.addltem(""Turku'™);
select.setNewltemsAllowed(true);
return select;

Binding Form to Data 127

User Interface Components

return null; // Invalid field (property) name.
3
You set a Form to use a custom field factory with setFieldFactory():

form.setFieldFactory(new MyFieldFactory());

The earlier example will now look as shown in Figure 5.49, “Form Fields Generated with a
FormFieldFactory”.

Figure 5.49. Form Fields Generated with a FormFieldFactory

Contact Information

Please specify name of the person and the city
where the person lives in.

Narme
City
Berlin
Helsinki
Loanden
Mew York
Turku

1-5/8

5.17.3. Validating Form Input

Validation of the form input is one of the most important tasks in handling forms. The fields in
Vaadin can be bound to validators. The validation provides feedback about bad input and the
forms can also manage validation results and accept the input only if all validations are success-
ful. Fields can also be set as required, which is a special built-in validator. The validators work
on the server-side.

Using Validators in Forms

Validators check the validity of input and, if the input is invalid, can provide an error message
through an exception. Validators are classes that implement the Validator interface. The interface
has two methods that you must implement: isValid() that returns the success or failure as a
truth value, and val idate(), which reports a failure with an exception. The exception can be
associated with an error message describing the details of the error.

Simple validators that only need to produce a single error message in case the validation fails
can inherit from AbstractValidator or AbstractStringValidator. The Vaadin also provides a
number of standard validators, including IntegerValidator and DoubleValidator for validating
numerical input, StringLengthValidator, EmailValidator and the more general RegexpValid-
ator for checking that a string matches a Java regular expression:

// Postal code that must be 5 digits (10000-99999).
TextField field = new TextField(''Postal Code™);
field.setColumns(5);

128

Validating Form Input

User Interface Components

// Create the validator

Validator postalCodeValidator = new RegexpValidator(
"[1-9][0-9]1{4}", "Postal code must be a number 10000-99999.'");

field.addValidator(postalCodeValidator);

If you are using a custom FieldFactory to generate the fields, you may want to set the validators
for fields there. It is useful to have the form in immediate mode:

// Set the form to act immediately on user input. This is

// necessary for the validation of the fields to occur immediately
// when the input focus changes and not just on commit.
form.setlmmediate(true);

Validation is done always when you call the commit() method of the Form.

// The Commit button calls form.commit().
Button commit = new Button(“'Commit", form, "commit');

If any of the validators in the form fail, the commit will fail and a validation exception message
is displayed in the error indicator of the form. If the commit is successful, the input data is written
to the data source. Notice that commit() also implicitly sets setVal idationVisible(true)
(if setvalidationVisibleOnCommit() istrue, as is the default). This makes the error in-
dicators visible even if they were previously not visible.

Figure 5.50. Form Validation in Action

Name* | Buffy
Street Address™ |somestreet 10 A
Postal Code !1234
City | Luxemburg

!' Postal code must be a number 10000-99999.

Il!ﬂﬂﬂﬂl' Discard

For cases in which more complex error handling is required, the validator can also implement
the Validator interface directly:

// Create the validator
Validator postalCodeValidator = new Validator() {

// The isValid() method returns simply a boolean value, so
// it can not return an error message.
public boolean isValid(Object value) {
ifT (value == null || !(value instanceof String)) {
return false;
}

return ((String) value).matches("'[1-9]1[0-91{4}');
}

// Upon failure, the validate() method throws an exception
// with an error message.
public void validate(Object value)

throws InvalidvValueException {

it (lisvalid(value)) {
it (value = null &&
value.toString().-startsWith('0")) {
throw new InvalidValueException(
"Postal code must not start with a zero.");

} else {

throw new InvalidValueException(

Validating Form Input 129

User Interface Components

"Postal code must be a number 10000-99999.'");

¥

Required Fields in Forms

Setting a field as r equi r ed outside a form is usually just a visual clue to the user. Leaving a
required field empty does not display any error indicator in the empty field as a failed validation
does. However, if you set a form field as required with setRequi red(true) and give an error
message with setRequiredError() and the user leaves the required field empty, the form
will display the error message in its error indicator.

form.getField(*'name') .setRequired(true);
form.getField(*'name’) .setRequiredError(**Name is missing');
form.getField(*'address'™) .setRequired(true); // No error message

To have the validation done immediately when the fields lose focus, you should set the form as
immediate, as was done in the section above.

Figure 5.51. Empty Required Field After Clicking Commit

Name* |
Street Address™
Postal Code | 20000
City

!' Name is missing

IIIIHHHII Discard

Note

It is important that you provide the user with feedback from failed validation of re-
quired fields either by setting an error message or by providing the feedback by
other means.

Otherwise, when a user clicks the Ok button (commits the form), the button does
not appear to work and the form does not indicate any reason. As an alternative to
setting the error message, you can handle the validation error and provide the
feedback about the problem with a different mechanism.

5.17.4. Buffering Form Data

Buffering means keeping the edited data in a buffer and writing it to the data source only when
the commit() method is called for the component. If the user has made changes to a buffer,
calling discard() restores the buffer from the data source. Buffering is actually a feature of
all Field components and Form is a Field. Form manages the buffering of its contained fields
so that if commit() or discard() is called for the Form, it calls the respective method for all
of its managed fields.

final Form form = new Form(Q);
...add components. ..

// Enable buffering.
form.setWriteThrough(false);

130

Buffering Form Data

User Interface Components

// The Ok button calls form.commit().
Button commit = new Button(*'Ok'™, form, *"‘commit');

// The Restore button calls form.discard().
Button restore = new Button(‘'‘Restore™, form, "discard);

The Form example in the Feature Browser of Vaadin demonstrates buffering in forms. The Widget
caching demo in Additional demos demonstrates buffering in other Field components, its source
code is available in BufferedComponents. java.

5.18. Progressindicator

The Progressindicator component allows displaying the progress of a task graphically. The
progress is given as a floating-point value between 0.0 and 1.0.

Figure 5.52. The Progress Indicator Component

The progress indicator polls the server for updates for its value. If the value has changed, the
progress is updated. Notice that the user application does not have to handle any polling event,
but updating the component is done automatically.

Creating a progress indicator is just like with any other component. You can give the initial pro-
gress value as a parameter for the constructor. The default polling frequency is 1000 milliseconds
(one second), but you can set some other interval with the setPollingInterval () method.

// Create the indicator
final Progressindicator indicator =

new Progressindicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval (500);

CSS Style Rules

/* Base element. */
-v-progressindicator {}

/* Progress indication element on top of the base. */
.v-progressindicator div {}

The default style for the progress indicator uses an animated GIF image (img/base.gif) as
the base background for the component. The progress is a <div> element inside the base.
When the progress element grows, it covers more and more of the base background. By default,
the graphic of the progress element is defined in img/progress.png under the default style
d i r e C t o} r y . S e e
com.vaadin.terminal .gwt/public/default/progressindicator/progressindicator.css.

5.18.1. Doing Heavy Computation

The progress indicator is often used to display the progress of a heavy server-side computation
task. In the following example, we create a thread in the server to do some "heavy work". All the
thread needs to do is to set the value of the progress indicator with setValue () and the current
progress is displayed automatically when the browser polls the server.

Progressindicator 131

User Interface Components

// Create an indicator that makes you look busy
final Progressindicator indicator =

new Progressindicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval (500);

// Add a button to start working
final Button button = new Button(''Click to start™);
main.addComponent(button);

// Another thread to do some work
class WorkThread extends Thread {
public void run Q) {
double current = 0.0;
while (true) {
// Do some "‘heavy work"
try {
sleep(50); // Sleep for 50 milliseconds
} catch (InterruptedException) {}

// Show that you have made some progress:
// grow the progress value until it reaches 1.0.
current += 0.01;
if (current>1.0)
indicator.setValue(new Float(1.0));
else
indicator.setValue(new Float(current));

// After all the "work™ has been done for a while,
// take a break.
if (current > 1.2) {
// Restore the state to initial.
indicator.setValue(new Float(0.0));
button.setVisible(true);
break;

}

// Clicking the button creates and runs a work thread
button.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
final WorkThread thread = new WorkThread();
thread.start();

// The button hides until the work is done.
button.setVisible(false);
3
D:

Figure 5.53. Starting Heavy Work

ECI k to star

5.19. Slider

The Slider is a vertical or horizontal bar that allows setting a numeric value within a defined
range by dragging a bar handle with the mouse. The value is shown when dragging the handle.

132 Slider

User Interface Components

Slider has a number of different constructors that take a combination of the caption, minimum
and maximum value, resolution, and the orientation of the slider.

// Create a vertical slider

final Slider vertslider = new Slider(1, 100);
vertslider.setOrientation(Slider . ORIENTATION_VERTICAL);

Slider Properties

min Minimum value of the slider range. The default is 0.0.

max Maximum value of the slider range. The default is 100.0.

resolution The number of digits after the decimal point. The default is O.

orientation The orientation can be either horizontal
(SI'i der. ORI ENTATI ON_HORI ZONTAL) or vertical

(Sl'i der. ORI ENTATI ON_VERTI CAL). The default is horizontal.

As the Slider is a field component, you can handle value changes with a ValueChangeListener.
The value of the Slider field is a Double object.

// Shows the value of the vertical slider
final Label vertvalue = new Label();
vertvalue.setSizeUndefined();

// Handle changes in slider value.
vertslider.addListener(new Property.ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
double value = (Double) vertslider.getvValue();

// Use the value
box.setHeight((float) value, Sizeable_ UNITS_PERCENTAGE);
vertvalue.setValue(String.valueOf(value));
3
»:

// The slider has to be immediate to send the changes
// immediately after the user drags the handle.
vertslider.setlmmediate(true);

You can set the value with the setValue () method defined in Slider that takes the value as
a native double value. The setter can throw a ValueOutOfBoundsException, which you must
handle.

// Set the initial value. This has to be set after the
// listener is added if we want the listener to handle
// also this value change.

try {
vertslider.setValue(50.0);

} catch (ValueOutOfBoundsException e) {
}

Alternatively, you can use the regular setValue(Object), which does not do bounds checking.

Figure 5.54, “The Slider Component” shows both vertical (from the code examples) and hori-
zontal sliders that control the size of a box. The slider values are displayed also in separate labels.

Slider 133

User Interface Components

Figure 5.54. The Slider Component

72.0

A

50.0

CSS Style Rules

.v-slider {}
.v-slider-base {}
.v-slider-handle {}

The enclosing style for the Slider is v—slider. The slider bar has style v-slider-base. Even
though the handle is higher (for horizontal slider) or wider (for vertical slider) than the bar, the
handle element is nevertheless contained within the slider bar element. The appearance of the
handle comes from a background image defined in the background CSS property.

5.20. LoginForm

The LoginForm component is a login form that allows a password manager in the web browser
to remember and later automatically fill in the username and password. This commonly used
functionality does not work with regular Vaadin components and is a common problem with Ajax
applications.

// A wrapper with a caption for the login form

Panel loginPanel = new Panel(*'Login™);

loginPanel .setWidth(*'250px™);

LoginForm login = new LoginForm();
loginPanel .addComponent(login);

The resulting form is shown in Figure 5.55, “The LoginForm Component”.

134

CSS Style Rules

User Interface Components

Figure 5.55. The LoginForm Component

Login

sername

Password

Login

The LoginForm uses static HTML inside an 1 frame element to enable the functionality. The
component provides a default implementation of the static HTML; if you want to change the
layout, you need to reimplement the getLoginHtml () method.

The login form expands to fill the containing layout as with setSizeFul 1(); the containing
layout must not have an undefined size in either dimension. How the actual form uses this space
depends on the static HTML; the 1 Frame element in which the form is contained has fixed size.

5.20.1. Customizing LoginForm

Customization of the login form is necessary, for example, if you need to change the layout or
internationalize the form. Customization is done by overriding the getLoginHtml () method,
which returns the static HTML of the form. The customization layer is very "unvaadin'-like, and
at best hack-ish, but dictated by the form management in browsers.

Let us look at a custom login form that lets the user of the form to give the field captions:

class MyLoginForm extends LoginForm {
String usernameCaption;
String passwordCaption;
String submitCaption;

public MyLoginForm(String usernameCaption,

String passwordCaption, String submitCaption) {
this.usernameCaption = usernameCaption;
this.passwordCaption = passwordCaption;
this.submitCaption = submitCaption;

}
Then we override the method that generates the static HTML for the form:

@0verride
protected byte[] getLoginHTMLQ {
// Application URI needed for submitting form
String appUri = getApplication().getURL().toString()
+ getWindow() .getName() + "/";

String x, h, b; // XML header, HTML head and body

The XML header is needed for the validity of the XHTML page:

"'<IDOCTYPE html PUBLIC \'"-//W3C//DTD *

X =
+ "XHTML 1.0 Transitional//EN\" "

Customizing LoginForm 135

User Interface Components

+
+

"\"http://www._.w3.0rg/TR/xhtml1/"
"DTD/xhtmll-transitional .dtd\'"'>\n";

Notice that it is important to have a newline (\n) at the end of the XML header line.

The HTML header part contains JavaScript definitions that handle submitting the form data. It
also copies the style sheet references from the parent window.

h

T T T T i T T S S S S e A S S A T i S i e e [

""<head><script type="text/javascript™>"

"var setTarget = function() {"

" var uri = """ + appUri + "loginHandler*®;"

" var f = document.getElementByld("loginf®);"
" document.forms[0].action = uri;"

" document.forms[0].username.focus(Q);"

oy

"var styles = window.parent.document.styleSheets;"
“for(var j = 0; j < styles._length; j++) {\n"

" if(styles[j]-href) {"

" var stylesheet = document.createElement("link");\n"
" stylesheet._setAttribute("rel”, "stylesheet”);\n"

" stylesheet._setAttribute("type”, "text/css");\n"

" stylesheet.setAttribute("href®, styles[j]-href);\n"
" document.getElementsByTagName("head®) [0]"

" -appendChild(stylesheet);\n"

"An"

"function submitOnEnter(e) {"

" var keycode = e.keyCode || e.which;"

" if (keycode == 13) {document.forms[0].submit();}"
"An"

"</script>"

"'</head>";

The HTML body element contains the actual form. Notice that it is contained within an
iframe. The form and the button must have JavaScript calls to submit the form content.

b

I I I T T T T T T T T T S A S S S S A A A I L

""<body onload="setTarget();""

style="margin:0;padding:0; background:transparent;""

class=""

ApplicationConnection.GENERATED_BODY_CLASSNAME + '">"

"<div class="v-app v-app-loginpage""

style="background:transparent; " >"

"<iframe name="logintarget” style="width:0;height:0;"

"border:0;margin:0;padding:0; "></iframe>"

"<form id="loginf" target="logintarget™"

onkeypress="submitOnEnter(event) """

method="post">"

“'<table>"

"<tr><td>" + usernameCaption + "'</td>"

"<td><input class="v-textfield" style="display:block;""

' type="text" name="username"></td></tr>"

"<tr><td>" + passwordCaption + "'</td>"

<td><input class="v-textfield™"
style="display:block;" type="password""
name="password"></td></tr>"

"'</table>"

t<div>"

"<div onclick="document.forms[0].submit();""

tabindex="0" class="v-button® role="button®">"

""'"

""'"

submitCaption + "'"

"'</div></div></form></div></body>";

Then combine and return the page as a byte array.

inner

Customizing LoginForm

User Interface Components

return (X + "<html>" + h + b + "</html>") _getBytes();
}

We can use the custom login form as follows:

MyLoginForm loginForm = new MyLoginForm(**‘Name of the User",
"A passing word"™, 'Login Me Now');

The customized LoginForm is shown in Figure 5.56, “Customizing the LoginForm”.
Figure 5.56. Customizing the LoginForm

Mame ofthe User
Apassing word

Login Me How

Styling with CSS

.v-customcomponent {}
.v-customcomponent .v-embedded {}
-v-app-loginpage {}
.v-app-loginpage .v-textfield {}
.v-app-loginpage .v-button {}

The LoginForm component is a purely server-side component that extends CustomComponent
and therefore has a v-customcomponent base style. If you wish to do any styling for the
component, you should give it a custom style name to distinguish it from the regular Custom-
Component.

The component contains an i frame in an element with v-embedded style. The other styles are
defined in the static HTML code returned by the getLoginHTML() method. The default imple-
mentation reuses the styles of the TextField and Button components for the input fields and
the button, that is, v-textfield and v-button. The root element has the same v-app style
as a regular Vaadin application would have, and an additional v-app-loginpage style.

+ "<div class="v-app v-app-loginpage*
style=\""background:transparent;\'>"

+ "<input class="v-textfield" ...

+ "<div><input class="v-textfield" ...

<div ... class="v-button® role="button">

5.21. Component Composition with CustomComponent

The ease of making new user interface components is one of the core features of Vaadin. Typ-
ically, you simply combine existing built-in components to produce composite components. In
many applications, such composite components make up the majority of the user interface.

To create a composite component, you need to inherit the CustomComponent and call the
setCompositionRoot() in the constructor to set the composition root component. The root
component is typically a layout component that contains multiple components.

For example:

Styling with CSS 137

User Interface Components

class MyComposite extends CustomComponent {
public MyComposite(String message) {
// A layout structure used for composition
Panel panel = new Panel('My Custom Component');
panel _.setContent(new VerticallLayout());

// Compose from multiple components
Label label = new Label(message);
label .setSizeUndefined(); // Shrink
panel _.addComponent(label);

panel _.addComponent(new Button('Ok'));

// Set the size as undefined at all levels
panel .getContent().setSizeUndefined();
panel _.setSizeUndefined();
setSizeUndefined();

// The composition root MUST be set
setCompositionRoot(panel);

}

Take note of the sizing when trying to make a customcomponent that shrinks to fit the contained
components. You have to set the size as undefined at all levels; the sizing of the composite
component and the composition root are separate.

You can use the component as follows:
MyComposite mycomposite = new MyComposite(*'Hello™);

The rendered component is shown in Figure 5.57, “A Custom Composite Component”.

Figure 5.57. A Custom Composite Component

My Custom Component
Hello
Ok

You can also inherit any other components, such as layouts, to attain similar composition. Even
further, you can create entirely new low-level components, by integrating custom Google Web
Toolkit components or by extending the client-side functionality of built-in components. Devel-
opment of custom GWT components is covered in Chapter 10, Developing Custorn Components.

138

Component Composition with CustomComponent

Chapter 6

Managing Layout

B.1. OVEIVIEW .o 140
6.2. Window and Panel Root Layoutcoooooiiiiiiii e 142
6.3. VerticalLayout and HorizontalLayout ... 142
6.4. GridLayout ... 146
B.5. FormbLayout ..., 150
B.6. PAN@l ... 151
B.7. SplitPanel ... 153
6.8. TabSheet ... 155
B.9. ACCOFAION ...t 158
6.10. AbsolutelLayoutccci 159
B.11. CsSLayout ... 162
6.12. Layout FOrmattingoooiiiiiiii e 164
6.13. CUSTOM LayOULS ...ooiiiiiiiiiee i 170

Ever since the ancient xeroxians invented graphical user interfaces, programmers have wanted
to make GUI programming ever easier for themselves. Solutions started simple. When GUIs
appeared on PC desktops, practically all screens were of the VGA type and fixed into 640x480
size. Mac or X Window System on UNIX were not much different. Everyone was so happy with
such awesome graphics resolutions that they never thought that an application would have to
work on a radically different screen size. At worst, screens could only grow, they thought, giving
more space for more windows. In the 80s, the idea of having a computer screen in your pocket
was simply not realistic. Hence, the GUI APIs allowed placing Ul components using screen
coordinates. Visual Basic and some other systems provided an easy way for the designer to
drag and drop components on a fixed-sized window. One would have thought that at least
translators would have complained about the awkwardness of such a solution, but apparently
they were not, as non-engineers, heard or at least cared about. At best, engineers could throw

Book of Vaadin 139

Managing Layout

at them a resource editor that would allow them to resize the Ul components by hand. Such was
the spirit back then.

After the web was born, layout design was doomed to change for ever. At first, layout didn't
matter much, as everyone was happy with plain headings, paragraphs, and a few hyperlinks
here and there. Designers of HTML wanted the pages to run on any screen size. The screen
size was actually not pixels but rows and columns of characters, as the baby web was really
just hypertext, not graphics. That was soon to be changed. The first GUI-based browser, NCSA
Mosaic, launched a revolution that culminated in Netscape Navigator. Suddenly, people who
had previously been doing advertisement brochures started writing HTML. This meant that layout
design had to be easy not just for programmers, but also allow the graphics designer to do his
or her job without having to know a thing about programming. The W3C committee designing
web standards came up with the CSS (Cascading Style Sheet) specification, which allowed
trivial separation of appearance from content. Later versions of HTML followed, XHTML appeared,
as did countless other standards.

Page description and markup languages are a wonderful solution for static presentations, such
as books and most web pages. Real applications, however, need to have more control. They
need to be able to change the state of user interface components and even their layout on the
run. This creates a need to separate the presentation from content on exactly the right level.

Thanks to the attack of graphics designers, desktop applications were, when it comes to appear-
ance, far behind web design. Sun Microsystems had come in 1995 with a new programming
language, Java, for writing cross-platform desktop applications. Java's original graphical user
interface toolkit, AWT (Abstract Windowing Toolkit), was designed to work on multiple operating
systems as well as embedded in web browsers. One of the special aspects of AWT was the
layout manager, which allowed user interface components to be flexible, growing and shrinking
as needed. This made it possible for the user to resize the windows of an application flexibly
and also served the needs of localization, as text strings were not limited to some fixed size in
pixels. It became even possible to resize the pixel size of fonts, and the rest of the layout adapted
to the new size.

Layout management of Vaadin is a direct successor of the web-based concept for separation
of content and appearance and of the Java AWT solution for binding the layout and user interface
components into objects in programs. Vaadin layout components allow you to position your Ul
components on the screen in a hierarchical fashion, much like in conventional Java Ul toolkits
such as AWT, Swing, or SWT. In addition, you can approach the layout from the direction of the
web with the CustomLayout component, which you can use to write your layout as a template
in XHTML that provides locations of any contained components.

The moral of the story is that, because Vaadin is intended for web applications, appearance is
of high importance. The solutions have to be the best of both worlds and satisfy artists of both
kind: code and graphics. On the API side, the layout is controlled by Ul components, particularly
the layout components. On the visual side, it is controlled by themes. Themes can contain any
HTML, CSS, and JavaScript that you or your web artists create to make people feel good about
your software.

6.1. Overview

The user interface components in Vaadin can roughly be divided in two groups: components
that the user can interact with and layout components for placing the other components to
specific places in the user interface. The layout components are identical in their purpose to
layout managers in regular desktop frameworks for Java and you can use plain Java to accom-
plish sophisticated component layouting.

140

Overview

Managing Layout

You start by creating a root layout for the main window, unless you use the default, and then
add the other layout components hierarchically, and finally the interaction components as the
leaves of the component tree.

// Create the main window.
Window main = new Window('My Application™);
setMainWindow(main);

// Set the root layout (VerticallLayout is actually the default).
VerticallLayout root = new VerticallLayout();
main.setContent(root);

// Add the topmost component.
root.addComponent(new Label(*'The Ultimate Cat Finder'™));

// Add a horizontal layout for the bottom part.
HorizontallLayout bottom = new HorizontallLayout();
root.addComponent(bottom);

bottom.addComponent(new Tree(*'Major Planets and Their Moons™));
bottom.addComponent(new Panel());

You will usually need to tune the layout components a bit by setting sizes, expansion ratios,
alignments, spacings, and so on. The general settings are described in Section 6.12, “Layout
Formatting”, while the layout component specific settings are described in connection with the
component.

Layouts are coupled with themes that specify various layout features, such as backgrounds,
borders, text alignment, and so on. Definition and use of themes is described in Chapter 8,
Themes

You can see the finished version of the above example in Figure 6.1, “Layout Example”.

Figure 6.1. Layout Example

The Ultimate Cat Finder

he Planets and
ajor Moons Details

Mercury

Farth Where is the cat?
The Moon
ware | don't know!
JL||3:;I|T1DS
sSaturn
ranus
MNeptune

The alternative for using layout components is to use the special CustomLayout that allows
using HTML templates. This way, you can let the web page designers take responsibility of
component layouting using their own set of tools. What you lose is the ability to manage the
layout dynamically.

Overview 141

Managing Layout

The Visual Editor

While you can always program the layout by hand, the Vaadin plugin for the Eclipse
IDE includes a visual (WYSIWYG) editor that you can use to create user interfaces
visually. The editor generates the code that creates the user interface and is useful
for rapid application development and prototyping. It is especially helpful when you
are still learning the framework, as the generated code, which is designed to be as
reusable as possible, also works as an example of how you create user interfaces
with Vaadin. You can find more about the editor in Chapter 7, Visual User Interface
Design with Eclipse (experimental).

6.2. Window and Panel Root Layout

The Window and its superclass Panel have a single root layout component. The component
is usually a Layout, but any ComponentContainer is allowed. When you create the components,
they create a default root layout, usually VerticalLayout, but you can change it with the setCon-
tent() method.

Window main = new Window(*My Application™);
setMainWindow(main);

// Set another root layout for the main window.
TabSheet tabsheet = new TabSheet();
main.setContent(tabsheet);

The size of the root layout is the default size of the particular layout component, for example, a
VerticalLayout has 100% width and undefined height by default. In many applications, you
want to use the full area of the browser view. Setting the components contained inside the root
layout to full size is not enough, and would actually lead to an invalid state if the height of the
root layout is undefined.

// This is actually the default.
main.setContent(new VerticallLayout());

// Set the size of the root layout to full width and height.
main.getContent() .setSizeFull();

// Add a title area on top of the screen. This takes just the
// vertical space it needs.
main.addComponent(new Label(*'My Application™));

// Add a menu-view area that takes rest of the vertical space.
HorizontalLayout menuview = new HorizontalLayout();
menuview.setSizeFull();

main.addComponent(menuview);

See Section 6.12.1, “Layout Size” for more information about setting layout sizes.

6.3. VerticalLayout and HorizontalLayout

VerticalLayout and HorizontalLayout components are containers for laying out components
either vertically or horizontally, respectively. Some components, such as Window and Panel,
have a VerticalLayout as the root layout, which you can set with setContent().

Typical use of the layouts goes as follows:

VerticallLayout vertical = new VerticallLayout (;
vertical .addComponent(new TextField(''Name™));
vertical .addComponent(new TextField("'Street address'));

142

Window and Panel Root Layout

Managing Layout

vertical .addComponent(new TextField('Postal code™));
main.addComponent(vertical);

The text fields have a label attached, which will by default be placed above the field. The layout
will look on screen as follows:

MName
Street address

Postal code

Using HorizontalLayout gives the following layout:

MName Street address Postal code

The layouts can have spacing between the horizontal or vertical cells, defined with
setSpacing(), as described in Section 6.12.3, “Layout Cell Spacing”. The contained compon-
ents can be aligned within their cells with setComponentAl ignment(), as described in Sec-
tion 6.12.2, “Layout Cell Alignment”.

You can use setWidth() and setHeight() to specify width and height of a component in
either fixed units or relatively with a percentage.

6.3.1. Sizing Contained Components
The components contained within an ordered layout can be laid out in a number of different

ways depending on how you specify their height or width in the primary direction of the layout
component.

Figure 6.2. Component Widths in HorizontalLayout

Undefined width layout: I Small I Medium-sized I Quite a big component l

Defined width layout: I Small l [Medium-sized l [Quite a big component] |
Expanding component: I Small I Medium-sized I Expanding component]
Uniform expansion ratio: I small I Medium-sized IQuite a big c0|11|30|19|]

Different expansion ratios: I Small I Medium-sized I Quite a big component]

Percentage of cells: I Smal [Medium '5] [Quite a big 50%] |

Figure 6.2, “Component Widths in HorizontalLayout” above gives a summary of the sizing
options for a HorizontalLayout. Let us break the figure down as follows.

If a VerticalLayout has undefined height or HorizontalLayout undefined width, the layout will
shrink to fit the contained components so that there is no extra space between them.

HorizontalLayout fittinglLayout = new HorizontallLayout();
fittingLayout.setWidth(Sizeable.SIZE_UNDEFINED, 0);
fittingLayout.addComponent(new Button(*'Small™));

Sizing Contained Components 143

Managing Layout

fittingLayout.addComponent(new Button(**Medium-sized™));
fittingLayout.addComponent(new Button(*'Quite a big component'™));
parentLayout.addComponent(fittinglLayout);

| Small | Medium-sized Quite a big component |

If such a vertical layout continues below the bottom of a window (a Window object), the window
will pop up a vertical scroll bar on the right side of the window area. This way, you get a "web

page".

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and
there is space left over from the contained components, the extra space is distributed equally
between the component cells. The components are aligned within these cells according to their
alignment setting, top left by default, as in the example below.

fixedLayout.setWidth("'400px™);

| small Medium-sized Quite a big component |

Using percentual sizes for components contained in a layout requires answering the question,
"Percentage of what?" There is no sensible default answer for this question in the current imple-
mentation of the layouts, so in practice, you may not define "100%" size alone.

Often, you want to have one component that takes all the available space left over from other
components. You need to set its size as 100% and set it as expanding with setExpandRatio().
The second parameter for the method is an expansion ratio, which is relevant if there are more
than one expanding component, but its value is irrelevant for a single expanding component.

HorizontallLayout layout = new HorizontallLayout();
layout.setWidth(*'400px™);

// These buttons take the minimum size.
layout.addComponent(new Button(*'Small™));
layout.addComponent(new Button('Medium-sized™));

// This button will expand.
Button expandButton = new Button(“Expanding component');

// Use 100% of the expansion cell"s width.
expandButton.setWidth(*'100%"");

// The component must be added to layout before setting the ratio.
layout.addComponent(expandButton);

// Set the component"s cell to expand.
layout.setExpandRatio(expandButton, 1.0F);

parentLayout.addComponent(layout);

| Small | Medium-sized Expanding component |

Notice that you must call setExpandRatio() after addComponent(), because the layout
can not operate on an component that it doesn't (yet) include.

144 Sizing Contained Components

Managing Layout

A layout that contains components with percentual size must have a defined
A size!
If a layout has undefined size and a contained component has, say, 100% size, the
component would fill the space given by the layout, while the layout would shrink
to fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately. The debug mode allows detecting such invalid
cases; see Section 11.4.1, “Debug Mode”.

If you specify an expand ratio for multiple components, they will all try to use the available space
according to the ratio.

HorizontallLayout layout = new HorizontallLayout();
layout.setWidth(*'400px™);

// Create three equally expanding components.
String[] captions = { "Small", "Medium-sized",
"Quite a big component" };
for (int 1 =1; i <= 3; i++) {
Button button = new Button(captions[i-1]);
button.setWidth(*'100%"");
layout.addComponent(button);

// Have uniform 1:1:1 expand ratio.
layout.setExpandRatio(button, 1.0F);

[Small] Medium-sized] Quite a big -:u:umponel]

As the example used the same ratio for all components, the ones with more content may have
the content cut. Below, we use differing ratios:

// Expand ratios for the components are 1:2:3.
layout._setExpandRatio(button, i * 1.0f);

[Small I Medium-sized I Quite a big component]

If the size of the expanding components is defined as a percentage (typically "100%"), the ratio
is calculated from the overall space available for the relatively sized components. For example,
if you have a 100 pixels wide layout with two cells with 1.0 and 4.0 respective expansion ratios,
and both the components in the layout are set as setWidth(*'100%""), the cells will have re-
spective widths of 20 and 80 pixels, regardless of the minimum size of the components.

However, if the size of the contained components is undefined or fixed, the expansion ratio is
of the excess available space. In this case, itis the excess space that expands, not the compon-
ents.
for (int i = 1; i <= 3; i++) {

// Button with undefined size.

Button button = new Button(captions[i - 1]);

layout4_addComponent(button);

// Expand ratios are 1:2:3.
layout4._setExpandRatio(button, i * 1.0fF);

[small] [Medium-sized l [Quite a big component] |

Sizing Contained Components 145

Managing Layout

It is not meaningful to combine expanding components with percentually defined size and
components with fixed or undefined size. Such combination can lead to a very unexpected size
for the percentually sized components.

A percentual size of a component defines the size of the component within its cell. Usually, you
use "100%", but a smaller percentage or a fixed size (smaller than the cell size) will leave an
empty space in the cell and align the component within the cell according to its alignment setting,
top left by default.

HorizontalLayout layout50 = new HorizontalLayout();
layout50.setWidth(**'400px™);

String[] captionsl = { "Small 50%", "Medium 50%",
"Quite a big 50%" };
for (int i1 = 1; i <= 3; i++) {
Button button = new Button(captionsl[i-1]);
button.setWidth('50%"") ;
layout50.addComponent(button);

// Expand ratios for the components are 1:2:3.
layout50.setExpandRatio(button, i * 1.0fF);

}
parentLayout.addComponent(layout50) ;

Undefined width layout: [small I Medium-sized I Quite a big component]

Defined width layout: [Small] [Medium-sized] [Quite a big component] |
Expanding component: [Small] Medium-sized I Expanding component]
Uniform expansion ratio: [Small] Medium-sized]Quite a big u:u:umponel]

Different expansion ratios: [Small] Medium-sized I Quite a big component]

Undefined size components: [Small] [Medium-sized] [Quite a big component] |

Percentage of cells: [Sma] [Medium 5] [Quite a big 50% |

6.4. GridLayout

GridLayout container lays components out on a grid, defined by the number of columns and
rows. The columns and rows of the grid serve as coordinates that are used for laying out com-
ponents on the grid. Each component can use multiple cells from the grid, defined as an area
(x1,y1,x2,y2), although they typically take up only a single grid cell.

The grid layout maintains a cursor for adding components in left-to-right, top-to-bottom order.
If the cursor goes past the bottom-right corner, it will automatically extend the grid downwards
by adding a new row.

The following example demonstrates the use of GridLayout. The addComponent takes a
component and optional coordinates. The coordinates can be given for a single cell or for an
area in x,y (column,row) order. The coordinate values have a base value of 0. If coordinates are
not given, the cursor will be used.

// Create a 4 by 4 grid layout.
GridLayout grid = new GridLayout(4, 4);
grid.addStyleName(“'example-gridlayout');

// Fill out the first row using the cursor.
grid.addComponent(new Button(*'R/C 1'));
for (int 1 = 0; 1 < 3; i++) {

146 GridLayout

Managing Layout

grid.addComponent(new Button(*'Col " + (grid.getCursorX() + 1))):
}

// Fill out the first column using coordinates.
for (int i = 1; i < 4; i++) {

grid.addComponent(new Button(*'Row " + i), 0, 1);
}

// Add some components of various shapes.

grid.addComponent(new Button(*'3x1 button'), 1, 1, 3, 1);
grid.addComponent(new Label("1x2 cell™), 1, 2, 1, 3);
InlineDateField date = new InlineDateField(""A 2x2 date field");
date.setResolution(DateField .RESOLUTION_DAY);
grid.addComponent(date, 2, 2, 3, 3);

The resulting layout will look as follows. The borders have been made visible to illustrate the
layout cells.

Figure 6.3. The Grid Layout Component

Ric1 || col1 || col2 | Col 3

Row 1 | 3x1 button |

Row 2 | 1x2 cell |& 2x2 date field

Hovember
2007
Sun Mon Tue Wed Thu Fri Sat
1 2 3

RDW%B' 4 5] 7 g 9 10
"o o1z 13 14 15 e 17
1w 1% 20 21 22 23 4

25 26 27 2B 30

A component to be placed on the grid must not overlap with existing components. A conflict
causes throwing a GridLayout.OverlapsException.

6.4.1. Sizing Grid Cells

You can define the size of both a grid layout and its components in either fixed or percentual
units, or leave the size undefined altogether, as described in Section 5.3.9, “Sizing Components”.
Section 6.12.1, “Layout Size” gives an introduction to sizing of layouts.

The size of the GridLayout component is undefined by default, so it will shrink to fit the size of
the components placed inside it. In most cases, especially if you set a defined size for the layout
but do not set the contained components to full size, there will be some unused space. The
position of the non-full components within the grid cells will be determined by their alignment.
See Section 6.12.2, “Layout Cell Alignment” for details on how to align the components inside
the cells.

The components contained within a GridLayout layout can be laid out in a number of different
ways depending on how you specify their height or width. The layout options are similar to Ho-
rizontalLayout and VerticalLayout, as described in Section 6.3, “VerticalLayout and Hori-
zontalLayout”.

Sizing Grid Cells 147

Managing Layout

A layout that contains components with percentual size must have a defined
ff E size!

If a layout has undefined size and a contained component has, say, 100% size, the
component would fill the space given by the layout, while the layout would shrink
to fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately. The debug mode allows detecting such invalid
cases; see Section 11.4.1, “Debug Mode”.

Often, you want to have one or more rows or columns that take all the available space left over
from non-expanding rows or columns. You need to set the rows or columns as expanding with
setRowExpandRatio() and setColumnExpandRatio(). The first parameter for these
methods is the index of the row or column to set as expanding. The second parameter for the
methods is an expansion ratio, which is relevant if there are more than one expanding row or
column, but its value is irrelevant if there is only one. With multiple expanding rows or columns,
the ratio parameter sets the relative portion how much a specific row/column will take in relation
with the other expanding rows/columns.

GridLayout grid = new GridLayout(3,2);

// Layout containing relatively sized components must have
// a defined size, here is fixed size.
grid.setWidth(''600px'");

grid.setHeight(''200px");

// Add some content
String labels [] = {
"Shrinking column
Shrinking row",
"Expanding column (1:)
Shrinking row",
"Expanding column (5:)
Shrinking row",
"Shrinking column
Expanding row",
"Expanding column (1:)
Expanding row",
"Expanding column (5:)
Expanding row"
}:
for (int i=0; i<labels.length; i++) {
Label label = new Label(labels[i], Label .CONTENT_XHTML);
label _setWidth(null); // Set width as undefined
grid.addComponent(label);
}

// Set different expansion ratios for the two columns
grid.setColumnExpandRatio(l, 1);
grid.setColumnExpandRatio(2, 5);

// Set the bottom row to expand
grid.setRowExpandRatio(1l, 1);

// Align and size the labels.
for (int col=0; col<grid.getColumns(); col++) {
for (int row=0; row<grid.getRows(); row++) {
Component c = grid.getComponent(col, row);
grid.setComponentAlignment(c, Alignment.TOP_CENTER);

// Make the labels high to illustrate the empty
// horizontal space.
if (col 1= 0 |] row I= 0)

c.setHeight("'100%");

148 Sizing Grid Cells

Managing Layout

Figure 6.4. Expanding Rows and Columns in GridLayout

Shrinking colurn] Expanding column (1:) Expanding column (5:)
Shrinking row Shrinking row Shrinking row
Shrinking colurn] Expanding column (1:) Expanding column (5:)
Expanding row Expanding row Expanding row

If the size of the contained components is undefined or fixed, the expansion ratio is of the excess
space, as in Figure 6.4, “Expanding Rows and Columns in GridLayout” (excess horizontal
space is shown in white). However, if the size of the all the contained components in the expand-
ing rows or columns is defined as a percentage, the ratio is calculated from the overall space
available for the percentually sized components. For example, if we had a 100 pixels wide grid
layout with two columns with 1.0 and 4.0 respective expansion ratios, and all the components
in the grid were set as setWidth(*'100%'"), the columns would have respective widths of 20
and 80 pixels, regardless of the minimum size of their contained components.

CSS Style Rules

.v-gridlayout {}
.v-gridlayout-margin {}

The v-gridlayout is the root element of the GridLayout component. The v-gridlayout-margin is
a simple element inside it that allows setting a padding between the outer element and the cells.

For styling the individual grid cells, you should style the components inserted in the cells. The
implementation structure of the grid can change, so depending on it, as is done in the example
below, is not generally recommended. Normally, if you want to have, for example, a different
color for a certain cell, just make set the component inside it setSizeFul 1 (), and add a style
name for it. Sometimes you may need to use a layout component between a cell and its actual
component just for styling.

The following example shows how to make the grid borders visible, as in Figure 6.4, “Expanding
Rows and Columns in GridLayout”.

.v-gridlayout-gridexpandratio {
background: blue; /* Creates a "border" around the grid. */
margin: 10px; /* Empty space around the layout. */

}

/* Add padding through which the background color shows. */

-.v-gridlayout-gridexpandratio .v-gridlayout-margin {
padding: 2px;

}

/* Add cell borders and make the cell backgrounds white.
* Warning: This depends heavily on the HTML structure. */
-.v-gridlayout-gridexpandratio > div > div > div {
padding: 2px; /* Layout background will show through. */
background: white; /* The cells will be colored white. */

}

/* Components inside the layout are a safe way to style cells. */

CSS Style Rules 149

Managing Layout

-v-gridlayout-gridexpandratio .v-label {
text-align: left;
background: #ffffcO; /* Pale yellow */

}

You should beware of margin, padding, and border settings in CSS as they can mess up
the layout. The dimensions of layouts are calculated in the Client-Side Engine of Vaadin and
some settings can interfere with these calculations. For more information, on margins and spacing,
see Section 6.12.3, “Layout Cell Spacing” and Section 6.12.4, “Layout Margins”

6.5. FormLayout

FormLayout is the default layout of a Form component. It lays the form fields and their captions
out in two columns, with optional indicators for required fields and errors that can be shown for
each field.

A Form handles additional layout elements itself, including a caption, a form description, a form
error indicator, a footer that is often used for buttons and a border. For more information on
these, see Section 5.17, “Form”.

The field captions can have an icon in addition to the text.

// A FormLayout used outside the context of a Form
FormLayout fl = new FormLayout();

// Make the FormLayout shrink to its contents
fl.setSizeUndefined();

TextField tf = new TextField(™A Field");
Tl .addComponent(tf);

// Mark the first field as required
tf._setRequired(true);
tf.setRequiredError(*'The Field may not be empty.');

TextField tf2 = new TextField('Another Field");
fl.addComponent(tf2);

// Set the second field straing to error state with a message.
tf2.setComponentError(
new UserError("'This is the error indicator of a Field."));

The resulting layout will look as follows. The error message shows in a tooptip when you hover
the mouse pointer over the error indicator.

Figure 6.5. A FormLayout Layout for Forms
A Field™

Another Field |

Thi= iz the error indicator of & Field.

150

FormLayout

Managing Layout

CSS Style Rules

.v-formlayout {}
-.v-formlayout .v-caption {}

/* Columns in a field row. */

-v-formlayout-contentcell {} /* Field content. */
-v-formlayout-captioncell {} /* Field caption. */
.v-formlayout-errorcell {3 /* Field error indicator. */

/* Overall style of field rows. */
.v-formlayout-row {}
-v-formlayout-firstrow {}
-.v-formlayout-lastrow {}

/* Required field indicator. */

.v-formlayout .v-required-field-indicator {}

-v-formlayout-captioncell _.v-caption
-v-required-field-indicator {}

/* Error indicator. */
.v-formlayout-cell .v-errorindicator {}
-v-formlayout-error-indicator .v-errorindicator {}

The top-level element of FormLayout has the v—-formlayout style. The layout is tabular with
three columns: the caption column, the error indicator column, and the field column. These can
be styled with v-formlayout-captioncell, v-formlayout-errorcell, and
v-formlayout-contentcell, respectively. While the error indicator is shown as a dedicated
column, the indicator for required fields is currently shown as a part of the caption column.

For information on setting margins and spacing, see also Section 6.12.3, “Layout Cell Spacing”
and Section 6.12.4, “Layout Margins”.

6.6. Panel

Panel is a simple container with a frame and an optional caption. The content area is bound to
a an inner layout component for laying out the contained components. The default content layout
is a VerticalLayout, but you can change it with the setContent() method to be any class
implementing the ComponentContainer interface.

The caption can have an icon in addition to the text.

// Create a panel with a caption.
final Panel panel = new Panel(“'Contact Information™);
panel _.addStyleName("'panelexample™);

// The width of a Panel is 100% by default, make it
// shrink to fit the contents.
panel _setWidth(Sizeable.S1ZE_UNDEFINED, 0);

// Create a layout inside the panel
final FormLayout form = new FormLayout();

// Have some margin around it.
form.setMargin(true);

// Add some components
form.addComponent(new TextField(''Name'™));
form.addComponent(new TextField("Email™));

// Set the layout as the root layout of the panel
panel _setContent(form);

CSS Style Rules 151

Managing Layout

The resulting layout is shown in Figure 6.6, “A Panel Layout in Runo Theme” with the Runo
theme.

Figure 6.6. A Panel Layout in Runo Theme

Contact Information

MName

Email

See Section 6.2, “Window and Panel Root Layout” for more information about setting the content
layout.

CSS Style Rules

-v-panel {}
-v-panel-caption {}
-v-panel-nocaption {}
-v-panel-content {}
-v-panel-deco {}

The entire panel has v-panel style. A panel consists of three parts: the caption, content, and
bottom decorations (shadow). These can be styled with v—-panel-caption, v-panel-content,
and v-panel-deco, respectively. If the panel has no caption, the caption element will have
the style v—panel-nocaption.

The built-in /ight style has no borders or border decorations for the Panel. You enable it simply
by adding the 1ight style name for the panel, as is done in the example below. You can also
use the PANEL_ LI GHT constant defined in BaseTheme class; it is usable in all subthemes.

// Have a window with a SplitPanel.
final Window window = new Window('Window with a Light Panel™);
window.setWidth(*'400px™);
window.setHeight("'200px™);
final SplitPanel splitter =

new SplitPanel (SplitPanel _.ORIENTATION_HORIZONTAL);
window.setContent(splitter);

// Create a panel with a caption.
final Panel light = new Panel(*'Light Panel');
light.setSizeFull();

// The "light" style is a predefined style without borders
light.addStyleName(Runo.PANEL_LIGHT);

light.addComponent(new Label(*'The light Panel has no borders.™));
light._getLayout() .setMargin(true);

// The Panel will act as a "caption" of the left panel
// in the SplitPanel.

splitter.addComponent(light);
splitter.setSplitPosition(250, Sizeable.UNITS_PIXELS);

main.addWindow(window) ;

Figure 6.7, “A Panel with Light Style” shows the rendered Panel in the Runo theme.

152 CSS Style Rules

Managing Layout

Figure 6.7. A Panel with Light Style

Window with a Light Panel
Light Panel

The light Panel has no borders.

The light style is typical when using a Panel as the root layout of a window or some similar layout,
as in the example above.

6.7. SplitPanel

SplitPanel is a two-component container that divides the available space into two areas to ac-
comodate the two components. The split direction is vertical by default, but you can change it
with setOrientation().

You can set the two components with the dedicated setFirstComponent() and
setSecondComponent() methods, or with the regular addComponent() method.

SplitPanel splitpanel = new SplitPanel();

// Set the orientation.
splitpanel .setOrientation(SplitPanel .ORIENTATION_HORIZONTAL);

// Put two components in the container.
splitpanel._.setFirstComponent(new Label(''Left Panel™));
splitpanel.setSecondComponent(new Label ('Right Panel'™));

A split bar that divides the two panels is enabled by default. The user can drag the bar with
mouse to change the split position. To disable the bar, lock the split position with
setlLocked(true).

The following example shows how you can create a layout with two nested SplitPanel compon-
ents (one of which has a locked split position):

// A top-level panel to put everything in.
Panel panel = new Panel('Nested SplitPanels™);

// Allow it to shrink to the size of the contained SplitPanel.
panel .setSizeUndefined();

// Have a vertical SplitPanel as the main component.
SplitPanel vertical = new SplitPanel();
panel .addComponent(vertical);

// Set the size of the SplitPanel rather than the containing Panel,
// because then we know how much space we have for the panels.
vertical .setHeight("'150px™);

vertical .setWidth("'250px");

// Set the split position to 50 pixels, which is more than
// enough height for the Label in the upper panel.

SplitPanel 153

Managing Layout

vertical .setSplitPosition(50, SplitPanel _UNITS_PIXELS);

// Put a label in the upper panel.
vertical .addComponent(new Label (*'The contents of the upper area.'));

// Put a horizontal SplitPanel in the lower area.

SplitPanel horizontal = new SplitPanel();

horizontal .setOrientation(SplitPanel _.ORIENTATION_HORIZONTAL);
horizontal .setSplitPosition(65); // percent

vertical .addComponent(horizontal);

// The lower SplitPanel is locked, so the user cannot move
// the split position.

horizontal .setlLocked(true);

// Component in the left panel:
horizontal .addComponent(new Label('Lower left area. "+

"The text on the left wraps around as needed."));
// Component in the right panel:

horizontal .addComponent(new Label(*'Lower right area. "'+
"The text on the right also wraps around.'));

Figure 6.8. A Layout With Nested SplitPanels

Mested SplitPanels

The contents of the upper area.

Lower left area. The text Lower right

on the leftwraps around as area. The text

needed. on the right
also wraps
around,

CSS Style Rules

/* For a horizontal SplitPanel. */
-v-splitpanel-horizontal {}
-v-splitpanel-hsplitter {}
-v-splitpanel-hsplitter-locked {}

/* For a vertical SplitPanel. */
-v-splitpanel-vertical {}
-v-splitpanel-vsplitter {}
-v-splitpanel-vsplitter-locked {}

/* The two container panels. */

154

CSS Style Rules

Managing Layout

-v-splitpanel-first-container {} /* Top or left panel. */
-v-splitpanel-second-container {} /* Bottom or right panel. */

The entire accordion has the style v—-splitpanel-horizontal or v-splitpanel-vertical.
The split bar or splitter between the two content panels has either the .. .-splitter or
- . -—splitter-1locked style, depending on whether its position is locked or not.

6.8. TabSheet

The TabSheet is a multicomponent container that allows switching between the components
with "tabs". The tabs are organized as a tab bar at the top of the tab sheet. Clicking on a tab
opens its contained component in the main display area of the layout.

You add new tabs to a tab sheet with the addTab () method. The simple version of the method
takes as its parameter the root component of the tab. You can use the root component to retrieve
its corresponding Tab object. Typically, you put a layout component as the root component.

// Create an empty tab sheet.
TabSheet tabsheet = new TabSheet();

// Create a component to put in a tab and put

// some content in it.

VerticallLayout myTabRoot = new VerticallLayout();
myTabRoot.addComponent(new Label(*'Hello, I am a Tab!"));

// Add the component to the tab sheet as a new tab.
tabsheet.addTab(myTabRoot) ;

// Get the Tab holding the component and set its caption.
tabsheet.getTab(myTabRoot) .setCaption(*'"My Tab');

Each tab in a tab sheet is represented as a Tab object, which manages the tab caption, icon,
and attributes such as hidden and visible. You can set the caption with setCaption() and
the icon with setlcon(). If the component added with addTab() has a caption or icon, it is
used as the default for the Tab object. However, changing the attributes of the root component
later does not affect the tab, but you must make the setting through the Tab object. The
addTab() returns the new Tab object, so you can easily set an attribute using the reference.

// Set an attribute using the returned reference
tabsheet.addTab(myTab) .setCaption(*"My Tab'™);

You can also give the caption and the icon as parameters for the addTab () method. The following
example demonstrates the creation of a simple tab sheet, where each tab shows a different
Label component. The tabs have an icon, which are (in this example) loaded as Java class
loader resources from the application.

TabSheet tabsheet = new TabSheet();

// Make the tabsheet shrink to fit the contents.
tabsheet.setSizeUndefined();

tabsheet.addTab(new Label (*'‘Contents of the first tab"),

"First Tab",

new ClassResource(*'images/Mercury_small._png", this));
tabsheet.addTab(new Label (*'Contents of the second tab"),

""Second Tab",

new ClassResource('images/Venus_small._png", this));
tabsheet.addTab(new Label (*'Contents of the third tab"),

"Third tab",

new ClassResource('images/Earth_small._png", this));

TabSheet 155

Managing Layout

Figure 6.9. A Simple TabSheet Layout

¥ First Tab ?Second Tab | @ Third tab

Contents of the first tab

The hideTabs() method allows hiding the tab bar entirely. This can be useful in tabbed docu-
ment interfaces (TDI) when there is only one tab. An individual tab can be made invisible by
setting setVisible(false) for the Tab object. A tab can be disabled by setting
setEnabled(false).

Clicking on a tab selects it. This fires a TabSheet.SelectedTabChangeEvent, which you can
handle by implementing the TabSheet.SelectedTabChangelListener interface. The source
component of the event, which you can retrieve with getSource() method of the event, will
be the TabSheet component. You can find the currently selected tab with getSelectedTab()
and select (open) a particular tab programmatically with setSelectedTab(). Notice that also
adding the first tab fires the SelectedTabChangeEvent, which may cause problems in your
handler if you assume that everything is initialized before the first change event.

The example below demonstrates handling TabSheet related events and enabling and disabling
tabs. The sort of logic used in the example is useful in sequential user interfaces, often called
wizards, where the user goes through the tabs one by one, but can return back if needed.

import com.vaadin.ui.*;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.TabSheet.SelectedTabChangeEvent;

public class TabSheetExample extends CustomComponent implements
Button.ClickListener, TabSheet.SelectedTabChangeListener {
TabSheet tabsheet = new TabSheet();
Button tabl = new Button(''Push this button™);
Label tab2 = new Label("'Contents of Second Tab');
Label tab3 = new Label(*'Contents of Third Tab™);
TabSheetExample() {
setCompositionRoot(tabsheet);

// Listen for changes in tab selection.
tabsheet.addListener(this);

// First tab contains a button, for which we
// listen button click events.
tabl._addListener(this);

// This will cause a selectedTabChange() call.
tabsheet.addTab(tabl, "First Tab'", null);

// A tab that is initially invisible.
tabsheet.addTab(tab2, ''Second Tab', null);
tabsheet._getTab(tab2) .setVisible(false);

// A tab that is initially disabled.

tabsheet.addTab(tab3, "Third tab", null);

tabsheet._getTab(tab3).setEnabled(false);
b

public void buttonClick(ClickEvent event) {
// Enable the invisible and disabled tabs.

tabsheet._getTab(tab2) .setVisible(true);

tabsheet._getTab(tab3).setEnabled(true);

156 TabSheet

Managing Layout

// Change selection automatically to second tab.
tabsheet.setSelectedTab(tab2);

}

public void selectedTabChange(SelectedTabChangeEvent event) {
// Cast to a TabSheet. This isn"t really necessary in

// this example, as we have only one TabSheet component,

// but would be useful if there were multiple TabSheets.
final TabSheet source = (TabSheet) event.getSource();

if (source == tabsheet) {
// 1T the first tab was selected.
if (source.getSelectedTab() == tabl) {
// The 2. and 3. tabs may not have been set yet.
if (tabsheet.getTab(tab2) !'= null
&& tabsheet.getTab(tab3) != null) {
tabsheet.getTab(tab2) .setVisible(false);
tabsheet.getTab(tab3).setEnabled(false);
}

3
Figure 6.10. A TabSheet with Hidden and Disabled Tabs

First Tab Third tab

Push this button |

CSS Style Rules

.v-tabsheet {}
-v-tabsheet-tabs {}
.v-tabsheet-content {}
-v-tabsheet-deco {}
-v-tabsheet-tabcontainer {}
.v-tabsheet-tabsheetpanel {}
.v-tabsheet-hidetabs {}

.v-tabsheet-scroller {}
-v-tabsheet-scrollerPrev {}
-v-tabsheet-scrollerNext {}
.v-tabsheet-scrollerPrev-disabled{}
-.v-tabsheet-scrollerNext-disabled{}

.v-tabsheet-tabitem {}
.v-tabsheet-tabitem-selected {}
-v-tabsheet-tabitemcell {}
.v-tabsheet-tabitemcell-first {}

.v-tabsheet-tabs td {}
.v-tabsheet-spacertd {}

The entire tabsheet has the v-tabsheet style. A tabsheet consists of three main parts: the tabs
on the top, the main content pane, and decorations around the tabsheet.

The tabs area at the top can be styled with v-tabsheet-tabs, v-tabsheet-tabcontainer
and v-tabsheet-tabitem*.

CSS Style Rules 157

Managing Layout

The style v—tabsheet-spacertd is used for any empty space after the tabs. If the tabsheet
has too little space to show all tabs, scroller buttons enable browsing the full tab list. These use
the styles v-tabsheet-scroller*.

The content area where the tab contents are shown can be styled with v—-tabsheet-content,
and the surrounding decoration with v-tabsheet-deco.

6.9. Accordion

Accordion is a multicomponent container similar to TabSheet, except that the "tabs" are arranged
vertically. Clicking on a tab opens its contained component in the space between the tab and
the next one. You can use an Accordion identically to a TabSheet, which it actually inherits.
See Section 6.8, “TabSheet” for more information.

The following example shows how you can create a simple accordion. As the Accordion is
rather naked alone, we put it inside a Panel that acts as its caption and provides it a border.

// Create the Accordion.
Accordion accordion = new Accordion();

// Have it take all space available in the layout.
accordion.setSizeFull(Q);

// Some components to put in the Accordion.

Label 11 = new Label(""There are no previously saved actions.');
Label 12 = new Label("There are no saved notes.');
Label 13 = new Label(""There are currently no issues.™);

// Add the components as tabs in the Accordion.
accordion.addTab(l1, "Saved actions™, null);
accordion.addTab(l12, "Notes"™, null);
accordion.addTab(13, "lIssues', null);

// A container for the Accordion.
Panel panel = new Panel("'Tasks");
panel _setWidth("'300px");

panel _.setHeight("'300px");

panel .addComponent(accordion);

// Trim its layout to allow the Accordion take all space.
panel .getLayout() .setSizeFull();
panel .getLayout() .setMargin(false);

Figure 6.11, “An Accordion” shows what the example would look like with the default theme.

158

Accordion

Managing Layout

Figure 6.11. An Accordion

Tasks

Saved actions
MNaotes

There are no saved notes.

CSS Style Rules

-v-accordion {}

.v-accordion-item {}
-v-accordion-item-open {}
-v-accordion-item-first {}
.v-accordion-item-caption {}
.v-accordion-item-caption .v-caption {}
.v-accordion-item-content {}

The top-level element of Accordion has the v—accordion style. An Accordion consists of a
sequence of item elements, each of which has a caption element (the tab) and a content area
element.

The selected item (tab) has also the v—-accordion-open style. The content area is not shown
for the closed items.

6.10. AbsoluteLayout

AbsoluteLayout allows placing components in arbitrary positions in the layout area. The positions
are specified in the addComponent() method with horizontal and vertical coordinates relative
to an edge of the layout area. The positions can include a third depth dimension, the z-index,
which specifies which components are displayed in front and which behind other components.

The positions are specified by a CSS absolute position string, using the left, right, top,
bottom, and z-i1ndex properties known from CSS. In the following example, we have a 300
by 150 pixels large layout and position a text field 50 pixels from both the left and the top edge:

// A 400x250 pixels size layout
AbsolutelLayout layout = new AbsolutelLayout();
layout._setWidth(*'400px');
layout.setHeight(*'250px');

// A component with coordinates for its top-left corner
TextField text = new TextField(''Somewhere someplace');
layout._addComponent(text, "left: 50px; top: 50px;');

The left and top specify the distance from the left and top edge, respectively. The right
and bottom specify the distances from the right and top edge.

CSS Style Rules 159

Managing Layout

// At the top-left corner
Button button = new Button("left: Opx; top: Opx;™);
layout._addComponent(button, *"left: Opx; top: Opx;');

// At the bottom-right corner
Button buttCorner = new Button("right: Opx; bottom: Opx;');
layout.addComponent(buttCorner, "right: Opx; bottom: Opx;"

// Relative to the bottom-right corner
Button buttBrRelative = new Button("right: 50px; bottom: 50px;"™);
layout._addComponent(buttBrRelative, '"right: 50px; bottom: 50px;'™);

// On the bottom, relative to the left side
Button buttBottom = new Button("left: 50px; bottom: Opx;');
layout._addComponent(buttBottom, "left: 50px; bottom: Opx;'™);

// On the right side, up from the bottom

Button buttRight = new Button("right: Opx; bottom: 100px;');
layout.addComponent(buttRight, "right: Opx; bottom: 100px;"™);

The result of the above code examples is shown in Figure 6.12, “Components Positioned Relative
to Various Edges”.

Figure 6.12. Components Positioned Relative to Various Edges

left: Opx; top: Opx;

Somewhere someplace

right: Opx; bottom: 100px;

right: 50px; bottom: 50px;

right: 200px; bottom: Opx; right: Opx; bottomn: Opx;

In the above examples, we had components of undefined size and specified the positions of
components by a single pair of coordinates. The other possibility is to specify an area and let
the component fill the area by specifying a proportinal size for the component, such as "100%".
Normally, you use setSizeFul 1 () to take the entire area given by the layout.

// Specify an area that a component should fill

Panel panel = new Panel (A Panel filling an area");

panel _setSizeFull(); // Fill the entire given area

layout.addComponent(panel, "left: 25px; right: 50px; "'+
"top: 100px; bottom: 50px;');

The result is shown in Figure 6.13, “Component Filling an Area Specified by Coordinates”

160

AbsolutelLayout

Managing Layout

Figure 6.13. Component Filling an Area Specified by Coordinates

A Panel filling an area

You can also use proportional coordinates to specify the coordinates:

// A panel that takes 30% to 90% horizontally and

// 20% to 80% vertically

Panel panel = new Panel (A Panel™);

panel _setSizeFull(); // Fill the specified area

layout._addComponent(panel, "left: 30%; right: 10%;" +
"top: 20%; bottom: 20%;');

The result is shown in Figure 6.14, “Specifying an Area by Proportional Coordinates”

Figure 6.14. Specifying an Area by Proportional Coordinates

0to 20%

0to 30% A Panel 90 to
100%

20to 100%

Drag and drop is very useful for moving the components contained in an AbsoluteLayout.
Check out the example in Section 11.13.6, “Dropping on a Component”.

Styling with CSS

.v-absolutelayout {}
.v-absolutelayout-wrapper {}

The AbsoluteLayout component has v-absolutelayout root style. Each component in the
layout is contained within an element that has the v-absolutelayout-wrapper. The compon-

Styling with CSS 161

Managing Layout

ent captions are outside the wrapper elements, in a separate element with the usual v—caption
style.

6.11. CssLayout

CsslLayout allows strong control over styling of the components contained inside the layout.
The components are contained in a simple DOM structure consisting of <div> elements. By
default, the contained components are laid out horizontally and wrap naturally when they reach
the width of the layout, but you can control this and most other behaviour with CSS. You can
also inject custom CSS for each contained component. As CssLayout has a very simple DOM
structure and no dynamic rendering logic, relying purely on the built-in rendering logic of the
browsers, it is the fastest of the layout components.

The basic use of CssLayout is just like with any other layout component:
CssLayout layout = new CsslLayout();

// Component with a layout-managed caption and icon
TextField tf = new TextField("'A TextField");
tf.setlcon(new ThemeResource(''icons/user.png™));
layout.addComponent(tf);

// Labels are 100% wide by default so must unset width
Label label = new Label (A Label™);

label .setWidth(Sizeable.SI1ZE_UNDEFINED, 0);
layout.addComponent(label);

layout.addComponent(new Button('A Button™));

The result is shown in Figure 6.15, “Basic Use of CssLayout”. Notice that the default spacing
and alignment of the layout is quite crude and CSS styling is nearly always needed.

Figure 6.15. Basic Use of CssLayout

1 A TextField Alabel A Button

The display attribute of CssLayout is inl ine-block by default, so the components are laid
out horizontally following another. CssLayout has 100% width by default. If the components
reach the width of the layout, they are wrapped to the next "line" just as text would be. If you
add a component with 100% width, it will take an entire line by wrapping before and after the
component.

Overriding the getCss() method allows injecting custom CSS for each component. The CSS
returned by the method is inserted in the st y| e attribute of the <div> element of the component,
so it will override any style definitions made in CSS files.

CssLayout layout = new CssLayout() {
@0verride
protected String getCss(Component c) {
ifT (c instanceof Label) {
// Color the boxes with random colors
int rgb = (int) (Math.random()*(1<<24));
return "background: #" + Integer.toHexString(rgb);

return null;

}
}:
layout.setWidth(*'400px'); // Causes to wrap the contents

162

CsslLayout

Managing Layout

// Add boxes of various sizes
for (int i=0; i<40; i++) {
Label box = new Label (*' *, Label .CONTENT_XHTML);
box.addStyleName("*flowbox') ;
box.setWidth((float) Math.random()*50,
Sizeable.UNITS_PIXELS);
box.setHeight((float) Math.random()*50,
Sizeable.UNITS_PIXELS);
layout.addComponent(box) ;

3
The style name added to the components allows making common styling in a CSS file:
.v-label-flowbox {

border: thin black solid;

}

Figure 6.16, “Use of getCss() and line wrap” shows the rendered result.

Figure 6.16. Use of getCss() and line wrap

The stregth of the CssLayout is also its weakness. Much of the logic behind the other layout
components is there to give nice default behaviour and to handle the differences in different
browsers. Some browsers, no need to say which, are notoriously incompatible with the CSS
standards, so they require a lot of custom CSS. You may need to make use of the browser-
specific style classes in the root element of the application. Some features in the other layouts
are not even solvable in pure CSS, at least in all browsers.

Styling with CSS

.v-csslayout {}
.v-csslayout-margin {}
.v-csslayout-container {}

The CssLayout component has v-csslayout root style. The margin element with
v-csslayout-margin style is always enabled. The components are contained in an element
with v-csslayout-container style.

For example, we could style the basic CssLayout example shown earlier as follows:

/* Have the caption right of the text box, bottom-aligned */
.csslayoutexample .mylayout .v-csslayout-container {
direction: rtl;
line-height: 24px;
vertical-align: bottom;

}

/* Have some space before and after the caption */
.csslayoutexample .mylayout .v-csslayout-container .v-caption {

Styling with CSS 163

Managing Layout

padding-left: 3px;
padding-right: 10px;
}

The example would now be rendered as shown in Figure 6.17, “Styling CssLayout”.

Figure 6.17. Styling CssLayout
Here's a field

Captions and icons that are managed by the layout are contained in an element with v-caption
style. These caption elements are contained flat at the same level as the actual component
elements. This may cause problems with wrapping in inline-block mode, as wrapping can
occur between the caption and its corresponding component element just as well as between
components. Such use case is therefore not feasible.

6.12. Layout Formatting

While the formatting of layouts is mainly done with style sheets, just as with other components,
style sheets are not ideal or even possible to use in some situations. For example, CSS does
not allow defining the spacing of table cells, which is done with the cel | spaci ng attribute in
HTML.

Moreover, as many layout sizes are calculated dynamically in the Client-Side Engine of Vaadin,
some CSS settings can fail altogether.

6.12.1. Layout Size

The size of a layout component can be specified with the setWidth() and setHeight()
methods defined in the Sizeable interface, just like for any component. It can also be undefined,
in which case the layout shrinks to fit the component(s) inside it. Section 5.3.9, “Sizing Compon-
ents” gives details on the interface.

Figure 6.18. HorizontalLayout with Undefined vs Defined size

Undefined width layout: | Small | Medium-sized Quite a big component |

Defined width layout: | Small Medium-sized Quite a big component |

Many layout components take 100% width by default, while they have the height undefined.

The sizes of components inside a layout can also be defined as a percentage of the space
available in the layout, for example with setWidth(**100%'") ; or with the (most commonly used
method) setFul ISize() that sets 100% size in both directions. If you use a percentage in a
HorizontalLayout, VerticalLayout, or GridLayout, you will also have to set the component
as expanding, as noted below.

Warning
/ i \ A layout that contains components with percentual size must have a defined size!

If a layout has undefined size and a contained component has, say, 100% size, the
component will try to fill the space given by the layout, while the layout will shrink

164

Layout Formatting

Managing Layout

to fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately. The debug mode allows detecting such invalid
cases; see Section 11.4.1, “Debug Mode”.

For example:

// This takes 100% width but has undefined height.
VerticallLayout layout = new VerticallLayout();

// A button that takes all the space available in the layout.
Button button = new Button(*'100%x100% button');
button.setSizeFull();

layout.addComponent(button);

// We must set the layout to a defined height vertically, in
// this case 100% of its parent layout, which also must

// not have undefined size.

layout._setHeight(*'100%"");

The default layout of Window and Panel is VerticalLayout with undefined height. If you insert
enough components in such a layout, it will grow outside the bottom of the view area and
scrollbars will appear in the browser. If you want your application to use all the browser view,
nothing more or less, you should use setFul 1Size() for the root layout.

// Create the main window.
Window main = new Window("'‘Main Window');
setMainWindow(main);

// Use fTull size.
main.getLayout().setSizeFull();

Expanding Components

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and
there is space left over from the contained components, the extra space is distributed equally
between the component cells. The components are aligned within these cells, according to their
alignment setting, top left by default, as in the example below.

| Small Medium-sized Quite a big component |

Often, you don't want such empty space, but want one or more components to take all the
leftover space. You need to set such a component to 100% size and use setExpandRatio().
If there is just one such expanding component in the layout, the ratio parameter is irrelevant.

| small | Medium-sized Expanding component |

If you set multiple components as expanding, the expand ratio dictates how large proportion of
the available space (overall or excess depending on whether the components are sized as a
percentage or not) each component takes. In the example below, the buttons have 1:2:3 ratio
for the expansion.

| Small Medium-sized Quite a big component |

GridLayout has corresponding method for both of its directions, setRowExpandRatio() and
setColumnExpandRatio().

Expansion is dealt in detail in the documentation of the layout components that support it. See
Section 6.3, “VerticalLayout and HorizontalLayout” and Section 6.4, “GridLayout” for details
on components with relative sizes.

Layout Size 165

Managing Layout

6.12.2. Layout Cell Alignment

You can set the alignment of the component inside a specific layout cell with the
setComponentAlignment() method. The method takes as its parameters the component
contained in the cell to be formatted, and the horizontal and vertical alignment.

Figure 6.19, “Cell Alignments” illustrates the alignment of components within a GridLayout.

Figure 6.19. Cell Alignments

Top Left Top Center Top Right

Middle Left Middle Center Mmiddle Right

Bottom Left Bottom Center Bottom Right

The easiest way to set alignments is to use the constants defined in the Alignment class. Let
us look how the buttons in the top row of the above GridLayout are aligned with constants:

// Create a grid layout
final GridLayout grid = new GridLayout(3, 3);

grid.setWidth(400, Sizeable.UNITS_PIXELS);
grid.setHeight(200, Sizeable_ UNITS_PIXELS);

Button topleft = new Button(*Top Left™);
grid.addComponent(topleft, 0, 0);
grid.setComponentAlignment(topleft, Alignment.TOP_LEFT);

Button topcenter = new Button('Top Center'™);
grid.addComponent(topcenter, 1, 0);
grid.setComponentAlignment(topcenter, Alignment.TOP_CENTER);
Button topright = new Button(*'Top Right');

grid.addComponent(topright, 2, 0);
grid.setComponentAlignment(topright, Alignment.TOP_RIGHT);

The following table lists all the Alignment constants by their respective locations:

Table 6.1. Alignment Constants

TOP_LEFT |TOP_CENTER |TOP_RI GHT
M DDLE_LEFT|M DDLE_CENTER|M DDLE_RI GHT
BOTTOM LEFT|BOTTOM CENTER|BOTTOM RI GHT

Another way to specify the alignments is to create an Alignment object and specify the horizontal
and vertical alignment with separate constants. You can specify either of the directions, in which
case the other alignment direction is not modified, or both with a bitmask operation between
the two directions.

Button middleleft = new Button("Middle Left™);
grid.addComponent(middleleft, 0, 1);
grid.setComponentAlignment(middleleft,

new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |

166

Layout Cell Alignment

Managing Layout

6.12.3.

Bits.ALIGNMENT_LEFT));

Button middlecenter = new Button(**Middle Center');
grid.addComponent(middlecenter, 1, 1);
grid.setComponentAlignment(middlecenter,
new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
Bits.ALIGNMENT_HORIZONTAL_CENTER));

Button middleright = new Button(**Middle Right');
grid.addComponent(middleright, 2, 1);
grid.setComponentAlignment(middleright,
new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
Bits.ALIGNMENT_RIGHT));

Obviously, you may combine only one vertical bitmask with one horizontal bitmask, though you
may leave either one out. The following table lists the available alignment bitmask constants:

Table 6.2. Alignment Bitmasks

Horizontal [Bi t s. ALI GNMENT _LEFT

Bi t's. ALI GNMENT _HORI ZONTAL_CENTER
Bi ts. ALI GNVENT_RI GHT

Vertical |Bits. ALI GNVENT_TCOP

Bi ts. ALI GNVENT_VERTI CAL_CENTER

Bi ts. ALI GNVENT_BOTTOM

You can determine the current alignment of a component with getComponentAlignment(),
which returns an Alignment object. The class provides a number of getter methods for decoding
the alignment, which you can also get as a bitmask value.

Layout Cell Spacing

The VerticalLayout, HorizontalLayout, and GridLayout layouts offer a setSpacing()
method for enabling space between the cells in the layout. Enabling the spacing adds a spacing
style for all cells except the first so that, by setting the left or top padding, you can specify the
amount of spacing.

To enable spacing, simply call setSpacing(true) for the layout as follows:

HorizontalLayout layout2 = new HorizontallLayout();
layout2._addStyleName("'spacingexample');
layout2._setSpacing(true);

layout2._addComponent(new Button("'Component 1'));
layout2._addComponent(new Button(*'Component 2'));
layout2._addComponent(new Button("'Component 3'));

VerticallLayout layout4 = new VerticallLayout();
layout4_addStyleName("'spacingexample'™);
layout4._setSpacing(true);
layout4_addComponent(new Button(*'Component 1'));
layout4_addComponent(new Button(*'Component 2'));
layout4_addComponent(new Button("'Component 3'));

In practise, the setSpacing() method toggles between the
"v—COMPONENTCLASSNAME-spacing-on" and "-off" CSS class names in the cell elements.
Elements having those class names can be used to define the spacing metrics in a theme.

Layout Cell Spacing 167

Managing Layout

The layouts have a spacing style name to define spacing also when spacing is off. This allows
you to define a small default spacing between components by default and a larger one when
the spacing is actually enabled.

Spacing can be horizontal (for HorizontalLayout), vertical (for VerticalLayout), or both (for
GridLayout). The name of the spacing style for horizontal and vertical spacing is the base name
of the component style name plus the "-spacing-on" suffix, as shown in the following table:

Table 6.3. Spacing Style Names

VerticalLayout |v-verticallayout-spacing-on

HorizontalLayout |v-horizontal layout-spacing-on

GridLayout v-gridlayout-spacing-on

In the CSS example below, we specify the exact amount of spacing for the code example given
above, for the layouts with the custom "spacingexample’ style:

/* Set the amount of horizontal cell spacing in a
* specific element with the "-spacingexample" style. */
-v-horizontal layout-spacingexample .v-horizontallayout-spacing-on {
padding-left: 30px;
}

/* Set the amount of vertical cell spacing in a
* specific element with the "-spacingexample" style. */
-.v-vertical layout-spacingexample .v-verticallayout-spacing-on {
padding-top: 30px;
}

/* Set the amount of both vertical and horizontal cell spacing
* in a specific element with the "-spacingexample'" style. */
.v-gridlayout-spacingexample .v-gridlayout-spacing-on {
padding-top: 30px;
padding-left: 50px;
}

The resulting layouts will look as shown in Figure 6.20, “Layout Spacings”, which also shows
the layouts with no spacing.

Figure 6.20. Layout Spacings

No spacing: Vertical spacing:
No spacing: Component 1 | Component 2 | Component 3 Component 1 Component 1 |
Component 2
Component 3 Component 2 |
Horizontal spacing:| component 1 | Component 2 | Component 3
Component 3 |
Note

Spacing is unrelated to "cell spacing” in HTML tables. While many layout components
are implemented with HTML tables in the browser, this implementation is not guar-
anteed to stay the same and at least Vertical-/HorizontalLayout could be imple-
mented with <div> elements as well. In fact, as GWT compiles widgets separately
for different browsers, the implementation could even vary between browsers.

168

Layout Cell Spacing

Managing Layout

Also note that HTML elements with spacing classnames don't necessarily exist in
a component after rendering, because the Client-Side Engine of Vaadin processes
them.

6.12.4. Layout Margins

By default, layout components do not have any margin around them. You can add margin with
CSS directly to the layout component. Below we set margins for a specific layout component
(here a horizontal layout):

layoutl._addStyleName("'marginexamplel™);

-v-hori zont al | ayout -marginexamplel
-v-hori zontal | ayout -margin {
padding-left: 200px;
padding-right: 100px;
padding-top: 50px;
padding-bottom: 25px;
}

Similar settings exist for other layouts such as vertical layout.

The layout size calculations require the margins to be defined as CSS padding rather than as
CSS margin.

As an alternative to the pure CSS method, you can set up a margin around the layout that can
be enabled with setMargin(true). The margin element has some default margin widths, but
you can adjust the widths in CSS if you need to.

Let us consider the following example, where we enable the margin on all sides of the layout:

// Create a layout
HorizontallLayout layout2 = new HorizontallLayout();
containinglayout.addComponent(

new Label(*'Layout with margin on all sides:"));
containinglayout.addComponent(layout?2);

// Set style name for the layout to allow styling it
layout2._addStyleName("'marginexample™);

// Have margin on all sides around the layout
layout2._setMargin(true);

// Put something inside the layout

layout2._addComponent(new Label(*'Cell 1'));
layout2._addComponent(new Label(*'Cell 2"));
layout2._addComponent(new Label(*'Cell 3'"));

You can enable the margins only for specific sides. The margins are specified for the
setMargin() method in clockwise order for top, right, bottom, and left margin. The following
would enable the top and left margins:

layout2._setMargin(true, false, false, true);

You can specify the actual margin widths in the CSS if you are not satisfied with the default
widths (in this example for a HorizontalLayout):

-v-hori zont al | ayout -marginexample .v-horizontal | ayout -margin-left {padding-left:

200px;}

-v-hori zont al | ayout -marginexample .v-horizontall ayout -margin-right {padding-right:
100px;}

-v-hori zont al | ayout -marginexample .v-hori zontal |l ayout -margin-top {padding-top:

Layout Margins 169

Managing Layout

50px; }
-v-hori zont al | ayout -marginexample .v-hori zontal | ayout -margin-bottom {padding-bottom:
25px; }

The resulting margins are shown in Figure 6.21, “Layout Margins” below. The two ways produce
identical margins.

Figure 6.21. Layout Margins

Regular layout margins:

Component 1
Component 2

Component 3

Layout with a special margin element:

Component 1
Component 2

Component 3

CSS Style Rules

The CSS style names for the margin widths for setMargin() consist of the specific layout name
plus -margin-left and so on. The CSS style names for CSS-only margins consist of the
specific layout name plus —-margin. Below, the style rules are given for VerticalLayout:

/* Alternative 1: CSS only style */
-v-vertical | ayout -margin {

padding-left: _pX;

padding-right: __ px;

padding-top: _pX;

padding-bottom: __ px;
}
/* Alternative 2: CSS rules to be enabled in code */
-v-vertical | ayout -margin-left {padding-left: _ pX:}
-v-vertical | ayout -margin-right {padding-right: _ px;}
.v-verti cal | ayout -margin-top {padding-top: _ pX:}
-v-verti cal | ayout -margin-bottom {padding-bottom: _ px;}

6.13. Custom Layouts

While it is possible to create almost any typical layout with the standard layout components, it
is sometimes best to separate the layout completely from code. With the CustomLayout com-
ponent, you can write your layout as a template in XHTML that provides locations of any contained
components. The layout template is included in a theme. This separation allows the layout to
be designed separately from code, for example using WYSIWYG web designer tools such as
Adobe Dreamweaver.

A template is a HTML file located under layouts folder under a theme folder under the
WebContent/VAADIN/themes/ folder, for example,
WebContent/VAADIN/themes/t herenane/ | ayout s/ nyl ayout . ht m . (Notice that the
root path WebContent/VAADIN/themes/ for themes is fixed.) A template can also be provided

170

Custom Layouts

Managing Layout

dynamically from an InputStream, as explained below. A template includes <div> elements
with al ocat i on attribute that defines the location identifier. All custom layout HTML-files must
be saved using UTF-8 character encoding.

<table width="100%" height=""100%">
<tr height="100%">

<td>
<table align="center'>
<tr>
<td align="right">User name:</td>
<td><di v | ocati on="user nanme"></di v></td>
</tr>
<tr>
<td align="right">Password:</td>
<td><di v | ocati on="password"></di v></td>
</tr>
</table>
</td>
</tr>
<tr>

<td align="right" colspan="2">
<di v | ocati on="okbutton"></div>
</td>
</tr>
</table>

The client-side engine of Vaadin will replace contents of the location elements with the compon-
ents. The components are bound to the location elements by the location identifier given to
addComponent(), as shown in the example below.

// Have a Panel where to put the custom layout.
Panel panel = new Panel(*'Login™);

panel _.setSizeUndefined();
main.addComponent(panel);

// Create custom layout from "layoutname.html™ template.
CustomLayout custom = new CustomLayout(''layoutname');
custom.addStyleName(*'customlayoutexample'™);

// Use it as the layout of the Panel.
panel _.setContent(custom);

// Create a few components and bind them to the location tags
// in the custom layout.

TextField username = new TextField();
custom.addComponent(username, "‘username');

TextField password = new TextField();
custom.addComponent(password, "password');

Button ok = new Button(''Login'™);
custom.addComponent(ok, '"okbutton');

The resulting layout is shown below in Figure 6.22, “Example of a Custom Layout Component”.

Custom Layouts 171

Managing Layout

Figure 6.22. Example of a Custom Layout Component

Login
User name:
Passward:

Login

You can use addComponent() also to replace an existing component in the location given in
the second parameter.

In addition to a static template file, you can provide a template dynamically with the Custom-
Layout constructor that accepts an InputStream as the template source. For example:

new CustomLayout(new ByteArraylnputStream(''Template"_getBytes()));
or

new CustomLayout(new FilelnputStream(file));

172

Custom Layouts

Chapter 7

Visual User
Interface Design
with Eclipse
(experimental)

7.1 OVEIVIEW oo 174
7.2. Creating a New CustomComponentccccccciiiiiiii, 174
7.3. Using The Visual EAItOr ..., 176
7.4. Structure of a Visually Editable Componentcoccooeiiiiiiii, 181

This chapter provides instructions for developing the graphical user interface of Vaadin compon-
ents with a visual editor (experimental) included in the Vaadin Plugin for the Eclipse IDE.

A revised visual editor plugin will be published around the time of publication of Vaadin 6.4.
This chapter describes the experimental visual editor available in early 2010.

Book of Vaadin 173

Visual User Interface Design with Eclipse (experimental)

7.1. Overview

The visual or WYSIWYG editor for Vaadin allows you to design the user interface of an entire
application or specific custom components. The editor generates the actual Java code, which
is designed to be reusable, so you can design the basic layout of the user interface with the
visual editor and build the user interaction logic on top of the generated code. You can use in-
heritance and composition to modify the components further.

The editor is included in the Vaadin Plugin for Eclipse (actually as a separate plugin in the plugin
set). For installing the Vaadin plugin, see Section 2.2.5, “Vaadin Plugin for Eclipse”.

Ongoing Work
@' The first preview version of the visual editor was released in May 2009 and is still

under development at the time of the publication of this book and should be con-
sidered as experimental. While the preview version is incomplete and probably not
suitable for demanding use, you can use it for simple tasks, especially when famili-
arizing yourself with Vaadin.

7.2. Creating a New CustomComponent

The visual editor works with custom component classes that extend the CustomComponent
class, which is the basic technique in Vaadin for creating composite components. Custom
components are described in Section 5.21, “Component Composition with CustomComponent”.
Any CustomComponent will not do for the visual editor; you need to create a new one as in-
structed below.

1. Select File -~ New - Other... in the main menu or right-click the Project Explorer
and select New - Other... to open the New window.

2. In the first, Select a wizard step, select Vaadin - Vaadin CustomComponent and
click Next.

174

Overview

Visual User Interface Design with Eclipse (experimental)

Select a wizard

Wizards:

[type filter text

ST

- [=Vaadin

T

Vaadin CustomComponent (composite)
}= Vaadin Theme
}= Vaadin widget
1= vaadin Widgetset
b= Web
b [= Web Services

[v]

[« [r [S

@ | I

MNext = |[

H Cancel l

3. The Source folder is the root source directory where the new component will be cre-
ated. This is by default the default source directory of your project.

Vaadin CustomComponent (composite)

be edited with the Vaadin editor.

This wizard creates a Vaadin CustomComponent whose layout can

Source folder: [myprojectfsrc

H Browse... l

)

]

Package: l;'lcc:m.e}-{arm;:le.n'13,ﬂ[;:roject|
Name: [MyComponent
7 [< Back]]l Einish |[

Cancel]

Enter the Java Package under which the new component class should be created or
select it by clicking the Browse button. Also enter the class Name of the new compon-

ent.

Finally, click Finish to create the component.

A newly created composite component is opened in the editor window, as shown in Figure 7.1,

“New Composite Component”.

Creating a New CustomComponent

175

Visual User Interface Design with Eclipse (experimental)

Figure 7.1. New Composite Component

AJ] MyprojectApplication.java styles.css |~ MyComponent java i3 =0

package com.example.myproject;

| »

#®import com.vaadin.annotations.AutoGenerated;
& public class MyComponent extends CustomComponent {

@AutoGenerated
private Absolutelayout mainLayout;

f
The constructor should first build the main layout, set the
composition root and then do any custom i1nitialization.

X X X x® x =

The constructor will not be automatically regenerated by the
visual editor.

¥y

public MyComponent() {
buildMainLayout();
setCompositionRoot (mainLayout);

add user code here

[

'

@AutoGenerated

private void buildMainLayout() {
'/ the main layout and components will be created here
mainLayout = new AbsolutelLayout();

4[]

4] 1 4
Source | Design

You can observe that a component that you can edit with the visual editor has two tabs at the
bottom of the view: Source and Design. These tabs allow switching between the source view
and the visual editing view.

7.3. Using The Visual Editor

The visual editor view consists of, on the left side, an editing area that displays the current layout
and, on the right side, a control panel that contains a component tree, component property
panel, and a component list for adding new components.

7.3.1. Adding New Components

Adding new components in the user interface is done by adding nodes to the component tree
at the top of the editor control panel. The list box at the bottom of the editor control panel shows
the components allowed under the selected component; you can generally add components
only under a layout (Layout) or a component container (ComponentContainer).

To add a new node:

176

Using The Visual Editor

Visual User Interface Design with Eclipse (experimental)

1. select an existing node (in the component tree) under which you wish to insert the new
node

2. click on a component in the component list at the bottom of the panel.

Figure 7.2. Adding a New Component Node

1> *MyComponent.java EE = O

o com.example. myproject. MyComponent

“ EditableAbsolutsLayout_|

Label
ComboBox
Button
TextField
NativeSelect
TwinColSelect
Table
CheckBax
[DateField
Upload
RichTextArea
Panel
VerticallLayout
Horizental Layout
Absaolute La'yl:l ut

Source Design |

The component will be added under the selected component in the component tree. You can
delete a component by right-clicking it in the component tree and selecting Remove.

7.3.2. Setting Component Properties
The property setting area of the control panel allows setting component properties. The area is
divided into basic properties, size and position settings, and other properties, which includes
also styles.

Basic Properties

The top section of the property panel, shown in Figure 7.3, “Basic Component Properties”, allows
settings basic component properties.

Setting Component Properties 177

Visual User Interface Design with Eclipse (experimental)

Figure 7.3. Basic Component Properties

myButtan

My button

The basic properties are:

Component name The name of the component, which is used for the refer-
ence to the component, so it must obey Java notation for
variable names.

Caption The caption of a component is usually displayed above
the component. Some components, such as Button, dis-
play the caption inside the component. For Label text, you
should set the value of the label instead of the caption,
which should be left empty.

Description (tooltip) The description is usually displayed as a tooltip when the
mouse pointer hovers over the component for a while.
Some components, such as Form have their own way of
displaying the description.

Icon The icon of a component is usually displayed above the
component, left of the caption. Some components, such
as Button, display the icon inside the component.

Formatting type Some components allow different formatting types, such
as Label, which allow formatting either as Text, XHTML,
Preformatted, and Raw.

Value The component value. The value type and how it is dis-
played by the component varies between different compon-
ent types and each value type has its own editor. The editor
opens by clicking on the ... button.

Most of the basic component properties are defined in the Component interface; see Sec-
tion 5.2.1, “Component Interface” for further details.

Size and Position

The size of a component is determined by its width and height, which you can give in the two
edit boxes in the control panel. You can use any unit specifiers for components, as described
in Section 5.3.9, “Sizing Components”. Emptying a size box will make the size "automatic", which
means setting the size as undefined. In the generated code, the undefined value will be ex-
pressed as "-1px".

Setting width of "100px" and auto (undefined or empty) height would result in the following
generated settings for a button:

178

Setting Component Properties

Visual User Interface Design with Eclipse (experimental)

// myButton
myButton = new Button();

myButton.setHeight(*'-1px™);
myButton.setWidth(**100px™);

Figure 7.4, “Component Size and Position” shows the control panel area for the size and position.

Figure 7.4. Component Size and Position

Size

auto

Position

The generated code for the example would be:

// myButton
myButton = new Button();
myButton.setWidth(''-1px');
myButton.setHeight(''-1px');
myButton.setlmmediate(true);
myButton.setCaption(‘'My Button');
mainLayout.addComponent(myButton,

"'top:243.0px; left:152.0px;");

The position is given as a CSS position in the second parameter for addComponent(). The
values "-1px" for width and height will make the button to be sized automatically to the minimum
size required by the caption.

When editing the position of a component inside an AbsoluteLayout, the editor will display
vertical and horizontal guides, which you can use to set the position of the component. See
Section 7.3.3, “Editing an AbsoluteLayout” for more information about editing absolute layouts.

The ZIndex setting controls the "Z coordinate" of the components, that is, which component will
overlay which when they overlap. Value -1 means automatic, in which case the components
added to the layout later will be on top.

Other Properties

The bottom section of the property panel, shown in Figure 7.5, “Other Properties”, allows settings
other often used component properties.

Figure 7.5. Other Properties

Immediate

Setting Component Properties 179

Visual User Interface Design with Eclipse (experimental)

Style Names Enter the enabled CSS style names for the component as a space-
seraparated list. See Chapter 8, Themes for information on component
styles in themes.

Visible Defines whether the component is visible or hidden, as set with the
setVisible() method.

Enabled Defines whether the component is enabled or disabled, as set with the
setEnabled() method. If disabled, no user interaction is allowed for
the component and it is usually shown as shadowed.

Read-only Defines whether editing the component is allowed, as set with the
setReadonly () method.

Immediate Defines whether user interaction with the component is updated imme-
diately (after the component loses focus) in the server as a state or value
chage in the component value.

Most of the component properties mentioned above are defined in the Component interface;
see Section 5.2.1, “Component Interface” for further details.

7.3.3. Editing an AbsolutelLayout

The visual editor has interactive support for the AbsoluteLayout component that allows posi-
tioning components exactly at specified coordinates. You can position the components using
guides that control the position attributes, shown in the control panel on the right. The position
values are measured in pixels from the corresponding edge; the vertical and horizontal rulers
show the distances from the top and left edge.

Figure 7.6, “Positioning with AbsoluteLayout” shows three components, a Label, a Table, and
a Button, inside an AbsolutelLayout.

Figure 7.6. Positioning with AbsoluteLayout

4] MyprojectApplication 1= #MyComponen o

This is my label

mylabell

Wy tahle myTable
myButtan

foos- bars

foo bar

foo bar

foo bar

foo bar

foo bar

L LEL My button

Source[DeﬂgnJ

180 Editing an AbsoluteLayout

Visual User Interface Design with Eclipse (experimental)

Position attributes that are empty are automatic and can be either zero (at the edge) or dynamic
to make it shrink to fit the size of the component, depending on the component. Guides are
shown also for the automatic position attributes and move automatically; in Figure 7.6, “Positioning
with AbsoluteLayout” the right and bottom edges of the Button are automatic.

Moving an automatic guide manually makes the guide and the corresponding the position attribute
non-automatic. To make a manually set attribute automatic, empty it in the control panel. Fig-
ure 7.7, “Manually positioned Label” shows a Label component with all the four edges set
manually. Notice that if an automatic position is 0, the guide is at the edge of the ruler.

Figure 7.7. Manually positioned Label

A1 MyprojectApplication = #MyComponen ja
ect. MyComponeant

* EditableAbsalutelayout_5
This is a Label, for labals, the "m o Tha
text is contained in the value of mvT'bP
the component. -

myButtan

My table
fags | bare
foo bar
foo bar
foo bar
foo bar
foo bar My button
fan har

Source[Deﬂgn]

7.4. Structure of a Visually Editable Component

A component created by the wizard and later managed by the visual editor has a very specific
structure that allows you to insert your user interface logic in the component while keeping a
minimal amount of code off-limits. You need to know what you can edit yourself and what exactly
is managed by the editor. The managed member variables and methods are marked with the
AutoGenerated annotation, as you can see later.

A visually editable component consists of:
e Member variables containing sub-component references
e Sub-component builder methods
* The constructor

The structure of a composite component is hierarchical, a nested hierarchy of layout components
containing other layout components as well as regular components. The root layout of the
component tree, or the composition root of the CustomComponent, is named mainLayout.
See Section 5.21, “Component Composition with CustomComponent” for a detailed description
of the structure of custom (composite) components.

Structure of a Visually Editable Component 181

Visual User Interface Design with Eclipse (experimental)

7.41. Sub-Component References

The CustomComponent class will include a reference to each contained component as a
member variable. The most important of these is the mainLayout reference to the composition
root layout. Such automatically generated member variables are marked with the
@AutoGenerated annotation. They are managed by the editor, so you should not edit them
manually, unless you know what you are doing.

A composite component with an AbsoluteLayout as the composition root, containing a Button
and a Table would have the references as follows:

public class MyComponent extends CustomComponent {

@AutoGenerated

private AbsolutelLayout mainLayout;
@AutoGenerated

private Button myButton;
@AutoGenerated

private Table myTable;

The names of the member variables are defined in the component properties panel of the visual
editor, in the Component name field, as described in the section called “Basic Properties”.
While you can change the name of any other components, the name of the root layout is always
mainLayout. Itis fixed because the editor does not make changes to the constructor, as noted
in Section 7.4.3, “The Constructor”. You can, however, change the type of the root layout, which
is an AbsoluteLayout by default.

Certain typically static components, such as the Label label component, will not have a reference
as a member variable. See the description of the builder methods below for details.

7.4.2. Sub-Component Builders

Every managed layout component will have a builder method that creates the layout and all its
contained components. The builder puts references to the created components in their corres-
ponding member variables, and it also returns a reference to the created layout component.

Below is an example of an initial main layout:

@AutoGenerated

private AbsolutelLayout buildMainLayout() {
// common part: create layout
mainLayout = new AbsolutelLayout();

// top-level component properties
setHeight("'100.0%");
setWidth(*'100.0%") ;

return mainLayout;

}

Notice that while the builder methods return a reference to the created component, they also
write the reference directly to the member variable. The returned reference might not be used
by the generated code at all (in the constructor or in the builder methods), but you can use it
for your purposes.

The builder of the main layout is called in the constructor, as explained in Section 7.4.3, “The
Constructor”. When you have a layout with nested layout components, the builders of each
layout will call the appropriate builder methods of their contained layouts to create their contents.

182

Sub-Component References

Visual User Interface Design with Eclipse (experimental)

7.4.3. The Constructor

When you create a new composite component using the wizard, it will create a constructor for
the component and fill its basic content.

public MyComponent() {
buildMainLayout();
setCompositionRoot(mainLayout);

// TODO add user code here
T

The most important thing to do in the constructor is to set the composition root of the Custom-
Component with the setCompositionRoot() (see Section 5.21, “Component Composition
with CustomComponent” for more details on the composition root). The generated constructor
first builds the root layout of the composite component with bui IdMainLayout() and then
uses the mainLayout reference.

The editor will not change the constructor afterwards, so you can safely change it as you want.
The editor does not allow changing the member variable holding a reference to the root layout,
so it is always named mainLayout.

The Constructor 183

184

Chapter 8

Themes

8.1, OVEIVIEW .o 185
8.2. Introduction to Cascading Style Sheetscooooiiiiii 187
8.3. Creating and UsiNg ThEMES ...ttt 192
8.4. Creating a Theme in EClIPSE ...oovviiiiiiiii 196

This chapter provides details about using and creating themes that control the visual look of
web applications. Themes consist of Cascading Style Sheets (CSS) and other theme resources
such as images. We provide an introduction to CSS, especially concerning the styling of HTML
by element classes.

8.1. Overview

Vaadin separates the appearance of the user interface from its logic using themes. Themes can
include CSS style sheets, custom HTML layouts, and any necessary graphics. Theme resources
can also be accessed from an application as ThemeResource objects.

Custom themes are placed under the WebContents/VAADIN/themes/ folder of the web ap-
plication. This location is fixed -- the VAADIN folder specifies that these are static resources
specific to Vaadin. The folder should normally contain also the built-in themes, although you
can let them be loaded dynamically from the Vaadin JAR (even though that is somewhat ineffi-
cient). Figure 8.1, “Contents of a Theme” illustrates the contents of a theme.

Book of Vaadin 185

Themes

Figure 8.1. Contents of a Theme

(. WebContent/VAADIN/themes

_ﬁ. 4 reindeer - a built-in theme
tg styles.css «----- 3 - theme style sheet
E i@import "../reindeer/styles.css";
_'uJ mytheme - a custom theme
—i styles.css oo 3 - theme style sheet
4“) img - image resources

i myimage.png

_— layouts - custom layouts

— mylayout.html - layout template

see

The name of a theme folder defines the name of the theme. The name is used in the setTheme ()
call. A theme must contain the styles.css stylesheet, but other contents have free naming.
We suggest a convention for naming the folders as img for images, layouts for custom layouts,
and css for additional stylesheets.

Custom themes that use an existing complete theme need to inherit the theme. See Section 8.3.2,
“Built-in Themes” and Section 8.3.4, “Theme Inheritance” for details on inheriting a theme.
Copying and modifying a complete theme is also possible, but it may need more work to maintain
if the modifications are small.

You use a theme with a simple setTheme () method call for the Application object as follows:

public class MyApplication
extends com.vaadin.Application {
public void initQ) {
setTheme(*'demo');

}

An application can use different themes for different users and switch between themes during
execution. For smaller changes, a theme can contain alternate styles for user interface compon-
ents, which can be changed as needed.

In addition to style sheets, a theme can contain HTML templates for custom layouts used with
CustomLayout. See Section 6.13, “Custom Layouts” for details.

Resources provided in a theme can also be accessed using the ThemeResource class, as
described in Section 4.5.4, “Theme Resources”. This allows using theme resources, such as
images, for example in Embedded objects and other objects that allow inclusion of images
using resources.

186

Overview

Themes

8.2. Introduction to Cascading Style Sheets

Cascading Style Sheets or CSS is a technique to separate the appearance of a web page from
the content represented in HTML or XHTML. Let us give a short introduction to Cascading Style
Sheets and look how they are relevant to software development with Vaadin.

8.2.1. Basic CSS Rules

A style sheet is a file that contains a set of rules. Each rule consists of one or more selectors,
separated with commas, and a declaration block enclosed in curly braces. A declaration block
contains a list of property statements. Each property has a label and a value, separated with a
colon. A property statement ends with a semicolon.

Let us look at an example:

p, td {
color: blue;

}

td {
background: yellow;
font-weight: bold;
}

In the example above, p and td are element type selectors that match with <p> and <td> ele-
ments in HTML, respectively. The first rule matches with both elements, while the second matches
only with <td> elements. Let us assume that you have saved the above style sheet with the
name mystylesheet.css and consider the following HTML file located in the same folder.

<html>
<head>
<link rel="stylesheet" type="text/css"
href="mystylesheet.css"/>
</head>
<body>

<p>This is a paragraph</p>
<p>This is another paragraph</p>
<table>
<tr>
<td>This is a table cell</td>
<t d>This is another table cell</td>
</tr>
</table>
</body>
</html>

The <link> element defines the style sheet to use. The HTML elements that match the above
rules are emphasized. When the page is displayed in the browser, it will look as shown in the
figure below.

Figure 8.2. Simple Styling by Element Type

This is a paragraph.

This is another paragraph.

This is a table cell |This is another table cell

Introduction to Cascading Style Sheets 187

Themes

CSS has an inheritance mechanism where contained elements inherit the properties of their
parent elements. For example, let us change the above example and define it instead as follows:

table {
color: blue;
background: yellow;

}

All elements contained in the <table> element would have the same properties. For example,
the text in the contained <td> elements would be in blue color.

Each HTML element type accepts a certain set of properties. The <div> elements are generic
elements that can be used to create almost any layout and formatting that can be created with
a specific HTML element type. Vaadin uses <div> elements extensively, especially for layouts.

Matching elements by their type is, however, rarely if ever used in style sheets for Vaadin com-
ponents or Google Web Toolkit widgets.

8.2.2. Matching by Element Class

Matching HTML elements by the class attribute of the elements is the most relevant form of
matching with Vaadin. It is also possible to match with the identifier of a HTML element.

The class of an HTML element is defined with the cl ass attribute as follows:

<html>
<body>
<p class="normal ">This is the first paragraph</ p>

<p class="anot her">This is the second paragraph</ p>

<table>
<tr>
<td class="normal ">This is a table cell</td>
<td class="anot her">This is another table cell</td>
</tr>
</table>
</body>
</html>

The class attributes of HTML elements can be matched in CSS rules with a selector notation
where the class name is written after a period following the element name. This gives us full
control of matching elements by their type and class.

p-normal {color: red;}

p-another {color: blue;}

td.normal {background: pink;}
td.another {background: yellow;}

The page would look as shown below:

Figure 8.3. Matching HTML Element Type and Class

This is a paragraph with "normal" class

This is a paragraph with "another" class

This is a table cell with "normal" class|This is a table cell with "another" class

188

Matching by Element Class

Themes

We can also match solely by the class by using the universal selector * for the element name,
for example *.normal. The universal selector can also be left out altogether so that we use
just the class name following the period, for example .normal.

-normal {
color: red;
3

.another {
blackground: yellow;
3

In this case, the rule will match with all elements of the same class regardless of the element
type. The result is shown in Figure 8.4, “Matching Only HTML Element Class”. This example il-
lustrates a technique to make style sheets compatible regardless of the exact HTML element
used in drawing a component.

Figure 8.4. Matching Only HTML Element Class

This is a paragraph with "normal" class

This is a paragraph with "another" class

|This is a table cell with "normal" class‘This is a table cell with "another" Class‘

To assure compatibility, we recommend that you use only matching based on the element
classes and do not match for specific HTML element types in CSS rules, because either Vaadin
or GWT may use different HTML elements to render some components in the future. For example,
IT Mill Toolkit Release 4 used <div> elements extensively for layout components. However, IT
Mill Toolkit Release 5 and Vaadin use GWT to render the components, and GWT uses the
<table> element to implement most layouts. Similarly, IT Mill Toolkit Release 4 used <div>
element also for buttons, but in Release 5, GWT uses the <button> element. Vaadin has little
control over how GWT renders its components, so we can not guarantee compatibility in different
versions of GWT. However, both <div> and <table> as well as <tr> and <td> elements accept
most of the same properties, so matching only the class hierarchy of the elements should be
compatible in most cases.

8.2.3. Matching by Descendant Relationship

CSS allows matching HTML by their containment relationship. For example, consider the following
HTML fragment:

<body>
<p class="mytext'>Here is some text inside a
paragraph element</p>
<table class="nyt abl e*'>
<tr>
<td class="nyt ext "">Here is text inside
a table and inside a td element.</td>
</tr>
</table>
</body>

Matching by the class name -mytext alone would match both the <p> and <td> elements. If
we want to match only the table cell, we could use the following selector:

-mytable _mytext {color: blue;}

Matching by Descendant Relationship 189

Themes

To match, a class listed in a rule does not have to be an immediate descendant of the previous
class, but just a descendant. For example, the selector ".v-panel .v-button"would match
all elements with class .v-button somewhere inside an element with class .v-panel.

Let us give an example with a real case. Consider the following Vaadin component.

public class LoginBox extends CustomComponent {
Panel panel = new Panel("Log In");

public LoginBox () {
setCompositionRoot(panel);

panel .addComponent(new TextField(''Username:'));
panel .addComponent(new TextField(''Password:""));
panel _.addComponent(new Button(''Login'™));

}

The component will look by default as shown in the following figure.

Figure 8.5. Themeing Login Box Example with ‘runo' theme.

LogIn

Username:

Passward:

Login |

Now, let us look at the HTML structure of the component. The following listing assumes that the
application contains only the above component in the main window of the application.

<body>
<div id="itmtk-ajax-window'>
<div>
<div class="v-orderedl ayout ">

<div>
<div class="v- panel ">
<div class="v-panel - caption'>Log | n</div>
<div class="v- panel - content ">
<div class="v-orderedl ayout ">
<div>
<div>
<div class="v-caption'>
User name:
</div>
</div>
<input type="text" class="v-textfield"/>
</div>
<div>
<div>
<div class="v-caption'>
Passwor d:
</div>
</div>
<input type="password"
class="v-textfield"/>
</div>
<div>

190 Matching by Descendant Relationship

Themes

<button type="button"
class="v- but t on">Logi n</button>
</div>
</div>
</div>
<div class="v- panel - deco"/>
</div>
</div>
</div>
</div>
</div>
</body>

Now, consider the following theme where we set the backgrounds of various elements.

-v-panel _v-panel-caption {
background: #80ff80; /* pale green */
}

-v-panel _v-panel-content {
background: yellow;

}

-v-panel _v-textfield {
background: #eOeOff; /* pale blue */

}

.v-panel _v-button {
background: pink;
}

The coloring has changed as shown in the following figure.

Figure 8.6. Themeing Login Box Example with Custom Theme

Login

Username:

Password:

Laogin |

An element can have multiple classes separated with a space. With multiple classes, a CSS
rule matches an element if any of the classes match. This feature is used in many Vaadin com-
ponents to allow matching based on the state of the component. For example, when the mouse
is over a Link component, over class is added to the component. Most of such styling is a
feature of Google Web Toolkit.

8.2.4. Notes on Compatibility

CSS was first proposed in 1994. The specification of CSS is maintained by the CSS Working
Group of World Wide Web Consortium (W3C). Its versions are specified as levels that build upon
the earlier version. CSS Level 1 was published in 1996, Level 2 in 1998. Development of CSS
Level 3 was started in 1998 and is still under way.

Notes on Compatibility 191

Themes

While the support for CSS has been universal in all graphical web browsers since at least 1995,
the support has been very incomplete at times and there still exists an unfortunate number of
incompatibilities between browsers. While we have tried to take these incompatibilities into ac-
count in the built-in themes in Vaadin, you need to consider them while developing custom
themes.

Compatibility issues are detailed in various CSS handbooks.

8.3. Creating and Using Themes

Custom themes are placed in VAADIN/themes folder of the web application (in the WebContent
directory) as illustrated in Figure 8.1, “Contents of a Theme”. This location is fixed. You need to
have a theme folder for each theme you use in your application, although applications rarely
need more than a single theme. For example, if you want to define a theme with the name
mytheme, you will place it in folder VAADIN/themes/mytheme.

A custom theme must also inherit a built-in theme, as shown in the example below:

@import "../reindeer/styles.css";

-v-app {
background: yellow;
3

Vaadin 6.0 includes two built-in themes: reindeer and runo. The latter is a compatibility theme
for IT Mill Toolkit 5; there is no longer a "default' theme. See Section 8.3.2, “Built-in Themes” and
Section 8.3.4, “Theme Inheritance” below for details on inheriting themes.

8.3.1. Styling Standard Components

Each user interface component in Vaadin has a CSS style class that you can use to control the
appearance of the component. Some components have additional sub-elements that also allow

styling.

Table 8.1, “Default CSS Style Names of Vaadin Components” lists the style classes of all Vaadin
components, together with their client-side widgets. Notice that a single server-side component
can have multiple client-side implementations. For example, a Button can be rendered on the
client side either as a regular button or a check box, depending on the swi t chMode attribute
of the button. For details regarding the mapping to client-side components, see Section 10.5,
“Defining a Widget Set”. Each client-side component type has its own style class and a number
of additional classes that depend on the client-side state of the component. For example, a text
field will have v-textfield-focus class when mouse pointer hovers over the component.
This state is purely on the client-side and is not passed to the server.

192

Creating and Using Themes

Themes

Table 8.1. Default CSS Style Names of Vaadin Components

Server-Side Component

Client-Side Widget

CSS Class Name

AbsolutelLayout VAbsoluteLayout v-absolutelayout

Accordion VAccordion v-accordion

Button VButton v-button

CheckBox VCheckBox v-checkbox

CsslLayout VCsslLayout v-csslayout

CustomComponent VCustomComponent |v-customcomponent

CustomLayout VCustomLayout v-customlayout

DateField VDateField v-datefield
VCalendar v-datefield-entrycalendar
VDateFieldCalendar |v-datefield-calendar
VPopupCalendar v-datefield-calendar
VTextualDate

Embedded VEmbedded -

Form VForm v-form

FormLayout VFormLayout -

GridLayout VGridLayout -

Label VLabel v-label

Link VLink v-link

OptionGroup VOptionGroup v-select-optiongroup

HorizontalLayout

VHorizontalLayout

v-horizontallayout

VerticalLayout

VVerticalLayout

v-verticallayout

Panel VPanel v-panel
Select
VListSelect v-listselect
VFilterSelect v-filterselect
Slider VSlider v-slider
SplitPanel VSplitPanel -
VSplitPanelHorizontal |-
VSplitPanelVertical -
Table VScrollTable v-table
VTablePaging v-table
TabSheet VTabSheet v-tabsheet
TextField VTextField v-textfield
VTextArea
VPasswordField
Tree VTree v-tree
TwinColSelect VTwinColSelect v-select-twincol

Styling Standard Components

193

Themes

Server-Side Component|Client-Side Widget |CSS Class Name

Upload VUpload -

Window VWindow v-window

- CalendarEntry -

- CalendarPanel v-datefield-calendarpanel
- ContextMenu v-contextmenu

- VUnknownComponent |vaadin-unknown

- VView -

- Menubar gwt-MenuBar

- Menultem gwt-Menultem
- Time v-datefield-time

Please see the documentation of the particular components for a listing of possible sub-com-
ponent styles.

Some client-side components can be shared by different server-side components. There is also
the VUnknownComponent, which is a component that indicates an internal error in a situation
where the server asked to render a component which is not available on the client-side.

8.3.2. Built-in Themes

Vaadin currently includes two built-in themes: reindeer and runo. The latter is the default
theme for IT Mill Toolkit 5 (where its name is "default"); the default theme in Vaadin 6.0 is
reindeer.

The built-in themes are provided in the respective VAADIN/themes/reindeer/styles._css
and VAADIN/themes/runo/styles.css stylesheets in the Vaadin library JAR. These
stylesheets are compilations of the separate stylesheets for each component in the corresponding
subdirectory. The stylesheets are compiled to a single file for efficiency: the browser needs to
load just a single file.

Various constants related to the built-in themes are defined in the theme classes in com.vaad-
in.ui.themes package. These are mostly special style names for specific components.

setTheme(*'runo™);

Panel panel = new Panel(*'Regular Panel in the Runo Theme™);
panel .addComponent(new Button(*'Regular Runo Button'));

// A button with the "small" style
Button smallButton = new Button(“Small Runo Button™);
smal IButton.addStyleName(Runo.BUTTON_SMALL);

Panel lightPanel = new Panel('Light Panel™);
lightPanel .addStyleName(Runo.PANEL_LIGHT);
lightPanel .addComponent(new Label (""With addStyleName(\"light\'")"™));

3

The example with the Runo theme is shown in Figure 8.7, “Runo Theme”.

194 Built-in Themes

Themes

Figure 8.7. Runo Theme

Regular Panel in the Runo Theme Light Panel

Regular Runo Button With addStyleName("light")
Small Runo Button

Serving Built-In Themes Statically
@ The built-in themes included in the Vaadin library JAR are served dynamically from

the JAR by the servlet. Serving themes and widget sets statically by the web server
is more efficient. You only need to extract the VAADIN/ directory from the JAR under
your WebContent directory. Just make sure to update it if you upgrade to a newer
version of Vaadin.

Creation of a default theme for custom GWT widgets is described in Section 10.3.3, “Styling
GWT Widgets”.

8.3.3. Using Themes

Using a theme is simple, you only need to set the theme with setTheme () in the application
object. The Eclipse wizard for creating custom Vaadin themes automatically adds such call in
the init() method of the application class, as explained in Section 8.4, “Creating a Theme in
Eclipse”.

Defining the appearance of a user interface component is fairly simple. First, you create a
component and add a custom style name for it with addStyleName (). Then you write the CSS
element that defines the formatting for the component.

8.3.4. Theme Inheritance

When you define your own theme, you will need to inherit a built-in theme (unless you just copy
the built-in theme).

Inheritance in CSS is done with the @ import statement. In the typical case, when you define
your own theme, you inherit a built-in theme as follows:

@import "../reindeer/styles.css";

-v-app {
background: yellow;
3

You can even create a deep hierarchy of themes by inheritance. Such a solution is often useful
if you have some overall theme for your application and a slightly modified theme for different
user classes. You can even make it possible for each user to have his or her own theme.

For example, let us assume that we have the base theme of an application with the name myapp
and a specific myapp-student theme for users with the student role. The stylesheet of the base

Using Themes 195

Themes

theme would be located in themes/myapp/styles.css. We can then ‘inherit" it in
themes/myapp-student/styles.css with a simple @import statement:

@import "../myapp/styles.css";

-v-app {
background: green;
}

This would make the page look just as with the base theme, except for the green background.
You could use the theme inheritance as follows:

public class MyApplication extends com.vaadin.Application {

public void initQ {
setTheme("'myapp");

}
public void login(User user) {
iT (user.role == User_ROLE_STUDENT)
setTheme('myapp-student');
}
public void logout() {
setTheme(*'myapp');

}

In the above example, the User class is an imaginary class assumed to hold user information.
8.4. Creating a Theme in Eclipse

The Eclipse plugin provides a wizard for creating custom themes. Do the following steps to
create a new theme.

1. Select File »~ New - Other... in the main menu or right-click the Project Explorer
and select New - Other.... A window will open.

2. In the Select a wizard step, select the Vaadin - Vaadin Theme wizard.

Select a wizard

Wizards:
type filter text

P = User Assistance]
= = Vaadin

vaadin CustomComponent (compoesite)

Waadin Widget

Vaadin Widgetset
b= web

b F Wik Candiene &

Click Next to proceed to the next step.
3. In the Create a new Vaadin theme step, you have the following settings:

Project (mandatory) The project in which the theme should be created.

196 Creating a Theme in Eclipse

Themes

Theme name (mandatory) The theme name is used as the name of the theme
folder and in a CSS tag (prefixed with "v-theme-"),
so it must be a proper identifier. Only latin alphanu-
merics, underscore, and minus sign are allowed.

Modify application classes to The setting allows the wizard to write a code state-
use theme (optional) ment that enables the theme in the constructor of
the selected application class(es). If you need to
control the theme with dynamic logic, you can leave
the setting unchecked or change the generated line
later.
R

Create a new Vaadin theme

This wizard creates a theme folder and styles.css file to WebContent/VAADIN directory

Project: [myproject -]

TIheme name: [myprojecttheme |

Modify application classes to use theme: | agpiication class

@ Myprojectapplication - com.example. myproject

<gack | |[Bnsh][cancel

Click Finish to create the theme.

The wizard creates the theme folder under the WebContent/VAADIN/themes folder and the
actual style sheet as styles.css, as illustrated in Figure 8.8, “Newly Created Theme”.

Figure 8.8. Newly Created Theme

The created theme inherits a built-in base theme with an @ import statement. See the explanation
of theme inheritance in Section 8.3, “Creating and Using Themes”. Notice that the reindeer
theme is not located in the widgetsets folder, but in the Vaadin JAR. See Section 8.3.2, “Built-
in Themes” for information for serving the built-in themes.

If you selected an application class or classes in the Modify application classes to use theme
in the theme wizard, the wizard will add the following line at the end of the init() method of
the application class(es):

setTheme("'myprojecttheme');

Notice that renaming a theme by changing the name of the folder will not change the
setTheme() calls in the application classes or vise versa. You need to change such references
to theme names in the calls manually.

Creating a Theme in Eclipse 197

198

Chapter 9

Binding
Components to
Data

9.1, OVEIVIEW . 199
9.2, PrOPEITIES .o 201
9.3. Holding properties in HEMSooiiiiii e 204
9.4. Collecting items in CONtaINErSooiiiiiiiii e, 206

This chapter describes the Vaadin Data Model and shows how you can use it to bind components
directly to data sources, such as database queries.

9.1. Overview

The Vaadin Data Model is one of the core concepts of the library. To allow the view (user interface
components) to access the data model of an application directly, we have introduced a standard
data interface.

The model allows binding user interface components directly to the data that they display and
possibly allow to edit. There are three nested levels of hierarchy in the data model: property,
item, and container. Using a spreadsheet application as an analogy, these would correspond
to a cell, a row, and a table, respectively.

Book of Vaadin 199

Binding Components to Data

Figure 9.1. Vaadin Data Model

' Property

‘ ‘ Type Value')
< y

Item

CType Value) CType L Value) CType | Value)
| _

Container

e N\

PID) PI’EJ PID

(Type Value) (Type Value) (Type Value)
A

C Type Value) (Type Value) (Type Value)

The Data Model is realized as a set of interfaces in the com.vaadin.data package. The package
contains the Property, Item, and Container interfaces, along with a number of more specialized
interfaces and classes.

Notice that the Data Model does not define data representation, but only interfaces. This leaves
the representation fully to the implementation of the containers. The representation can be almost
anything, such as a plain old Java object (POJO) structure, a filesystem, or a database query.

The Data Model is used heavily in the core user interface components of Vaadin, especially the
field components, that is, components that implement the Field interface or more typically extend
AbstractField, which defines many common features. A key feature of all the built-in field
components is that they can either maintain their data by themselves or be bound to an external
data source. The value of a field is always available through the Property interface. As more
than one component can be bound to the same data source, it is easy to implement various
viewer-editor patterns.

The relationships of the various interfaces are shown in Figure 9.2, “Interface Relationships in
Vaadin Data Model”; the value change event and listener interfaces are shown only for the
Property interface, while the notifier interfaces are omitted altogether.

200

Overview

Binding Components to Data

Figure 9.2. Interface Relationships in Vaadin Data Model

Data MOdel Ordered Indexed
Viewer Container Filterable Sortable
Editor addltem()
Hierarchical

IndexedContainer

Viewer Item
Editor adaitemProperty() HierarchicalContainer
Viewer Property ValueChangeEvent
Editor setValue() ValueChangelistener
getvaluch valueChange()
Field

The Data Model has many important and useful features, such as support for change notification.
Especially containers have many helper interfaces, including ones that allow indexing, ordering,
sorting, and filtering the data. Also Field components provide a number of features involving
the data model, such as buffering, validation, and lazy loading.

In addition to the interfaces, Vaadin library provides a number of built-in implementations of the
interfaces. The built-in implementations are used as the default data models in many field
components.

9.2. Properties

The Property interface is the base of the Vaadin Data Model. It provides a standardized API
for a single data object that can be read (get) and written (set). A property is always typed, but
can optionally support data type conversions. The type of a property can be any Java class.
Optionally, properties can provide value change events for following their changes.

The value of a property is written with setValue() and read with getValue(). The return
value is a generic Object reference, so you need to cast it to the proper type. The type can be
acquired with getType().

final TextField tf = new TextField("'Name™);

// Set the value
tf_setValue("'The text field value™);

// When the field value is edited by the user
tf_addListener(new Property.ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
// Get the value and cast it to proper type
String value = (String) tf.getValue();

// Do something with it

Properties 201

Binding Components to Data

layout.addComponent(new Label(value));
}
D:

Changes in the property value usually emit a ValueChangeEvent, which can be handled with
a ValueChangelistener. The event object provides reference to the property with
getProperty().

Properties are in themselves unnamed. They are collected in items, which associate the properties
with names: the Property Identifiers or PIDs. ltems can be further contained in containers and
are identified with ltem Identifiers or /IDs. In the spreadsheet analogy, Property Identifiers would
correspond to column names and [ltem Identifiers to row names. The identifiers can be arbitrary
objects, but must implement the equals(Object) and hashCode() methods so that they
can be used in any standard Java Collection.

The Property interface can be utilized either by implementing the interface or by using some
of the built-in property implementations. Vaadin includes a Property interface implementation
for arbitrary function pairs and bean properties, with the MethodProperty class, and for simple
object properties, with the ObjectProperty class, as described later.

In addition to the simple components, many selection components such as Select, Table, and
Tree provide their current selection through the Property property. In single selection mode,
the property is a single item identifier, while in multiple selection mode it is a set of item identifiers.
Please see the documentation of the selection components for further details.

Components that can be bound to a property have an internal default data source object, typically
a ObjectProperty, which is described later. As all such components are viewers or editors,
also described later, so you can rebind a component to any data source with
setPropertyDataSource().

9.2.1. Property Viewers and Editors

The most important function of the Property as well as of the other data model interfaces is to
connect classes implementing the interface directly to editor and viewer classes. This means
connecting a data source (model) to a user interface component (views) to allow editing or
viewing the data model.

A property can be bound to a component implementing the Viewer interface with
setPropertyDataSource().

// Have a data model
ObjectProperty property =
new ObjectProperty("'Hello", String.class);

// Have a component that implements Viewer
Label viewer = new Label();

// Bind it to the data
viewer .setPropertyDataSource(property);

You can use the same method in the Editor interface to bind a component that allows editing
a particular property type to a property.

// Have a data model
ObjectProperty property =
new ObjectProperty(*'Hello", String.class);

// Have a component that implements Viewer
TextField editor = new TextField("'Edit Greeting');

202

Property Viewers and Editors

Binding Components to Data

// Bind it to the data
editor.setPropertyDataSource(property);

As all field components implement the Property interface, you can bind any component imple-
menting the Viewer interface to any field, assuming that the viewer is able the view the object
type of the field. Continuing from the above example, we can bind a Label to the TextField
value:

Label viewer = new Label();
viewer .setPropertyDataSource(editor);

// The value shown in the viewer is updated immediately
// after editing the value in the editor (once it

// loses the focus)

editor.setlmmediate(true);

9.2.2. ObjectProperty Implementation

The ObjectProperty class is a simple implementation of the Property interface that allows
storing an arbitrary Java object.

// Have a component that implements Viewer interface
final TextField tf = new TextField("'Name™);

// Have a data model with some data
String myObject = "Hello";

// Wrap it in an ObjectProperty
ObjectProperty property =
new ObjectProperty(myObject, String.class);

// Bind the property to the component
tf._setPropertyDataSource(property);

9.2.3. Implementing the Property Interface

Implementation of the Property interface requires defining setters and getters for the value and
the read-only mode. Only a getter is needed for the property type, as the type is often fixed in
property implementations.

The following example shows a simple implementation of the Property interface:

class MyProperty implements Property {
Integer data = 0;
boolean readOnly = false;

// Return the data type of the model
public Class<?> getType() {

return Integer.class;
}

public Object getValue() {
return data;
}

// Override the default implementation in Object
@0override
public String toString() {
return Integer.toHexString(data);
}

public boolean isReadOnly() {

ObjectProperty Implementation 203

Binding Components to Data

return readOnly;

}

public void setReadOnly(boolean newStatus) {
readOnly = newStatus;

}

public void setValue(Object newValue)
throws ReadOnlyException, ConversionException {
if (readOnly)
throw new ReadOnlyException();

// Already the same type as the internal representation
if (newalue instanceof Integer)
data = (Integer) newValue;

// Conversion from a string is required
else if (newvalue instanceof String)

try {

data = Integer.parselnt((String) newValue, 16);
} catch (NumberFormatException e) {

throw new ConversionException();
}

else
// Don"t know how to convert any other types
throw new ConversionException();

// Reverse decode the hexadecimal value

}

// Instantiate the property and set its data
MyProperty property = new MyProperty();
property.setValue(42);

// Bind it to a component
final TextField tf = new TextField("'Name', property);

The components get the displayed value by the toString() method, so it is necessary to
override it. To allow editing the value, value returned in the toString() must be in a format
that is accepted by the setValue() method, unless the property is read-only. The toString()
can perform any type conversion necessary to make the internal type a string, and the
setValue() must be able to make a reverse conversion.

The implementation example does not notify about changes in the property value or in the read-
only mode. You should normally also implement at least the Property.ValueChangeNotifier
and Property.ReadOnlyStatusChangeNotifier. See the ObjectProperty class for an example
of the implementation.

9.3. Holding properties in ltems

The Item interface provides access to a set of named properties. Each property is identified
by a property identifier (PID) and a reference to such a property can be queried from an ltem
with getltemProperty() using the identifier.

Examples on the use of items include rows in a Table, with the properties corresponding to
table columns, nodes in a Tree, and the the data bound to a Form, with item's properties bound
to individual form fields.

Items are generally equivalent to objects in the object-oriented model, but with the exception
that they are configurable and provide an event handling mechanism. The simplest way to utilize

204

Holding properties in Items

Binding Components to Data

Item interface is to use existing implementations. Provided utility classes include a configurable
property set (Propertysetlitem) and a bean-to-item adapter (Beanltem). Also, a Form imple-
ments the interface and can therefore be used directly as an item.

In addition to being used indirectly by many user interface components, items provide the basic
data model underlying the Form component. In simple cases, forms can even be generated
automatically from items. The properties of the item correspond to the fields of the form.

The Item interface defines inner interfaces for maintaining the item property set and listening
changes made to it. PropertySetChangeEvent events can be emitted by a class implementing
the PropertySetChangeNotifier interface. They can be received through the Proper-
tySetChangelListener interface.

9.3.1. The Propertysetitem Implementation

The Propertysetltem is a generic implementation of the Item interface that allows storing
properties. The properties are added with add 1temProperty(), which takes a name and the
property as parameters.

The following example demonstrates a typical case of collecting ObjectProperty properties in
an item:

Propertysetltem item = new Propertysetltem();
item.addltemProperty(‘'name', new ObjectProperty(‘'Zaphod™));
item.addltemProperty(‘'age™, new ObjectProperty(42));

// Bind it to a component
Form form = new Form();
form.setltemDataSource(item);

9.3.2. Wrapping a Bean in a Beanltem

The Beanltem implementation of the Item interface is a wrapper for Java Bean objects. In fact,
only the setters and getters are required while serialization and other bean features are not, so
you can wrap almost any POJOs with minimal requirements.

// Here is a bean (or more exactly a P0JO)
class Person {

String name;

int age;

public String getName() {
return name;
b

public void setName(String name) {
this.name = name;

}

public Integer getAge() {
return age;
3

public void setAge(Integer age) {
this.age = age.intvalue();
b

}

// Create an instance of the bean
Person bean = new Person();

The Propertysetltem Implementation 205

Binding Components to Data

// Wrap it in a Beanltem
Beanltem<Person> item = new Beanltem<Person>(bean);

// Bind it to a component

Form form = new Form();
form.setltemDataSource(item);

You can use the getBean() method to get a reference to the underlying bean.

9.4. Collecting items in Containers

Container is the highest-level of the data model interfaces supported by Vaadin. It provides a
very flexible way of managing a set of items that share common properties. Each item is identified
by an item identifier or IID.

Items can be added to a container with the add I'tem() method. Notice that the actual item is
not passed as a parameter to the method, only the item ID, as the interface assumes that the
implementation knows how to create the item. The parameterless version of the method uses
an automatically generated item ID. Implementations can provide methods to add externally
created items, or they can assume that the item ID is also the item itself.

Properties can be requested from container by first requesting an item with getltem() and
then getting the properties from the item with getltemProperty(). You can also get a property
directly by the item and property ids with getContainerProperty().

The Container interface was designed with flexibility and efficiency in mind. It contains inner
interfaces that containers can optionally implement for ordering the items sequentially, indexing
the items, and accessing them hierarchically. Such ordering models provide the basis for the
Table, Tree, and Select components. As with other data model interfaces, the Container
supports events for notifying about changes made to their contents.

As containers can be unordered, ordered, indexed, or hierarchical, they can interface practically
any kind of data representation. Vaadin includes data connectors for some common data sources,
such as the simple tabular data, with IndexedContainer, and the filesystem, with Filesystem-
Container.

In addition to generic container implementations, also many user interface components are
containers as themselves, in addition to being properties. This is especially true for selection
components, that is, those that implement Select, because they are containers that contain
selectable items. Their property is the currently selected item. This is useful as it allows binding
components to view and updating each others' data directly, and makes it easy to reuse already
constructed data models, for example, a form could edit a row (item) of a table directly, and the
table could use a database container as its underlying container. The fields of the form would
correspond to the properties of the item, that is, the cells of the table row.

The library contains a set of utilities for converting between different container implementations
by adding external ordering or hierarchy into existing containers. In-memory containers imple-
menting indexed and hierarchical models provide easy-to-use tools for setting up in-memory
data storages. Such default container implementations include IndexedContainer, which can
be thought of as a generalization of a two-dimensional data table, and BeanltemContainer,
which maps standard Java objects (beans) to items of an indexed container. In addition, the
built-in containers include a hierarchical container for direct file system browsing.

206

Collecting items in Containers

Binding Components to Data

9.4.1. lterating Over a Container

As the items in a Container are not necessarily indexed, iterating over the items has to be done
using an lterator. The getltemlds() method of Container returns a Collection of item
identifiers over which you can iterate. The following example demonstrates a typical case where
you iterate over the values of check boxes in a column of a Table component. The context of
the example is the example used in Section 5.12, “Table”.

// Collect the results of the iteration into this string.
String items = "'';

// lterate over the item identifiers of the table.

for (lterator i = table.getltemlds().iterator(); i.hasNext();) {
// Get the current item identifier, which is an integer.
int iid = (Integer) i.next();

// Now get the actual item from the table.
Item item = table.getltem(iid);

// And now we can get to the actual checkbox object.
Button button = (Button)
(item.getltemProperty(*'ismember™).getvValue());

// 1T the checkbox is selected.
if ((Boolean)button.getValue() == true) {
// Do something with the selected item; collect the
// first names in a string.
items += item.getltemProperty("'First Name')
.getvalue() + " *';

}

// Do something with the results; display the selected items.
layout.addComponent (new Label(*'Selected items: " + items));

Notice that the getltemlds() returns an unmodifiable collection, so the Container may not
be modified during iteration. You can not, for example, remove items from the Container during
iteration. The modification includes modification in another thread. If the Container is modified
during iteration, a ConcurrentModificationException is thrown and the iterator may be left in
an undefined state.

Iterating Over a Container 207

208

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.

Chapter 10

Developing
Custom
Components

OVEIVIBW .o, 210
Doing It the Simple Way in ECHPSEvvvvvviiiiiiii e, 212
Google Web Toolkit WIAQELSovvviiiiiiiii 216
Integrating @ GWT Widget ..., 221
Defining @ Widget SEtvvvviiiii 226
Server-Side COMPONENTS ..o 227
Using a Custom COmMPOoNeNntcvviiiiiiiiiiiiieeeee e, 229
GWT Widget Development ... 231

This chapter describes how you can create custom client-side components as Google Web
Toolkit (GWT) widgets and how you integrate them with Vaadin. The client-side implementations
of all standard user interface components in Vaadin use the same client-side interfaces and
patterns.

Google Web Toolkit is intended for developing browser-based user interfaces using the Java
language, which is compiled into JavaScript that is executed in the browser. Knowledge of such
client-side technologies is usually not needed with Vaadin, as its built-in repertoire of user inter-
face components should be sufficient for most applications. The easiest way to create custom

Book of Vaadin 209

Developing Custom Components

components in Vaadin is to make composite components with the CustomComponent class,
as described in Section 5.21, “Component Composition with CustomComponent”. In some
cases, however, you may need to make modifications to existing components, integrate existing
GWT widgets with your application, or create entirely new ones.

Creation of new widgets involves a number of rather intricate tasks. The Vaadin Plugin for Eclipse
makes many of the tasks much easier, so if you are using Eclipse and the plugin, you should
find Section 10.2, “Doing It the Simple Way in Eclipse” helpful.

If you need more background on the architecture, Section 3.4, “Client-Side Engine” gives an
introduction to the architecture of the Vaadin Client-Side Engine. If you are new to Google Web
Toolkit, Section 3.2.2, “Google Web Toolkit” gives an introduction to GWT and its role in the ar-
chitecture of Vaadin.

On Terminology
@ Google Web Toolkit uses the term widget for user interface components. In this

book, we use the term widget to refer to client-side components made with Google
Web Toolkit, while using the term component in a general sense and also in the
special sense for server-side components.

10.1. Overview

The Client-Side Engine of Vaadin runs in the web browser as a JavaScript program and renders
the user interface components according to state data received from the server. For each
server-side component, there is a client-side widget, which renders the content of the particular
component type. The client-side engine and all the built-in client-side widgets of Vaadin have
been programmed in Java with GWT, and compiled into JavaScript with the GWT Compiler.
Developing custom Vaadin components and integrating existing GWT widgets is easy, requiring
only Java programming.

You can start with any existing GWT widget or design a new one. To integrate it with Vaadin,
you have to implement the Paintable interface of the client-side engine that provides the AJAX
communications with the server-side application. You can find the interface in the com.vaad-
in.terminal.gwt.client package. You can also choose to extend an existing Vaadin client-side
widget in the com.vaadin.terminal.gwt.client.ui package. You can find the source code for the
built-in widgets in the Vaadin JAR.

To use custom widgets, you need to define a widget set that inherits the DefaultWidgetSet,
which contains the standard widgets, or some other widget set. You can also define stylesheets
for custom widgets. A widget set is defined in a GWT Module Descriptor.

For the server-side API, you need a server-side component that can serialize and deserialize
its attributes to and from the client-side counterpart. A server-side component usually inherits
the AbstractComponent or AbstractField class and implements either the paintContent()
or the more generic paint() method to serialize its data to the client. These methods "paint"
the component in the browser by generating a UIDL element that is sent to the client. The UIDL
element contains all the relevant information about the component, and you can easily add your
own attributes to it. Upon reception of UIDL messages, the client-side engine creates or updates
user interface widgets as needed.

To summarize, you need to do the following:

¢ Implement the Paintable interface of Vaadin in a GWT widget

210

Overview

Developing Custom Components

e Define a widget set that extends an existing widget set with the new widget
¢ Create a default CSS style sheet for the widget set (optional)

¢ Create a GWT Module Descriptor (.gwt.xml) that defines the widget set and the op-
tional style sheet

¢ Create a server-side counterpart for the client-side widget

Figure 10.1, “Color Picker Package” illustrates the folder hierarchy of the Color Picker example
used in this chapter. The example is available in the demo application of Vaadin with URL
/colorpicker/. You can find the full source code of the application in the source folder of
the demos in the installation package.

Figure 10.1. Color Picker Package

J com.vaadin.demo.colorpicker

») ColorPickerApplication.java - a demo application
7| ColorPicker.java - custom server-side component
| widgetset - widget set GWT module

—;:J ColorPickerWidgetSet.gwt.xml - GWT module descriptor
— g client - client-side source code
1 J ui - GWT widgets
7| GwtColorPicker.java - custom widget

7| VColorPicker.java - integration widget

J public

J colorpicker

=N styles.css - widgetset style sheet

The ColorPickerApplication. java application provides an example of using the custom
ColorPicker component. The source code for the server-side implementation of the component
is located in the same folder.

The GWT Compiler takes the root folder of the client-side source code as its argument and
compiles all the Java source files into JavaScript. A client-side widget set must therefore be
contained within a single package, which in the Color Picker example is the
com.vaadin.demo.colorpicker.gwt.client package. The inherited widget set and an
optional style sheet are specified in a . gwt.xml descriptor for the GWT Compiler. In the example,
the client-side widget is split in two classes: GwtColorPicker, a pure GWT widget, and VCol-
orPicker that provides the integration with Vaadin. The default style sheet for the widget set is
defined in the descriptor and located in the gwt/public/colorpicker/styles.css sub-
folder.

Overview 211

Developing Custom Components

10.2. Doing It the Simple Way in Eclipse

While you can develop new widgets with any IDE or even without, you may find Eclipse and the
Vaadin Plugin for it useful, as it automates all the basic routines of widget development, most
importantly the creation of new widgets.

10.2.1. Creating a Widget

You can create a new widget as follows:

1. Select File -~ New - Other... in the main menu or right-click the Project Explorer
and select New — Other... or press Ctrl-N to open the New dialog.

2. In the first, Select a wizard step, select Vaadin - Vaadin Widget and click Next.

Select a wizard <>

Wizards:

]

= = Vaadin
Vaadin CustomComponent (composite)
[waadin Project
5. Vaadin Theme

e WVaadin Widget

%7 Vaadin Widgetset (for Vaadin 6.1 and older)

(«]» [T

@ [I Mext = ” H Cancel l

3. In the New Component wizard step, fill out the target folder, package, and class in-
formation.

212 Doing It the Simple Way in Eclipse

Developing Custom Components

Source folder:

New Component wizard

This wizard creates a new Vaadin widget.

[mypro]ectfsrc][Browse...]

Package: [com.example.mypro]ect
Name: [MyComponent l
Superclass: [com.vaadin.ui.AbstractComponent][Browse...]
Build client side stub:

@ i < Back i l i Finish i [Cancel l

Source folder

Package

Name

Superclass

Build client-side stub

The root folder of the entire source tree. The default
value is the default source tree of your project, and
you should normally leave it unchanged unless you
have a different project structure.

The parent package under which the new server-side
component should be created. If it does not already
exist, the . gwt . xml descriptor that defines the widget
set will be created under the widgetset subpackage
under this package, and the actual new widget under
the widgetset.client.ui subpackage.

The class name of the new server-side component.
The name of the client-side widget stub (if you have
its creation enabled) will be the same but with "V-"
prefix, for example, VMycomponent. You can rename
the classes afterwards.

The superclass of the server-side component. It is
AbstractComponent by default, but com.vaad-
in.ui.AbstractField or com.vaadin.ui.AbstractSelect
are other commonly used superclasses. If you are ex-
tending an existing component, you should select it
as the superclass. You can easily change the super-
class later.

When this option is selected (strongly recommended),
the wizard will build a stub for the client-side widget.

Finally, click Finish to create the new component.

The wizard will:

e Create a server-side component stub in the base package

¢ Create a GWT module descriptor file (.gwt.xml) in the widgetset package under

the base package

Creating a Widget

213

Developing Custom Components

10.2.2.

* Create a client-side widget stub in the widgetset.client.uil package under the
base package

¢ Modify the web.xml deployment descriptor to specify the widget set class name
parameter for the application.

The structure of the server-side component and the client-side widget, and the serialization of
component state between them, is explained in the subsequent sections of this chapter.

To compile the widget set, click the Compile widget set button in the Eclipse toolbar. See
Section 10.2.2, “Recompiling the Widget Set” for details. After the compilation finishes, you
should be able to run your application as before, but using the new widget set. The compilation
resultis written under the WebContent/VAAD IN/widgetsets folder. When you need to recom-
pile the widget set in Eclipse, see Section 10.2.2, “Recompiling the Widget Set”. For detailed
information on compiling widget sets, see Section 10.8.4, “Compiling GWT Widget Sets”.

The following setting is inserted in the web .xml deployment descriptor to enable the widget
set:

<init-param>
<description>Application widgetset</description>
<param-name>widgetset</param-name>

<param-value>com exanpl e. nyproj ect. w dget set. Mypr oj ect Appl i cati onW dget set </param-value>
</init-param>

You can refactor the package structure if you find need for it, but GWT compiler requires that
the client-side code must always be stored under a package named "client".

Recompiling the Widget Set

After you edit a widget, you need to recompile the widget set. Vaadin automatically suggests
to compile the widget set every time you save a client-side source file. If this gets annoying, you
can disable the automatic recompilation from the Vaadin category in project settings, by selecting
the Suspend automatic widgetset builds option.

You can recompile the widget set manually by clicking the Compile widgetset button in the
Eclipse toolbar, shown in Figure 10.2, “The Compile Widgetset Button in Eclipse Toolbar” while
the project is open and selected.

Figure 10.2. The Compile Widgetset Button in Eclipse Toolbar

@ | R |8 H §FH 0 o

The compilation progress is shown in the Console panel in Eclipse, as illustrated in Figure 10.3,
“Recompiling a Widget Set”.

The compilation output is written under the WebContent/VAADIN/widgetsets folder, in a
widget set specific folder.

You can speed up the compilation significantly by compiling the widget set only for your browser
during development. The generated .gwt.xml descriptor stub includes a disabled element
that specifies the target browser. See Section 10.5, “Defining a Widget Set” for more details on
setting the user-agent property.

214

Recompiling the Widget Set

Developing Custom Components

Figure 10.3. Recompiling a Widget Set

[l Problems | 4L Servers

Done.

©" Progress| @] Error Log| 5 LE =

Wl
L=
4

0
|

Vaadin Widgetset Compilation
Compiling module com.example.myproject.widgetset.MyWidgetset
Scanning for additional dependencies: jar:file:/home/magi/itmill/workspace
Computing all possible rebind results for 'com.vaadin.terminal.gwt.clie
Rebinding com.vaadin.terminal.gwt.client.wWidgetMap
Invoking =generate-with class='com.vaadin.terminal.gwt.widgetset
Detecting vaading components in classpath to generate WidgetM
Widget set will contain implementations for following compone
(Sseconds)
Compiling 6 permutations
Permutation complle succeeded
Linking into WebContent/VAADIN/widgetsets
Link succeeded
Compilation succeeded -- 79,772s

[

[4v]

+ [Fa]

L[]

For detailed information on compiling widget sets, see Section 10.8.4, “Compiling GWT Widget
Sets”. Should you compile a widget set outside Eclipse, you need to refresh the project by se-
lecting it in Project Explorer and pressing F5.

10.2.3. Plugin Related Project Settings

When you have the Eclipse Plugin installed, the project settings will have a Vaadin section,
where you can select the Vaadin version and make settings to widget set building. The settings
window is shown in Figure 10.4, “Plugin Related Project Settings”.

Figure 10.4. Plugin Related Project Settings

J3r ragment
Project Facets
Project References
Refactoring History
Run/Debug Settings
Server

Service Policies
Subversion
Targeted Runtimes

b Task Repository

Task Tags

b walidation

Web Content Setting
Web Page Editor
Web Project Settings
WikiText

b XDoclet

]

[4]¥]

Properties for csvalidation ox
Vaadin =R T 4
Use Vaadin
Vaadin
Vaadin version: | 6.1.2 - I[Down\oad...

Widgetsets

Suspend automatic widgetset builds

Create hosted mode launch

To optimize widgetset compilation time, modify the "user.agent” parameter in the

widgetset module file {.gwt.xml),

To debug client-side code with hosted mode, first download a full GWT package and replace
the GWT JARs on the build path with it.

To use OOPHM, download the 0OPHM Vaadin package and use the GWT version bundled with it.
Then install the appropriate browser plugin from the package.

Javascript style: [Pretty

Compiler threads: [

l

[Restore Defaults] [Apply

Suspend automatic widgetset

builds

Normally, when this option is unselected, Eclipse will

suggest to rebuild the widget set automatically every
time you save a widget source file. If this gets annoy-
ing, you can suspend the automatic building by en-

Plugin Related Project Settings

215

Developing Custom Components

abling this option. You then have to click the widget
set build button in the Eclipse toolbar.

JavaScript style Normally, GWT outputs obfuscated JavaScript to make
the code less readable. The main purpose is to protect
the intellectual property, but the obfuscated code is
also more compact, reducing the time required to load
and parse the files. The Obfuscated mode is the de-
fault. The other output types are Pretty, which makes
the JavaScript more readable to a human, and De-
tailed, which is more detailed than the pretty option
with, for example, more descriptive variable names.

Compiler threads You can set the GWT Compiler to use a specific num-
ber of threads to use the available processor cores.

Create development mode Clicking this button generates a launch configuration

launch for starting the application in GWT Development Mode.
You can use the launch configuration to debug client-
side code. See Section 10.8.6, “GWT Development
Mode” for detailed information on the GWT Develpment
Mode launch configuration.

The plugin will automatically download the GWT version compatible with the selected Vaadin
package.

10.3. Google Web Toolkit Widgets

Let us take a look into how you create custom GWT widgets. The authoritative sources for devel-
oping with GWT are the Google Web Toolkit Developer Guide and Google Web Toolkit Class
Reference, both available from the GWT website.

Google Web Toolkit offers a variety of ways for creating custom widgets. The easiest way is to
create composite widgets by grouping existing basic widgets and adding some interaction logic
to them. You can also develop widgets using the lower-level Java interfaces used by the
standard GWT widgets or the really low-level JavaScript interfaces.

A custom GWT widget needs to find its place in the GWT class hierarchy. Figure 10.5, “GWT
Widget Base Class Hierarchy” illustrates the abstract base classes for GWT widgets.

216

Google Web Toolkit Widgets

Developing Custom Components

Figure 10.5. GWT Widget Base Class Hierarchy

Google Web Toolkit

Hidden FileUpload

UlObject

TabBar SuggestBox

Hyperlink
. Image

Widget

MenuBar

TextBoxBase

TabPanel

Composite FocusWidget

ListBox ButtonBase

DisclosurePanel

/V

SimplePanel I
ComplexPanel '
HTMLTable '

=J
-~
-
-

My Widget

Each of the base classes offers various services for different types of widgets. Many custom
widgets, such as the Color Picker example below, extend the Composite class to compose the
widget from existing GWT widgets. The other base classes offer various features useful for dif-
ferent kinds of widgets. You can also choose to extend an existing GWT widget, as we have
done for most of the standard user interface components of Vaadin, or to extend a Vaadin widget.

10.3.1. Extending a Vaadin Widget

Extending an existing Vaadin widget is an easy way to add features, such as advanced client-
side validation, to existing standard components. Just extend both the server-side component
and the client-side widget, and add the needed properties and other functionality.

A few guidelines apply for extending existing components:

¢ Do notredefine the client or id member variables in the subclass. They should always
be defined as protected and set by the base class where they are defined in

updateFromUIDLQ).
¢ Call super() as the first thing in the constructor.

¢ In updateFromUIDLQ):

¢ Do not call client.updateComponent() as it is already called in the superclass.
If the superclass calls it in an undesired way, you have to reimplement the entire
functionality and not call super .updateFromUIDL() at all.

¢ Call super.updateFromUIDL(uidl, client), unless you specifically want to
change the behaviour of the superclass implementation of the method. In such case,

you have to set the client and id yourself.

¢ Be careful about overloading superclass handlers, etc.

10.3.2. Example: A Color Picker GWT Widget

In the following example, we present a custom widget composited from the HorizontalPanel,
Grid, Button, and Label GWT widgets. This widget does not include any Vaadin integration

Extending a Vaadin Widget

217

Developing Custom Components

with the server-side code, which will be added in a separate integration widget later in this
chapter.

package com.vaadin.demo.colorpicker.gwt.client.ui;

import com.google.gwt.event.dom.client._*;
import com.google.gwt.user.client._*;
import com.google.gwt.user.client_ui.*;

/**
* A regular GWT component without integration with Vaadin.
*/
public class GwtColorPicker extends Composite
implements ClickHandler {

// The currently selected color name to give client-side
// feedback to the user.
protected Label currentcolor = new Label();

public GwtColorPicker() {

// Create a 4x4 grid of buttons with names for 16 colors

final Grid grid = new Grid(4, 4);

final String[] colors = new String[] { "aqua"™, "black",
"blue", "fuchsia", "gray', ''green', "lime",
"maroon', "navy', "olive", "purple', "red",
“silver”, "teal", "white", "yellow" };

int colornum = 0O;

for (int i =0; i < 4; i++) {

for (int j = 0; j < 4; j++, colornum++) {

// Create a button for each color
Button button = new Button(colors[colornum]);
button.addClickHandler(this);

// Put the button in the Grid layout
grid.setWidget(i, j, button);

// Set the button background colors.

DOM.setStyleAttribute(button.getElement(),
"background",
colors[colornum]);

// For dark colors, the button label must be

// in white.
if ("black navy maroon blue purple”
-indexOf(colors[colornum]) 1= -1) {

DOM.setStyleAttribute(button.getElement(),
"color", "white");

}

// Create a panel with the color grid and currently
// selected color indicator.

final HorizontalPanel panel = new HorizontalPanel();
panel _add(grid);

panel _.add(currentcolor);

// Set the class of the color selection feedback box
// to allow CSS styling. We need to obtain the DOM
// element for the current color label. This assumes
// that the <td> element of the HorizontalPanel is
// the parent of the label element. Notice that the
// element has no parent before the widget has been
// added to the horizontal panel.
final Element panelcell =
DOM.getParent(currentcolor.getElement());
DOM.setElementProperty(panelcell, '"className",

218 Example: A Color Picker GWT Widget

Developing Custom Components

"*colorpicker-currentcolorbox™);

// Set initial color. This will be overridden with the
// value read from server.
setColor('white™);

// Composite GWT widgets must call initWidget().
initWidget(panel);
}

/** Handles click on a color button. */
@0verride
public void onClick(ClickEvent event) {
// Use the button label as the color name to set
setColor(((Button) event.getSource()).getText());
3

/** Sets the currently selected color. */

public void setColor(String newcolor) {
// Give client-side feedback by changing the color
// name in the label.
currentcolor.setText(newcolor);

// Obtain the DOM elements. This assumes that the <td>
// element of the HorizontalPanel is the parent of the
// caption element.

final Element caption = currentcolor.getElement();
final Element cell = DOM.getParent(caption);

// Give feedback by changing the background color
DOM.setStyleAttribute(cell, "background”, newcolor);
DOM.setStyleAttribute(caption, "background”™, newcolor);
if ("black navy maroon blue purple”
-indexOf(newcolor) 1= -1)

DOM.setStyleAttribute(caption, "color', "white');
else

DOM.setStyleAttribute(caption, "color', "black™™);

}

You can find the source code in the source folder of the Vaadin installation package, under the
Java package com.vaadin.demo.colorpicker.

This example demonstrates one reason for making a custom widget: it provides client-side
feedback to the user in a way that would not be possible or at least practical from server-side
code. Server-side code can only select a static CSS style or a theme, while on the client-side
we can manipulate styles of HTML elements flexibly. Notice that manipulation of the DOM tree
depends somewhat on the browser. In this example, the manipulation should be rather compat-
ible, but in some cases there could be problems. Thd standard GWT and Vaadin widgets handle
many of such compatibility issues, but when doing low-level operations such as DOM manipu-
lation, you may need to consider browser compatibility.

The structure of the DOM tree depends on how GWT renders its widgets in a specific browser.
It is also not guaranteed that the rendering does not change in future releases of GWT. You
should therefore make as few assumptions regarding the DOM structure as possible. Unfortu-
nately, GWT does not provide a way to set the style of, for example, cells of layout elements.
The above example therefore assumes that the Grid is a table and the <button> elements are
inside <td> elements of the table. See Section 10.3.3, “Styling GWT Widgets” below for more
details on compatibility.

The widget will look as shown in Figure 10.6, “Color Picker Widget Without Styling”.

Example: A Color Picker GWT Widget 219

Developing Custom Components

Figure 10.6. Color Picker Widget Without Styling

aqua [iuEREEy ve!low
Cgray (NGEEERN time

[nay I red

silver |- white | i ’

As you may notice, the widget will look rather uninviting without CSS styling. We will next look
how to define a default style for a GWT widget.

10.3.3. Styling GWT Widgets

GWT renders its widgets in the DOM tree of the web browser as HTML elements. Therefore, you
can define their style with Cascading Style Sheets (CSS), just as in HTML. The GWT Compiler
supports packaging style sheets from the source package tree. The style sheet is defined in
the .gwt.xml GWT module descriptor file (see Section 10.5, “Defining a Widget Set” for details).

<I-- Default theme for the widget set. -->
<stylesheet src="colorpicker/styles.css"/>

The style sheet path is relative to the public folder under the folder containing the .gwt.xml
file. In Eclipse, you can add the folders as regular folders instead of Java packages.

Let us define the colorpicker/styles.css as follows.

/* Set style for the color picker table.
* This assumes that the Grid layout is rendered
* as a HTML <table>. */
table.example-colorpicker {

border-collapse: collapse;

border: Opx;

/* Set color picker button style.
* This does not make assumptions about the HTML
* element tree as it only uses the class attributes
* of the elements. */
.example-colorpicker .gwt-Button {
height: 60px;
width: 60px;
border: none;
padding: Opx;

/* Set style for the right-hand box that shows the
* currently selected color. While this may work for
* other implementations of the HorizontalPanel as well,
* it somewhat assumes that the layout is rendered
* as a table where cells are <td> elements. */
.colorpicker-currentcolorbox {
width: 240px;
text-align: center;
/* Must be limportant to override GWT styling: */
vertical-align: middle !important;

}

The stylesheet above makes some assumptions regarding the HTML element structure. First, it
assumes that the Grid layout is a table. Second, the custom class name,
colorpicker-currentcolorbox, of the right-hand HorizontalPanel cell was inserted in

220

Styling GWT Widgets

Developing Custom Components

the DOM representation of the widget in the GwtColorPicker implementation. Styling a button
makes less assumptions. Using only class names instead of specific element names may make
a stylesheet more compatible if the HTML representation is different in different browsers or
changes in the future.

Figure 10.7. Color Picker Widget With Styling

‘IIHHHII\IIIIIII
IIIIIII\IIIIIII\IIIIIII\IHIHIHII\ yellow
IIIHIII\IIIIIIIlIIIHHIlIIIIIII

silver . white yellow

10.4. Integrating a GWT Widget

Integration of GWT widgets with Vaadin can be done in two basic ways: by modifying the original
widget or by extending it and adding the integration code in the subclass. The latter way is ac-
tually the way the standard client-side components in Vaadin are done: they simply inherit the
corresponding standard GWT widgets. For example, VButton inherits GWT Button.

agua

The client-side integration code has the following tasks:
e Receive component state from server
e Send state changes caused by user interaction to server
e Manage CSS style class

The integration is broken down in the following sections into server-client deserialization done
in updateFromUIDL() and client-server serialization done with updateVariable(). The
complete example of the integration of the Color Picker widget is given at the end of this section.

If you are using the Eclipse IDE, the Vaadin Plugin for Eclipse allows easy creation of a stub for
a new widget, alongside its server-side component. It also manages the widget set for you
automatically. See Section 10.2.1, “Creating a Widget” for detailed instructions.

Naming Conventions
@ While the use of Vaadin does not require the use of any particular naming conven-

tions for GWT widgets, some notes regarding naming may be necessary. Even
though Java package names make it possible to use identical class names in the
same context, it may be useful to try to make them more distinctive to avoid any in-
convenience. GWT uses plain names for its standard widgets, such as Button. The
standard components of Vaadin use identical or similar names, but that does not
cause any inconvenience, because the GWT widgets and server-side components

Integrating a GWT Widget 221

Developing Custom Components

of Vaadin are never used in the same context. For the client-side components of
Vaadin, we use the "V" prefix, for example VButton. In the Color Picker example,
we use GwtColorPicker for the GWT widget, VColorPicker for the integration im-
plementation, and ColorPicker for the server-side component. You may wish to
follow similar conventions.

Notice that the naming convention changed when IT Mill Toolkit was renamed as
Vaadin. The prefix for client-side widgets in IT Mill Toolkit was I, which was changed
to V in Vaadin. Similarly, CSS style name prefixes were changed from i- to v-.

10.4.1. Deserialization of Component State from Server

To receive data from the server, a widget must implement the Paintable interface and its
updateFromUIDL() method. The idea is that the method "paints" the user interface description
by manipulating the HTML tree on the browser. Typically, when using composite GWT compon-
ents, most of the DOM tree manipulation is done by standard GWT widgets.

An implementation of the updateFromUIDL() method must include some routine tasks:
¢ Call updateComponent() and return if it succeeds
¢ Manage the component identifier

¢ Manage a reference to the ApplicationConnection object. The widget needs to know
it to be able to initiate a server request when a browser event occurs.

The latter two of these tasks are not needed if the widget does not handle any user input that
needs to be sent to server.

The following excerpt provides a skeleton for the updateFromUIDL() method and shows how
the component identifier and connection object reference are managed by a widget.

String uidlld;
ApplicationConnection client;

public void updateFromUIDL(UIDL uidl,
ApplicationConnection client) {
if (client.updateComponent(this, uidl, true))
return;

this.client = client;
uidlld = uidl.getld(Q);

}

The updateComponent() call has several functions important for different kinds of components.
It updates various default attributes, such as di sabl ed, readonl y, i nvi si bl e, and (CSS)
st yl e attributes. If the manageCapt i on argument is true, the call will also update the caption
of the component. By default, the caption is managed by the parent layout of the component.
Components, such as a Button, that manage the caption themselves, do not need management
of the caption.

The updateComponent() is also part of the transmutation mechanism that allows a single
server-side component to have alternative client-side implementations, based on its parameters.
For example, the Button server-side component can manifest either as a clickable VButton or

222

Deserialization of Component State from Server

Developing Custom Components

10.4.2.

as a switchable VCheckBox widget on the client-side. If the parameters are changed, the client-
side widget can be replaced with another dynamically. Determination of the correct implement-
ation is done in a WidgetSet. If updateComponent() returns true, the client-side engine can
attempt to replace the implementation. For more details on the transmutation mechanism, see
Section 10.5, “Defining a Widget Set”.

The component identifier is used when the component needs to serialize its updated state to
server. The reference to the application connection manager is needed to make the server re-
quest. If a component does not have any state changes that need to be sent to the server,
management of the variables is not needed. See Section 10.4.2, “Serialization of Component
State to Server” below for further details.

The design of the client-side framework of Vaadin, because the Paintable is an interface and
can not store any references. Having an APl layer between GWT and custom widgets would be
a much more complicated solution.

Serialization of Component State to Server
User input is handled in GWT widgets with events.

User input is passed to the server using the updateVariable() method. If the i mredi at e
parameter is f al se, the value is simply added to a queue to be sent to the server at next AJAX
request. If the argument is t r ue, the AJAX request is made immediately, and will include all
queued updates to variables. The i nmedi at e argument is described in more detail below.

ifT (uidl_id == null]] client == null)
return;

client.updateVariable(uidl_id, "myvariable",
newvalue, immediate);

The cl i ent of the above example is a reference to the ApplicationConnection object that
manages server requests. The ui dl _i d argument is the UIDL identifier obtained during a
updateFromUIDL(Q) call with uidl.getld() method.

The updateVariable() method has several varieties to send variables of different types.

Table 10.1. UIDL Variable Types

Type Description UIDL Type
String |String object. s
int Native integer value. i
long Native long integer value. I

float Native single-precision floating-point value.

double |Native double-precision floating-point value.

f
d
boolean [Native boolean value. b
a

Object[] |Array of object data. The toString() method is used to serialize
each of the objects. The content strings are escaped with
escapeString(), to allow characters such as quotes.

This serialization mechanism is intended to be as simple as possible in most cases, when the
user input is typically just one state variable, while also allowing the serialization of more complex
data, if necessary.

Serialization of Component State to Server 223

Developing Custom Components

Immediateness

10.4.3.

Server-side components that inherit AbstractComponent have an i rmedi at e attribute, set
with setImmediate(). This attribute dictates whether a component makes a server request
immediately when its state changes, or only afterwards. For example, there is no need to send
the contents of a "Username" TextField before the "Login" button has been clicked. On the
other hand, the server can set the TextField as immediate to receive changes for example
when the component loses focus.

Most widgets should support immediateness by receiving the i medi at e attribute from the
UIDL message that renders the widget. The following example is extracted from the VTextField
implementation.

// Store the immediate attribute in a member variable
private boolean immediate = false;

public void updateFromUIDL(UIDL uidl,
ApplicationConnection client) {
if(client.updateComponent(this, uidl, true))
return;

// Receive and store the immediate attribute
immediate = uidl._getBooleanAttribute("immediate™);

}

public void onChange(Widget sender) {
if(client = null && id = null) {
// Use the stored immediate attribute to say
// whether or not make the server request
// immediately.
client.updateVariable(id, "text", getText(),
immediate);

}

In some widgets, the i mredi at e attribute would have little meaning, and in fact an accidental
f al se value would cause undesired behaviour. For example, a button is always expected to
send a request to the server when it is clicked. Such widgets can simply use true for the
i medi at e argument in updateVariable(). For example, VButton does as follows:

public void onClick(Widget sender) {
it (id == null || client == null)
return;
client.updateVariable(id, "state", true,
/* always immediate */ true);

}
Example: Integrating the Color Picker Widget

Below is a complete example of an integration component for the Color Picker example. It
demonstrates all the basic tasks needed for the integration of a GWT widget with its server-side
counterpart component.

import com.vaadin.terminal .gwt.client._ApplicationConnection;
import com.vaadin.terminal .gwt.client._Paintable;
import com.vaadin.terminal .gwt.client_UIDL;

public class VColorPicker extends GwtColorPicker
implements Paintable {

224

Example: Integrating the Color Picker Widget

Developing Custom Components

/** Set the CSS class name to allow styling. */
public static final String CLASSNAME = "example-colorpicker™;

/** Component identifier in UIDL communications. */
String uidlld;

/** Reference to the server connection object. */
ApplicationConnection client;

/**
* The constructor should first call super() to initialize
* the component and then handle any initialization relevant
* to Vaadin.
*/
public VColorPicker() {
// The superclass has a lot of relevant initialization

super();

// This method call of the Paintable interface sets
// the component style name in DOM tree
setStyleName (CLASSNAME) ;

This method must be implemented to update the client-side
component from UIDL data received from server.

This method is called when the page is loaded for the

first time, and every time Ul changes in the component

are received from the server.

*/

public void updateFromUIDL(UIDL uidl,
ApplicationConnection client) {

// This call should be made first. Ensure correct

// implementation, and let the containing layout

// manage the caption, etc.

if (client.updateComponent(this, uidl, true))

return;

// Save reference to server connection object to be
// able to send user interaction later
this.client = client;

// Save the UIDL identifier for the component
uidlld = uidl.getld(Q);

// Get value received from server and actualize it
// in the GWT component
setColor(uidl.getStringVariable(*'colorname'™));

}

/**
* Override the method to communicate the new value
* to server.
**/
public void setColor(String newcolor) {
// lgnore if no change
if (newcolor.equals(currentcolor._getText()))
return;

// Let the original implementation to do
// whatever it needs to do
super.setColor(newcolor);

// Updating the state to the server can not be done
// before the server connection is known, i.e., before
// updateFromUIDL() has been called.

Example: Integrating the Color Picker Widget

225

Developing Custom Components

if (uidlld == null |] client == null)
return;

// Communicate the user interaction parameters to server.
// This call will initiate an AJAX request to the server.
client_updateVariable(uidlld, "colorname",

newcolor, true);

}

10.5. Defining a Widget Set

The client-side components, or in GWT terminology, widgets, must be made usable in the client-
side GWT application by defining a widget set. A widget set is actually a GWT application and
needs to be defined in the GWT module descriptor as the entry point of the client-side engine.
A GWT module descriptor is an XML file with extension -gwt.xml.

If you are using the Eclipse IDE, the New Vaadin Widget wizard will automatically create the
GWT module descriptor. See Section 10.2.1, “Creating a Widget” for detailed instructions.

The following example of ColorPickerWidgetSet.gwt.xml shows the GWT module descriptor
of the Color Picker application. We also define the default stylesheet for the color picker widget,
as described above in Section 10.3.3, “Styling GWT Widgets”.

<module>
<l-- Inherit the default widget set -->
<inherits name='"'com.vaadin.terminal .gwt.DefaultWidgetSet" />

<l-- The default theme of this widget set -->

<stylesheet src="colorpicker/styles.css"/>
</module>

Compiling widget sets takes considerable time. You can reduce the compilation time significantly
by compiling the widget sets only for your browser, which is useful during development. You
can do this by setting the user . agent property in the .gwt.xml GWT module descriptor.

<set-property name="user.agent" value="geckol_ 8"/>

The val ue attribute should match your browser. The browsers supported by GWT depend on
the GWT version, below is a list of browser identifiers supported by GWT 2.0.

Table 10.2. GWT User Agents

Identifier Name

gecko1_8 |Mozilla Firefox 1.5 and later

gecko Mozilla Firefox 1.0 (obsolete)

ie6 Internet Explorer 6

ie8 Internet Explorer 8

safari Apple Safari and other Webkit-based browsers including Google Chrome
opera Opera

For more information about the GWT Module XML Format, please see Google Web Toolkit De-
veloper Guide.

226

Defining a Widget Set

Developing Custom Components

10.6. Server-Side Components

Server-side components provide the API for user applications to build their user interface. Many
applications do not ever need to bother with the client-side implementation of the standard
components, but those that use their own GWT widgets need to have corresponding server-
side components.

If you are using the Vaadin Plugin for Eclipse, the wizard for creating new widgets will also create
a stub of the server-side component for you. See Section 10.2.1, “Creating a Widget” for detailed
instructions.

A server-side component has two basic tasks: it has to be able to serialize its state variables to
the corresponding client-side component, and deserialize any user input received from the client.
Many of these tasks are taken care of by the component framework.

10.6.1. Binding to the Client-Side Widget

10.6.2.

10.6.3.

A server-side component needs to be bound to a specific client-side widget. This is done with
a special annotation. For example, for the ColorPicker server-side component, we define:

import com.vaadin.demo.colorpicker.widgetset.client._ui.VColorPicker;

@ClientWidget(VColorPicker.class)
public class ColorPicker extends AbstractField {

The annotation is read during the compilation of the widget with the GWT Compiler. The compiler
invokes a WidgetMapGenerator that reads the annotations from the compiled server-side
component classes. It is therefore necessary that the server-side components are compiled
before the client-side compilation, as noted in Section 10.8.4, “Compiling GWT Widget Sets”.

The serialization is broken down into server-client serialization and client-server deserialization
in the following sections. We will also present the complete example of the server-side imple-
mentation of the Color Picker component below.

Server-Client Serialization

The server-side implementation of a component must be able to serialize its data into a UIDL
message that is sent to the client. You need to override the paintContent() method, defined
in AbstractComponent. You should call the superclass to allow it to paint its data as well.

The data is serialized with the variants of the addAttribute() and addVariable() methods
for different basic data types.

The UIDL API offered in PaintTarget is covered in Section A.1, “API for Painting Components”.

Client-Server Deserialization

The server-side component must be able to receive state changes from the client-side widget.
This is done by overriding the changeVariables() method, defined in AbstractComponent.
A component should always call the superclass implementation in the beginning to allow it
handle its variables.

Server-Side Components 227

Developing Custom Components

10.6.4.

The variables are given as objects in the var i abl es map, with the same key with which they
were serialized on the client-side. The object type is likewise the same as given for the particular
variable in updateVariable() in the client-side.

@override

public void changeVariables(Object source, Map variables) {
// Let superclass read any common variables.
super.changeVariables(source, variables);

// Sets the currently selected color
ifT (variables.containsKey(*'colorname'™) && !isReadOnly()) {
final String newValue = (String)variables.get('colorname™);

// Changing the property of the component will
// trigger a ValueChangeEvent
setValue(newvalue, true);

}

The above example handles variable changes for a field component inheriting AbstractField.
Fields have their value as the value property of the object. Setting the value with setValue(),
as above, will trigger a ValueChangeEvent, which the user of the component can catch with
a ValueChangelL.istener.

Contained components, such as components inside a layout, are deserialized by referencing
them by their paintable identifier or PID.

Example: Color Picker Server-Side Component

The following example provides the complete server-side ColorPicker component for the Color
Picker example. It has only one state variable: the currently selected color, which is stored as
the property of the component. Implementation of the Property interface is provided in the
AbstractField superclass of the component. The UIDL tag name for the component is
colorpicker and the state is communicated through the col or nane variable.

package com.vaadin.demo.colorpicker;

import com.vaadin.demo.colorpicker.widgetset.client._ui.VColorPicker;

/**
* Color picker for selecting a color from a palette.
*
* @author magi
*/
@ClientWidget(VColorPicker.class)
public class ColorPicker extends AbstractField {
public ColorPicker() {
super();
setValue(new String(“'white™));
3

/** The property value of the field is a String. */
@Override
public Class<?> getType() {

return String.class;

}

/** Set the currently selected color. */

public void setColor(String newcolor) {
// Sets the color name as the property of the component.
// Setting the property will automatically cause
// repainting of the component with paintContent().

228

Example: Color Picker Server-Side Component

Developing Custom Components

setValue(newcolor);

}

/** Retrieve the currently selected color. */
public String getColor() {

return (String) getValue();
}

/** Paint (serialize) the component for the client. */
@Override
public void paintContent(PaintTarget target)
throws PaintException {
// Superclass writes any common attributes in the
// paint target.
super.paintContent(target);

// Add the currently selected color as a variable in
// the paint target.
target.addVariable(this, *colorname™, getColor());

}

/** Deserialize changes received from the client. */
@Override
public void changeVariables(Object source, Map variables) {
// Sets the currently selected color
if (variables.containskey(*'colorname'™) &&
TisReadOnly()) {
// Changing the property of the component will
// trigger a ValueChangeEvent
setValue((String) variables.get('colorname'), true);

3
10.7. Using a Custom Component

A custom component is used like any other Vaadin component. You will, however, need to
compile the client-side widget set with the GWT Compiler. See Section 10.8.4, “Compiling GWT
Widget Sets” for instructions on how to compile widget sets.

10.7.1. Example: Color Picker Application

The following server-side example application shows how to use the Color Picker custom widget.
The example includes also server-side feedback of the user input and changing the color selec-
tion to show that the communication of the component state works in both directions.

package com.vaadin.demo.colorpicker;

import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.ui.*;

import com.vaadin.ui.Button.ClickEvent;

/**
* Demonstration application that shows how to use a simple
* custom client-side GWT component, the ColorPicker.
*/
public class ColorPickerApplication
extends com.vaadin.Application {
Window main = new Window(*'Color Picker Demo');

/* The custom component. */
ColorPicker colorselector = new ColorPicker();

Using a Custom Component 229

Developing Custom Components

/* Another component. */
Label colorname;

public void init(Q) {
setMainWindow(main);
setTheme(*'demo™);

// Listen for value change events in the custom
// component, triggered when user clicks a button
// to select another color.
colorselector.addListener(new ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
// Provide some server-side feedback
colorname.setValue(*'Selected color: " +
colorselector.getColor());
}
H;

main.addComponent(colorselector);

// Add another component to give feedback from

// server-side code

colorname = new Label(*'Selected color: " +
colorselector.getColor());

main.addComponent(colorname);

// Server-side manipulation of the component state
Button button = new Button(*'Set to white');
button.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
colorselector.setColor('white™);
}
D:
main.addComponent(button);

}
10.7.2. Web Application Deployment

Deployment of web applications that include custom components is almost identical to the
normal case where you use only the default widget set of Vaadin. The default case is documented
in Section 4.8.3, “Deployment Descriptor web.xml”. You only need to specify the widget set
for the application in the WebContent/WEB- INF/web.xml deployment descriptor.

If you use the Vaadin Plugin for Eclipse to create a new widget in your project, the plugin will
modify the deployment descriptor to use the custom widget set.

The following deployment descriptor specifies the Color Picker Application detailed in the pre-
vious section.

<?xml version="1.0" encoding="UTF-8"?>

<web-app
id=""WebApp_ID"
version="2.4"
xmIns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_ 4.xsd"'>

<display-name>myproject</display-name>

<servlet>
<servlet-name>Col or Pi cker Ser vl et </servlet-name>
<servlet-class>
com.vaadin.terminal .gwt.server_ApplicationServlet

230 Web Application Deployment

Developing Custom Components

</servlet-class>
<init-param>
<param-name>appl ication</param-name>
<param-value>
com vaadi n. deno. col or pi cker . Col or Pi cker Appl i cati on
</param-value>
</init-param>
<init-param>
<param-name>widgetset</param-name>
<param-value>
com vaadi n. deno. col or pi cker . wi dget set. Col or Pi cker W dget Set
</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>Col or Pi cker Ser vl et </servlet-name>
<url-pattern>/ *</url-pattern>
</servlet-mapping>
</web-app>

The project specific parameters are emphasized. Notice that the widget set name is not a file
name, but the base name for the ColorPickerWidgetSet.gwt.xml module descriptor.

The Eclipse Plugin will automatically generate the i ni t - par amparameter in the web .xml file
of your project when you create a new widget.

As the project context root in the above example is myproject and the <url - pattern>is
/*, the URL for the application will be /myproject/. If you are using an URL pattern such as
/myapp/>*, you need to make an additional mapping to map requests to /VAADIN/* context
to the same servlet. Otherwise the default widget set and built-in themes in Vaadin will be
missing.
<servlet-mapping>
<servlet-name>Book of Vaadin Examples</servlet-name>

<url-pattern>/VAADIN/*</url-pattern>
</servlet-mapping>

10.8. GWT Widget Development

Development of new GWT widgets includes widget set definition (GWT Module Descriptor),
compiling the widgets and the Vaadin Client-Side Engine to JavaScript with the GWT Compiler,
and debugging the application in the GWT Development Mode.

You can use any IDE for developing GWT components for Vaadin. The examples given in this
book are for the Eclipse IDE. It allows easy launching of the GWT Development Mode, debugging,
and running an external compiler for GWT widget sets.

10.8.1. Creating a Widget Project

Creation of a Vaadin project that uses the default widget set was covered in Section 2.4, “Your
First Project with Vaadin”. Developing custom widgets creates a number of additional require-
ments for a project.

Let us review the steps required for creating an application that contains custom widgets. Details
for each step are given in the subsequent sections.

1. Create a new Vaadin project (for Eclipse, see Section 2.4.1)

GWT Widget Development 231

Developing Custom Components

10.8.2.

2. Copy or import the GWT JARs to the project and add them to the class path (Sec-
tion 10.8.2)

3. Write the source code for the client-side widgets, their server-side counterparts, and
the application (Section 10.8.3)

4. Write the web . xml Deployment Descriptor for the web application
¢ Define the widget set used in the application (Section 10.7.2)
5. Compile the widget set to JavaScript runtime with GWT Compiler (Section 10.8.4)
6. Deploy the project to an application server (for Eclipse and Tomcat see Section 2.4.3)
7. Either:
a. Open a web browser to use the web application.

b. Open a web browser in GWT Development Mode to debug the client-side widget
code. (Section 10.8.6)

The contents of a ready widget development project are described in Section 10.8.5, “Ready
to Run”.

The Vaadin Plugin for Eclipse makes the creation of application custom widgets as well as the
application projects easy by taking care of all the above steps (except deployment), so if you
use it, please see Section 10.2, “Doing It the Simple Way in Eclipse” for detailed instructions.

Importing GWT Installation Package

You will need to include the Google Web Toolkit in your project to develop custom widgets. The
installation directory of Vaadin includes full GWT installation in the gwt subdirectory. The package
includes precompiled libraries and applications for the specific platform of the installation. To
use the libraries, you need to configure them in the classpath of your project as described below.

You can copy or import either the entire gwt directory or just the GWT JARs to your project.

If you use Eclipse and copy the GWT directory or the libraries to the project with system tools,
remember to select your project folder and press F5 to refresh the project. You can also import
the directory as follows (importing the JARs is similar):

1. Right-click on the project folder in Project Explorer and select Import — Import....
2. From the Import dialog, select General - File System and click Next.

3. Click Browse button of the "From directory" field and browse to the gwt directory
under the Vaadin installation directory. Click Ok in the file selection dialog.

4. Select the gwt entry in the list box for importing.

5. Inthe "Into folder' field, enter myproject/gwt. (If you do not set this, all the contents
of the gwt directory will be imported directly below the root directory of the project
which is undesirable.)

6. Click Finish.

232

Importing GWT Installation Package

Developing Custom Components

10.8.3.

You must include the GWT libraries in the classpath of the project. If using Eclipse, right-click
on the project folder in the Project Explorer in Eclipse and select Properties. Select Java
Build Path - Libraries.

Writing the Code

Guidelines for the Project Structure

The project structure is otherwise free, but if you use the build script described in Section 10.8.4,
“Compiling GWT Widget Sets” or configure the GWT Development Mode, as described in Sec-
tion 10.8.6, “GWT Development Mode”, the examples assume that source files are located under
the WebContent/WEB- INF/src folder.

We recommend that the name for the package containing the widget set is widgetset, but
this is not required. GWT does, however, require that the client-side code is written under a
client package and any stylesheets are located under a public directory (not necessarily
a package) under the package containing the .gwt.xml descriptor.

See Section 10.8.5, “Ready to Run” for an example project structure.

Importing the ColorPicker Demo

10.8.4.

If you want to use the Color Picker application as an application skeleton, you need to import it
under the source folder.

1. Right-click on the source folder and select Import.
2. In the Import dialog, select General - File System and click Next.

3. Browse to WebContent/WEB-INF/src/com/vaadin/demo/colorpicker/ and
click Ok button in the Import from directory dialog.

4.1 n the Into folder field, enter
myproject/WebContent/WEB-INF/src/com/vaadin/demo/colorpicker.

5. Check the colorpicker entry in the list box.
6. Click Finish.

This will import the directory as com.vaadin.demo.colorpicker package. If you want to use it as
a skeleton for your own project, you should refactor it to some other name. Notice that you will
need to refactor the package and application name manually in the web.xml and .gwt.xml
descriptor files.

Compiling GWT Widget Sets

You need to compile the Vaadin Client-Side Engine and your custom widget set to JavaScript
with the GWT Compiler. Vaadin installation package includes an Ant build script
build-widgetset._xml in the WebContent/docs/example-source/ directory.

If you are using the Vaadin Plugin for Eclipse, it will enable a toolbar button that allows you to
compile the widget set. See Section 10.2.2, “Recompiling the Widget Set” for instructions.

To compile the Color Picker widget set example using the Ant build script, just change to the
directory and enter:

Writing the Code 233

Developing Custom Components

$ ant -f buil d-wi dgetset.xm

We advice that you copy the build script to your project and use it as a template. Just set the
paths in the "configure" target and the widget set class name in the "compile-widgetset" target
to suit your project.

Alternatively, you can launch the build script from Eclipse, by right-clicking the script in Package
Explorer and selecting Run As - Ant Build. Progress of the compilation is shown in the Console
window.

After compilation, refresh the project by selecting it and pressing F5. This makes Eclipse scan
new content and become aware of the output of the compilation in the
WebContent/VAADIN/widgetsets/ directory. If the project is not refreshed, the JavaScript
runtime is not included in the web application and running the application will result in an error
message such as the following:

Requested resource
[WADINAMicketsets/aom.veediin.davo.colorpider gt GolorPidenVidetSet/aom. veedin.deno. colorpider.git. MlorPidericetSet.nocade. S|
not found from filesystem or through class loader. Add widgetset and/or theme JAR to

your classpath or add files to WebContent/VAADIN folder.

Compilation with GWT is required also initially when using the GWT Development Mode, which
is described in Section 10.8.6, “GWT Development Mode”. The compilation with the GWT
Compiler must be done at least once, as it provides files that are used also by the GWT Devel-
opment Mode, even though the browser runs the GWT application in Java Virtual Machine instead
of JavaScript.

Warning

/ i \ Because GWT supports a slightly reduced version of Java, GWT compilation can
produce errors that do not occur with the Java compiler integrated in the Eclipse
IDE.

Also notice that client-side compilation loads the server-side classes (to find the @ClientWidget
annotations) and, as a side effect, executes any static code blocks in the classes, even in any
non-component classes such as the application class. This could cause unexpected behaviour
during the compilation.

Compiling a Custom Widget Set

If you wish to use the build script to compile your own widget sets, open it in an editor. The build
script contains some instructions in the beginning of the file.

First, you need to make some basic configuration in the conf i gur e target:

<target name="configure'>
<!-- Path from this file to the project root -->
<property name="base"
value="_../7_./../" />

<!-- Location of GWT distribution -->
<property name="gwt-location"
value="${base}gwt" />

<!l-- Location of Vaadin JAR -->
<property name="vaadin-jar-location"
value="${base}WebContent/WEB-INF/lib/vaadin-6.3.3.jar"/>

<!-- Location of project source code -->

234

Compiling GWT Widget Sets

Developing Custom Components

<property name='src-location"
value="${base}WebContent/WEB-INF/src" />

<I-- Target where to compile server-side classes -->
<property name='server-side-destination"
value="${base}WebContent/WEB-INF/classes"/>

<I-- Target where to compile the widget set -->
<property name='‘client-side-destination"
value="${base}WebContent/VAADIN/widgetsets" />
</target>

You also need to define the widget set in the conf i gur e- wi dget set target:

<!-- NOTE: Modify this example to compile your own widgetset -->
<target name="configure-widgetset'>

<!-- Name of the widget set -->
<property name="widgetset"
value=""com vaadi n. deno. col or pi cker. gwt . Col or Pi cker W dget Set "'/>

The widget set class name must match the package and the file name of the .gwt.xml
descriptor, without the extension.

You can use the conpi | e- wi dget set targetasitis, or as atemplate for your own configuration:

<I-- Build the widget set. -->
<target name="‘compile-widgetset"
depends="compile-server-side, generate-widgetset'>
<echo>Compiling ${widgetset}...</echo>

<java classname="‘com.google.gwt.dev.Compiler”
failonerror="yes" fork="yes" maxmemory="256m">
<arg value="-war" />
<arg value="${client-side-destination}" />
<arg value="${widgetset}" />
<jvmarg value="-Xss1024k"/>
<jvmarg value="-Djava.awt.headless=true"/>
<classpath>
<path refid="compile.classpath"/>

</classpath>

</java>

</target>

Notice that the server-side must be compiled before the client-side and the compiled server-
side classes must be included in the class path for the GWT Compiler. The reason is that the
annotations that define the component-to-widget mappings are read from the class files during
the GWT compilation.

Google Web Toolkit Version

You should use a version of GWT suitable for the version of Vaadin you are using;
we recommend using the GWT included in the installation package, but other ver-
sions may work as well.

If you are upgrading from Vaadin 5, the GWT 1.6 and later versions used by Vaadin
6 contains a new compiler and the old GWTCompiler class used previously for
compiling GWT widgets is deprecated and replaced with
com.google.gwt.dev.Compiler. You should update your existing widget set build
scripts or launch configurations to use the new compiler class. The only significant
API change is the output directory parameter, previously —out, now —war, as shown
in the example above.

Compiling GWT Widget Sets 235

Developing Custom Components

Java Stack Overflow Problems
/ j \ The - Xss parameter for the Java process may be necessary if you experience stack

overflow errors with the default stack size. They occur especially with GWT 1.6,
which uses large amount of stack space.

Notice further that the Windows version of Sun JRE 1.5 has a bug that makes the
stack size setting ineffective. The Windows version also has a smaller default stack
size than the other platforms. If you experience the problem, we advice that you
either use JRE 1.6 on the Windows platform or use a wrapper that circumvents the
problem. To use the wrapper, use class com.vaadin.launcher.WidgetsetCompiler
in the build script instead of the regular compiler.

The - Dj ava. awt . headl ess=t r ue is relevant in Linux/UNIX platforms to avoid some X11
warnings.

You can now compile the widget set with the following command:

$ ant -f buil d-wi dgetset.xmn
Generating Widget Set Definition

If you use libraries containing other widget sets, you may want to automatically generate the
-gwt._xml GWT Module Descriptor that defines the widget set that combines the Vaadin default
widget set, widget sets included in any libraries, and any widget sets defined in your project.

If you use the bui ld-widgetset.xml Ant build script as a template, you need to define the
settings required for generating a widget set in the configure-widgetset target.

<target name="configure-widgetset'>
<property name="widgetset"
value=""com vaadi n. deno. gener at ed. Gener at edW dget Set "'/>
<property nanme="generate.w dgetset" val ue="1"/>
<property name="widgetset-path"” value="com/vaadin/demo/widgetset'/>
</target>

Define the name of the widget set definition file, without the - gwt . xml suffix, in the widgetset
property. The generate-widgetset target is executed only if the generate.widgetset
property is defined. You also need to give a file path to the widget set directory, relative to the
$src-location directory..

The generate-widgetset target is defined as follows:

<target name=''generate-widgetset"
depends="'compile-server-side, configure-widgetset"
if=""generate.widgetset'>

<!-- Create the directory if it does not already exist. -->
<mkdir dir="${src-location}/${widgetset-path}'/>

<java classname="com.vaadin.terminal .gwt.widgetsetutils.WidgetSetBuilder"
failonerror="yes" fork="yes" maxmemory='256m">
<arg value="${widgetset}'/>
<jvmarg value="-Xss1024k"/>
<jvmarg value="-Djava.awt.headless=true"/>
<classpath>
<path refid="compile.classpath"/>
</classpath>
</java>
</target>

236 Compiling GWT Widget Sets

Developing Custom Components

10.8.5.

The widget set builder assumes that the root of the source directory is the firstitem in the class
path, here defined with the src-location property. The location must point to the root of the
entire source tree, not the path of the widget set under it. Also the location of compiled server-
side classes must be included, here defined with the server-side-destination property.
In the example script, the class path is defined in the init target as follows:

<path id="compile.classpath'>
<pathelement path="${src-location}" />
<pathelement path="${server-side-destination}" />
<pathelement path="${toolkit-jar-location}" />
<pathelement path="${gwt-location}/gwt-user.jar" />
<pathelement path="${gwt-location}/gwt-dev-${gwt-platform}.jar" />
<fileset dir="${base}WebContent/WEB-INF/1ib/">
<include name="**/*_jar"/>
</fileset>
</path>

Ready to Run

Figure 10.8, “Annotated Project Contents” shows the contents of a ready project.

Figure 10.8. Annotated Project Contents

By

L Project Explorer &3 =

- & myproject =l
b ‘gz Deployment Descriptor: myproject
¥ % |ava Resources: src

< g com.vaadin.demo.colorpicker b The new server-side component

b [J] ColorPicker.java L
) i ! o a The application
b [J] ColorPickerApplication. javag——"

¥ {2 com.vaadin,.demo. colorpicker.widgetset

~ (= public The Source Files (*)
¥ (= colorpicker
[styles.css — @@ | i
[#) ColorPickerwidgetSet.gwt.xmi M Default style for the widget set
~ 1 com.vaadin.demo.colorpicker.widgetset.client.ui | | The widget set definition file

b [J) GwtColorPicker.java 4 L A custom GWT widget

b3 VCoIorPicker.]avaq__\\
~ = Libraries || The Vaadin integration widget

b =i Apache Tomcat v6.0 [Apache Tomcat v6.0]

=), EAR Libraries

b s gwt-dev-linux.jar - VA2 }_ «—Google Web Toolkit Libraries (¥)
b (e gwt-userjar - VAAD V E

b =4, JRE System Library [jdkl.6.0_01]

b =i Web App Libraries | ——Widgetset build script

%1 build-widgetset.xml /

=) Javascript Resources
b (= build
¥ (= WebContent

b = META-INF

> [=\AADIN

b (= widgetsets «— |

¥ (= WEB-INF

Compiled widgetsets

| __——Vaadin Library (*)
= (=lib

= vaadin-6.2,0.nightly-20091103-c9607.jar

%] web.xml < Deployment descriptor

[4]¥]

0 i [KD

Ready to Run 237

Developing Custom Components

10.8.6.

Notice that the Package Explorer does not correspond with the file system contents. Eclipse
displays the items marked with asterisk (*) in a logical location, instead of the physical location
in the file system.

You can either run the application in web mode, as introduced in Section 2.4.4, or debug it in
the GWT Development Mode, as detailed in the next section.

GWT Development Mode

The GWT Development Mode allows debugging client-side GWT applications in a Java IDE
such as Eclipse, as if the applications ran as Java in the browser, even though they actually are
JavaScript. This is made possible by the Google Web Toolkit Developer Plugin, which is available
for major browsers, such as Mozilla Firefox, Google Chrome, Safari, and Internet Explorer.

Figure 10.9. GWT Development Mode

@ GWT Development Mode

@ Development Mode | (FP) ‘

| Expand All H Collapse All

O 00:00:45,901 [IMNFO] com.vaadin, ui. OptionGroup |ﬂ
O 00:00:4%,801 [INFO] com.vaadin. (i@

O 00:00:45,801 [IMNFO] com.waadin
) 00:00:45,901 [INFO] comwaadin | Tiedosto Muokkaa
© 00:00:4%,901 [INFO] com.vaadin 4 v
© 00:00:45,901 [INFO] com.vaadin, | 4% & - @

O 00:00:45,801 [IMNFO] com.waadin
© 00:00:45,901 [INFO] com.vaadin. | }> Color Picker Demo | aF
© 00:00:4%,901 [INFO] com.vaadin
O 00:00:4%,801 [INFO] com.vaadin
O 00:00:45,801 [IMNFO] com.waadin
O 00:00:45,902 [INFO] corn.vaadin
© 00:00:4%,902 [INFO] com.vaadin
O 00:00:4%,802 [INFO] com.vaadin
O 00:00:45,802 [IMFO] com.waadin
O 00:00:45,902 [INFO] corn.vaadin
© 00:00:4%,902 [INFO] com.vaadin
O 00:00:4%,802 [INFO] com.vaadin

e
N&ytd Sivuhistoria Kirjanmerkit Tybkalut 0Ohje

‘%?' 1= http:/flocalhost:8080,

e white
O 00:00:45,806 [INFO] Done. (2 1se
© 00:00:46,290 [INFO] Module corn. vaadi
silver . white yellow
Selected color: white L
Set to white |a |
Valmis # e

Figure 10.9, “GWT Development Mode” shows the GWT Development Mode in action. On the
left, you have the GWT Development Mode window. It displays compilation information and
possible errors that occur during compilation. You can open the application in a new browser
window by clicking Launch Default Browser.

The browser window has a Compile/Browse button, which runs the GWT Compiler to produce
the runtime code and opens a regular web browser to run the application. Notice that even
though it is possible to recompile the program with the button, GWT Compiler must be run at
least once before launching the GWT Development Mode, as described in Section 10.8.4,
“Compiling GWT Widget Sets”, as the compiler creates some required files.

Because GWT supports a slightly reduced version of Java, GWT compilation can produce errors
that do not occur with the Java compiler integrated in the Eclipse IDE. Such errors will show up
in the GWT Development Mode window.

238

GWT Development Mode

Developing Custom Components

Configuring GWT Development Mode Launching in Eclipse

This section gives details on creating a launch configuration for the GWT Development Mode
in the Eclipse IDE. We use the QuickStart installation of Vaadin covered in Section 2.3, “QuickStart
with Eclipse” as an example project. The project includes source code for the Color Picker demo

application.

If you use the Vaadin Plugin for Eclipse, it can create a launch configuration for launching the
GWT Development Mode. See Section 10.2.3, “Plugin Related Project Settings” for instructions.

1. Select from menu Run - Debug... and the Debug configuration window will open.
Notice that it is not purposeful to run the GWT Development Mode in the "Run" mode,

because its entire purpose is to allow debugging.

2. Select the Java Application folder and click on the New button to create a new launch

configuration.

Figure 10.10. Creating New Launch Configuration

Create, manage, and run configurations

Run a Java application

B B -

[type filter text

= [Apache Tomcat
§ Tomcat ws.5 Server _ localhost
& Eclipse Application
Equinox 0SGI Framewaork
& Generic server
B Generic Server(External Launch)
1l Java Applet
[T 1T Mill Toolkit Hosted Mode
31 1T Mill Toolkit Web Mode
Ju JUnit
.ﬁTJUnIt Plug-in Test
[l SWT Application

>

- Press the 'New' button to create a configuration of the selected type.

Configure launch settings from this dialog:

|| - Press the 'Duplicate’ button to copy the selected configuration,
3 - Press the 'Delete’ button to remove the selected configuration.
J

:’ﬁo - Press the 'Filter' button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives
preference page.

Close

3. Click on the created launch configuration to open it on the right-side panel. In the Main

tab, give the
com.google.gwt.dev.DevMode.

launch configuration a name.

Define the Main class as

GWT Development Mode 239

Developing Custom Components

Figure 10.11. Naming Launch Configuration
[T
Create, manage, and run configurations

Run a Java application @

[v B % | B 3~

Name: lCoIorPlcker Hosted Mode]

[type filter text]

mm=.ﬂrguments =) JRE | ¥ Classpath | %, Source | B§ Environment | =1 Common

<~ [aApache Tomcat Project:
[Tomeat v5,5 Server _localhost [\tmlll—tuu\klt—examples l l Browse...]
& Eclipse Application
4 Equinox 0SGi Framework Main class:
[Gereric server [com‘google.gwt.dev.GWTSheII]I Search...]

B Generic Server{External Launch)

Java Applet

[] Includg libraries when searching for @ main class

[] Include inherited mains when searching for a main class
= Java Application

IT Mill Toolkit Hosted Mode
IT Mill Toolkit Web Mode
Ju JUnit
Jt Junit Plug-in Test
[swT application

@ [Bun] [Close

4. Switch to the Arguments tab and enter arguments for the application.

a. In the Program arguments field, enter:

-noserver -war WebContent/VAADIN/widgetsets
com exanpl e. myproj ect.w dget set. MyPr oj ect W dget Set
-startupUrl http://localhost:8080/nypr oj ect

The browser application, DevMode, takes as its arguments the following parameters:

-noserver Prevents an embedded web server from starting, thereby
allowing to use an already running server.

-whitelist Adds a regular expression to the list of allowed URL pat-
terns for the web browser. Modify the port number from
the 8080 given above as necessary.

-war Output directory for compiling widgets with GWT Compiler.
The directory must be
WebCont ent / VAADI N wi dget sets. You can compile
the widgets either from the GWT Development Mode win-
dow or externally as explained later in this chapter.

-startupUrl <URL> The URL to connect to. This must be the same as the
whitelist entry given above. The port number must corres-
pond to the port of the running web server. The Jetty web
server included in Vaadin will run in port 8888 by default.
In contrast, Apache Tomcat installed under Eclipse will run
in port 8080 by default.

240

GWT Development Mode

Developing Custom Components

b. In the VM arguments field enter, for example, - Xm6256M - Xnx512Mto give the
GWT Development Mode more memory than the default amount. On Mac, add also
- Xst art OnFi r st Thr ead.

Figure 10.12. DevMode Arguments

Create, manage, and run configurations
Run a Java application

©

O E X B 3

Name: [Culchicker Hosted Mode]

® Main mETURE % Classpath | &, Source | B§ Environment | = Common

Program arguments:
[Tomcat v5.5 Server _ localhost -noserver -whitelist "127.0.0.1 ~http[:1[/1[/1127[.]0[.]0[.]1[:]8B88" -OUt i

[type filter text

= [§ Apache Tomeat

& Eclipse Application WebContent/ITMILL/widgetsets http://127.0.0.1:8888/

% Equinox 0SGi Framework

E Generic Server

{ Generic server(External Launch)
Java Applet VM arguments:
~ [Java Application Ams256M XmxS12M

ColorPicker Hosted Mode

IT Mill Toolkit Hosted Mode

IT Mill Toolkit Web Mode w
Ju JUnit -
j‘%’\ JUnit Plug-n Test Working directory:
[ea] SWT Application ® pefaylt | |

() other: []
2 [Bun] [Close

5. In the Classpath tab, you will by default have vaadi n- exanpl es, which contains the
default classpath entries for the project. If the classpath entries for the project are suf-
ficient, this should be enough.

6. Click Apply to save the launch configuration.

7. Click Debug to launch the GWT Development Mode using the launch configuration.

See the following section for details on debugging with the GWT Development Mode.
Debugging with GWT Development Mode

The purpose of the GWT Development Mode is to allow debugging client-side GWT applications,

or in our case, GWT widgets. Below is a checklist for important requirements for launching the

GWT Development Mode:

e GWT is installed in the project.

GWT libraries are included in the project classpath.

Widget sets have been compiled with GWT Compiler.

web . xml descriptor is configured.

e Web server is running and listening to the correct port.

GWT Development Mode 241

Developing Custom Components

¢ GWT Development Mode launch configuration is configured.

Once everything is ready to start debugging, just open a source file, for example, the
com.vaadin.demo.colorpicker.gwt.client.ui.GwtColorPicker class. Find the onClick()
method. At the line containing the setColor () call, right-click on the leftmost bar in the editor
and select Toggle Breakpoint from the popup menu. A small magnifying glass will appear in
the bar to indicate the breakpoint.

Figure 10.13. Setting a Breakpoint
!'.I GwtColorPicker.java X

s** Handles click on a color button. */
= public void onClick(widget sender) {

// Use the button label as the color name to set
setColor(((Button) sender).getText());

Select from menu Run - Debug... and the Debug configuration window will open. Notice that
it is not purposeful to run the GWT Development Mode in the "Run" mode, because its entire
purpose is to allow debugging.

Figure 10.14. Debugging with GWT Development Mode

L] Debug - GwtColorPicker.java - Eclipse SDK
Eile Edit Source Refactor Mavigate Search Project Bun Window Help
r-@ &3 0-a- |8 |e v e |Ee]e £ [$5Debug| >
Lo v Bl 4 o o
J Wl gl % e @ (] Google Web Toolkit Development Shell
%5 Debug 2 Servers| = =
—— B8 o = @ Google
% 0 @ O Hosted Browser Collapse &ll Expand All Clear Log About W Toolkit

p- fhome/magifproject/jdkl.6.0_01/bin/,

- IT Mill Toolkit Hosted Mode [ava Applic
~ &@ com.google.gwt.dev.GWTShell at loc|

= @ Thread [main] (Suspended (brea

= IColorPicker{GwtColorPicker). or] (3] l:> @ @ @ GOUSIe
Back Forward Refresh Stop Compile/Browse Wels Toolkit
Timer.class 0] http://127.0.0.1:8888/colorpicker/ & Go J

// Set initial color. T
/f server.
setColor{"white");

Color Picker Demo

// Composite GWT widget
initwWidget (panel);

}

/**% Handles click on a colo white

8 public void oncClick(widget
// Use the button label
setColor(((Button) sender).getText());

white yellow

/** Sets the currently selected color. */
8 public void setColor(String newecolor) { Selected color: white

// Give client-side feedback by changing the| -
currentcolor.setText(newcolor); Set to white |

// Obtain the 0OM elements. This assumes tha
// of the HorizontalPanel is the parent of the label element. E]

[E Console & Tasks‘ ® % G BE o B- - =-E}

| o° Writable Smart Insert | 78: 1 J

u

Starting demo applications under the GWT Development Mode can take considerable
time! Compiling widgets can take 10-60 seconds, depending on the hardware. During this time,
the web browser is unresponsive, does not update its window, and appears "stuck”.

242

GWT Development Mode

Developing Custom Components

10.8.7.

10.8.8.

Please refer to Eclipse IDE documentation for further instructions on using the debugger.

Packaging a Widget Set

Packaging and reusing custom components is almost as easy as with any Java code, but with
a small difference. You can package the source code of a widget set as a JAR. A user can drop
the JAR in the project and add it to the class path. If using widgets from multiple widget sets,
the user has to inherit the widget set in a combining widget set (which can be generated auto-
matically). The user then has to compile the widget set(s) as described in Section 10.8.4,
“Compiling GWT Widget Sets”.

While you could, in theory, package precompiled widget sets in the JAR as well, it would create
a serious danger for incompatibility between the client-side and server-side versions of Vaadin.
The user would anyhow have to recompile the widget set if he uses multiple widget sets packaged
in different JARs, or has developed project-specific widgets.

The bui ld-widgetset.xml Ant script in the WebContent/docs/example-source directory
of the Vaadin installation package includes an example package-jar target for building a JAR.
You can use the example as it is or modify it as you need.

You need to make the JAR packaging specific configuration in the configure-jar target.
Change to property values to reflect your widget set.

<target name="configure-jar'>
<I-- The compiled JAR name -->
<property name="jar-destination”
value="${base}col or pi cker.jar"/>

<I-- Title of the widget set (for JAR) -->
<property name="‘widgetset-title"
value="Col or Pi cker *'/>

<I-- Version of the widget set (for JAR) -->
<property name="‘widgetset-version" value="1.0"/>

<I-- Vendor of the widget set (for JAR) -->
<property name="‘widgetset-vendor"
value="IT MII Oy"/>
</target>

You may want to check also the package- jar target if you want to use other license information
or otherwise customize the package content.

Assuming that you have otherwise configured the build script for your project as described in
Section 10.8.4, “Compiling GWT Widget Sets”, you can build the JAR package with the following
command:

$ ant -f buil d-wi dgetset.xnl package-jar

Notice that the package-jar target does not depend on the compi le-widgetset target, as
the compiled widget set is not included in the package. If you really wish to do so, add the de-
pendency and include the compiled files as a fileset for the package.

Troubleshooting

Below are some typical cases that may cause you trouble.

Deferred binding fails The OOPHM widget set compilation produces the fol-
lowing error in Eclipse console:

Packaging a Widget Set 243

Developing Custom Components

Widgets are missing from the
widget set

The correct widget set is not
loaded

A generated widget set inherits
itself

Deferred binding failed for
*com.vaadin.csval idation.widgetset.client.ui . VJavaScriptEditor™®
(did you forget to inherit a required module?)

This problem occurs if the creation of an instance of a
widget fails, usually due to an exception in the con-
structor. The GWT Development Mode console displays
a more detailed exception log.

The widget set compilation displays the list of widgets
included in the widget set. If the list includes only the
inherited widgets (built-in Vaadin widgets), but your
custom widgets are missing, there is a problem.

The typical reason is that the server-side classes are
not yet compiled or are missing from the classpath.
Check that the server-side compilation output folder
(such as build/classes) is included in the classpath
of GWT Compiler and that you compile the server-side
components before the client-side, so that they are
available in the classpath. The reason for this is that
GWT Compiler (or more precisely a Vaadin widget set
generator) reads the annotations that define the
mappping from server-side components to client-side
widgets from compiled class files.

The widget set must be specified in
WebContent/WEB- INF/web.xml descriptor, as an
initialization parameter for the servlet.

<init-param>
<description>Application
widgetset</description>
<param-name>widgetset</param-name>

Jparamvaluescon.exanple.nylibrary widgetset MWidgetset</paramvalue>

</init-param>

The widget set builder can create a .gwt.xml
descriptor that inherits the same widget set. This usu-
ally occurs when the class path for the source files is
set to something different than the root of the entire
source tree, so that the package name of the widget
set to be defined with the descriptor would be invalid.

244

Troubleshooting

Chapter 11

Advanced Web
Application Topics

11.1. Special Characteristics of AJAX Applicationsccccccceiiiiin, 246
11.2. Application-Level WINAOWSoooiiiiiiiii e 246
11.3. Embedding Applications in Web Pagesccccooovviiiiiin, 253
11.4. Debug and Production Mode ... 258
11,5, RESOUICES .. 260
11.6. SNOMCUL KEYS ..ot 263
1.7 PIINIING o 267
11.8. Portal Integration ... 268
11.9. Google App Engine Integrationoooiiiiiiiiii 283
11.10. CommMON SECUritY ISSUESoooiiiiiiiiiiii e 284
11.11. URI Fragment and History Management with UriFragmentUtil-

Y 285
11.12. Capturing HTTP ReQUESESooooiiiiiiiiiieee 286
11.13. Drag @nd DIOP ...oeeviiiiiiiiiieeee e 289
11.14. Using Add-on COMPONENTSviviiiiiiiiiiiiiiiee e, 297

This chapter covers various features and topics often needed in applications. While other topics
could be considered as "advanced’, the first section gives a brief introduction to AJAX develop-
ment for beginners.

Book of Vaadin 245

Advanced Web Application Topics

11.1. Special Characteristics of AJAX Applications

New to AJAX? This section is intended for people familiar with the development of either tradi-
tional web applications or desktop applications, who are entering AJAX-enabled web application
development. AJAX application development has a few special characteristics with respect to
other types of applications. Possibly the most important one is how the display is managed in
the web browser.

The web was originally not built for applications, but for hypertext pages that you can view with
a browser. The purpose of web pages is to provide content for the user. Application software
has a somewhat different purpose; usually to allow you to work on some data or content, much
of which is not ever intended to be accessible through a web browser as web pages. As the
web is inherently page-based, conventional web applications had to work with page requests
and output HTML as response. JavaScript and AJAX have made it possible to let go of the
pages.

Pages are largely an unknown concept to conventional desktop applications. At most, desktop
applications can open multiple windows, but usually they work with a single main window, with
an occasional dialog window here and there. Same goes usually for web applications developed
with Vaadin: an application typically runs on a single page, changing the layout as needed and
popping up dialog boxes.

Not having to load pages and use hyperlinks to communicate all user interaction is a relief for
application development. However, they are an important feature that ordinary desktop applic-
ations lack. They allow referencing different functionalities of an application or resources managed
by the application. They are also important for integration with external applications.

Certain resources can be identified through a URI or Universal Resource Identifier. A URI can
easily be passed around or stored as a bookmark. We will see in Section 11.5.1, “URI Handlers”
how you can retrieve the URI of a page request. Similarly, a page request can have query
parameters, which can be handled as detailed in Section 11.5.2, “Parameter Handlers”.

Using URIs or request parameters to access functionalities or content is not as straight-forward
as in conventional page-based web applications. Vaadin, just as any other AJAX framework,
uses browser cookies not just for tracking users but also for tracking the application state.
Cookies are unique in a browser, so any two windows share the same cookies and therefore
also the state. The advantage is that you can close your browser and open it again and the
application will be in the state where you left off (except for components such as text fields which
did not have the immediate attribute enabled). The disadvantage is that there is no good way
to distinguish between the windows, so there can usually be only a single application window.
Even if there were several, you would have trouble with synchronization of application data
between windows. Many conventional page-based web applications simply ignore out-of-sync
situations, but such situations are risky for application platforms that are intended to be stable.
Therefore it is safer to work with a single browser window. If you wish to have multiple windows
in your application, you can create them inside the main window as Window objects. A URI can
be used to fetch resources that have no particular state or to provide an entry point to the ap-
plication.

11.2. Application-Level Windows

Vaadin Release 5 introduces support for multiple application-level windows that can be used
just like the main window. All such windows use the same application session. Each window is
identified with a URL that is used to access it. This makes it possible to bookmark application-
level windows. Such windows can even be created dynamically based on URLs.

246

Special Characteristics of AJAX Applications

Advanced Web Application Topics

Application-level windows allow several uses important for the usability of browser-based ap-
plications.

e Native child windows. An application can open child windows that are not floating
windows inside a parent window.

e Page-based browsing. The application can allow the user to open certain content to
different windows. For example, in a messaging application, it can be useful to open
different messages to different windows so that the user can browse through them while
writing a new message.

® Bookmarking. Bookmarks in the web browser can provide an entry-point to some content
provided by an application.

* Embedding windows. Windows can be embedded in web pages, thus making it possible
to provide different views to an application from different pages or even from the same
page, while keeping the same session. See Section 11.3, “Embedding Applications in
Web Pages”.

Because of the special nature of AJAX applications, these uses require some caveats. We will
go through them later in Section 11.2.4, “Caveats in Using Multiple Windows”.

11.2.1. Creating New Application-Level Windows

Creating a new application-level window is much like creating a child window (see Section 4.3,
“Child Windows”), except that the window is added with addWindow() to the application object
instead of the main window.

public class WindowTestApplication extends Application {
public void init(Q) {
// First create the main window.
final Window main = new Window (‘'My Test Application');
setMainWindow(main);

// Create another application-level window.
final Window mywindow = new Window(''Second Window');

// Manually set the name of the window.
mywindow.setName("'mywindow') ;

// Add some content to the window.
mywindow.addComponent(new Label(*'Has content."));

// Add the window to the application.
addWindow(mywindow) ;

}

This creates the window object that a user can view by opening a URL in a browser. Creating
an application-level window object does not open a new browser window automatically to view
the object, but if you wish to open one, you have to do it explicitly as shown below. An application-
level window has a unique URL, which is based on the application URL and the name of the
window given with the setName() method. For example, if the application URL is
http://localhost:8080/myapp/ and the window name is mywindow, the URL for the
window will be http://l1ocalhost:8080/myapp/mywindow/. If the name of a window is
not explicitly set with setName(), an automatically generated name will be used. The name
can be retrieved with the getName () method and the entire URL with getURL().

Creating New Application-Level Windows 247

Advanced Web Application Topics

There are three typical ways to open a new window: using the open() method of Window class,
a Link, or referencing it from HTML or JavaScript code written inside a Label component.

The Window open() method takes as parameters a resource to open and the target name.
You can use ExternalResource to open a specific URL, which you get from the window to be
opened with the getURL() method.

/* Create a button to open a new window. */
main.addComponent(new Button("Click to open new window",
new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
// Open the window.
main.open(new ExternalResource(mywindow.getURL()),
"_new);
b
»:

The target name is one of the default HTML target names (_new, _bl ank, _top, etc.) or a
custom target name. How the window is exactly opened depends on the browser. Browsers
that support tabbed browsing can open the window in another tab, depending on the browser
settings.

Another typical way to open windows is to use a Link component with the window URL as an
ExternalResource.

/* Add a link to the second window. */
Link link = new Link(*"Click to open second window",

new ExternalResource(mywindow.getURL()));
link.setTargetName(*'second™);
link.setTargetHeight(300);
link.setTargetWidth(300);
link.setTargetBorder(Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

Using a Link allows you to specify parameters for the window that opens by clicking on the link.
Above, we set the dimensions of the window and specify what window controls the window
should contain. The Li nk. TARGET _BORDER DEFAULT specifies to use the default, which in-
cludes most of the usual window controls, such as the menu, the toolbar, and the status bar.

Another way to allow the user to open a window is to insert the URL in HTML code inside a Label.
This allows even more flexibility in specifying how the window should be opened.

// Add the link manually inside a Label.
main.addComponent(
new Label(*'Second window: <a href="" + mywindow.getURL()
+ """ target="second®">click to open",
Label .CONTENT_XHTML));
main.addComponent(
new Label(*"The second window can be accessed through URL: **
+ mywindow.getURL()));

When an application-level window is closed in the browser the close() method is normally
called just like for a child window and the Window object is purged from the application. However,
there are situations where close () might not be called. See Section 11.2.3, “Closing Windows”
for more information.

11.2.2. Creating Windows Dynamically

You can create a window object dynamically by its URL path by overriding the getWindow()
method of the Application class. The method gets a window name as its parameter and must

248 Creating Windows Dynamically

Advanced Web Application Topics

return the corresponding Window object. The window name is determined from the first URL
path element after the application URL (window name may not contain slashes). See the notes
below for setting the actual name of the dynamically created windows below.

The following example allows opening windows with a window name that begins with "‘planet-"
prefix. Since the method is called for every browser request for the application, we filter only
the requests where a window with the given name does not yet exist.

public class WindowTestApplication extends Application {

@0verride
public Window getWindow(String name) {
// 1T a dynamically created window is requested, but
// it does not exist yet, create it.
if (name.startsWith("planet-") &&
super.getWindow(name) == null) {
String planetName =
name.substring("planet-"_lengthQ));

// Create the window object.
Window newWindow =
new Window("Window about " + planetName);

// DANGEROUS: Set the name explicitly. Otherwise,
// an automatically generated name is used, which
// is usually safer.

newWindow.setName(name) ;

// Put some content in it.
newWindow.addComponent(
new Label("This window contains details about " +
planetName + ".'™));

// Add it to the application as a regular
// application-level window.
addWindow(newWindow) ;

return newWindow;

}

// Otherwise the Application object manages existing
// windows by their name.
return super.getWindow(name);

}

The window name is and must be a unique indentifier for each Window object instance. If you
use setName () to set the window name explicitly, as we did above, any browser window that
has the same URL (within the same browser) would open the same window object. This is
dangerous and generally not recommended, because the browser windows would share the
same window object. Opening two windows with the same static name would immediately lead
to a synchronization error, as is shown in Figure 11.1, “Synchronization Error Between Windows
with the Same Name” below. (While also the window captions are same, they are irrelevant for
this problem.)

Creating Windows Dynamically 249

Advanced Web Application Topics

Figure 11.1. Synchronization Error Between Windows with the Same Name

(@ | Window about mercury - Mozilla Firetox

File Edit Wiew History Bookmarks Tools Help

@ @ - @ @ ? [@ http:/flocalhost: 8080/tkS/windowtest/planet-mercury E]

| Window about mercury

| |@| Window about mercu

Out of sync
Something has caused us to be out
Take note of any unsaved data, and cl

Done m 4=

There are some cases where setting the name explicitly is useful. The launch application below
is one example, as it always opens the other windows in a window target that is specific to the
window name, thereby never creating two windows with the same URL. Similarly, if you had
embedded the application in a browser frame and the link would open the window in a frame,
you would not have problems. Having a single window instance for a URL is also useful if the
browser crashes and the user opens the window again, as it will have kept its previous (server-
side) state.

Leaving the window name to be automatically generated allows opening multiple windows with
the same URL, while each of the windows will have a separate state. The URL in the location
bar stays unchanged and the generated window name is used only for the Ajax communications
to identify the window object. A generated name is a string representation of a unique random
number, such as "1928676448". You should be aware of the generated window names when
overriding the getWindow() method (and not unintentionally create a new window instance
dynamically for each such request). The condition in the above example would also filter out
the requests for an already existing window with a generated name.

Figure 11.2, “A Dynamically Created Window” shows a dynamically created application-level
window with the URL shown in the address bar. The URL for the application is here
http://localhost:8080/tk5/windowexample/, including the application context, and
the dynamically created window's name is planet-mars.

Figure 11.2. A Dynamically Created Window

Window about mercury - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

< @ “-? [[@) | http:ilocalhost:8080/tkS/windowt est/planet-mercury E]
|@] Window Test Application QJ [@) Window about mercury Q | -
This window contains details about mercury,
Done] # | |- [_]

The application knows the windows it already has and can return them after the creation. The
application also handles closing and destruction of application-level window obijects, as dis-
cussed in Section 11.2.3, “Closing Windows”.

Such dynamic windows could be opened as in the following example:

250

Creating Windows Dynamically

Advanced Web Application Topics

public void init(Q) {
final Window main = new Window(*'Window Test');
setMainWindow(main);

// Have some IDs for the dynamically creatable windows.

final String[] items = new String[] { "mercury', "venus",
“earth™, "mars', "jupiter', "saturn', "uranus",
"neptune’ };

// Create a list of links to each of the available window.
for (int i = 0; i < items.length; i++) {

// Create a URL for the window.

String windowUrl = getURL() + "planet-" + items[i];

// Create a link to the window URL. Using the
// item 1D for the target also opens it in a new
// browser window (or tab) unique to the window name.
main.addComponent(
new Link("'Open window about " + items[i],
new ExternalResource(windowUrl),
items[i], -1, -1, Window.BORDER_DEFAULT));

}

Figure 11.3. Opening Windows

Eile Edit Wiew History Bookmarks Tools Help

[@] Window Test Applicati... € l [®] Window about mercury € | [6] Window about venus € | ~

=
«‘C?\ [@ http://localhost:8080/tkS/windowtest/ E]

Click a link to open a new window:
Qpen window about mercury

Open window about venus:

Open window about earth

Open window about mars

Open window about jupiter

Open window about saturn

Open window about uranus
Open window about neptune

http:/localhost: 8080/tkS/windowtest/planet-venus | & [- l:]

11.2.3. Closing Windows

When the user closes an application-level window, the Client-Side Engine running in the browser
will report the event to the server before the page is actually removed. You can catch the event
with a Window.CloselListener, as is done in the example below.

newWindow.addListener(new Window.CloseListener() {
@0override
public void windowClose(CloseEvent e) {
// Do something.
System.out.printin(e.getWindow() .getName() +
" was closed™);

// Add a text to the main window about closing.
// (This does not update the main window.)
getMainWindow() -addComponent(
new Label(*Window """ + e.getWindow().getName() +
""" was closed."));

Closing Windows 251

Advanced Web Application Topics

3
D:;

Notice that the change to the server-side state of the main window (or another application-level
window) does not refresh the window in the browser, so the change will be unseen until user
interaction or polling refreshes the window. This problem and its dangers are discussed in
Section 11.2.4, “Caveats in Using Multiple Windows” below.

The close event does not occur if the browser crashes or the connection is otherwise severed
violently. In such a situation, the window object will be left hanging, which could become a re-
source problem if you allow the users to open many such application-level windows. The positive
side is that the user can reconnect to the window using the window URL.

11.2.4. Caveats in Using Multiple Windows

Communication Between Windows

For cases where you need communication between windows, we recommend using floating
child windows. In Vaadin Release 5, an application window can not update the data in other
windows. The contents of a window can only be updated when the particular window makes a
request to the server. The request can be caused by user input or through polling.

Changing the server-side state of a window while processing a user event from another window
can potentially cause serious problems. Changing the client-side state of a window does not
always immediately communicate the changes to the server. The server-side state can therefore
be out of sync with the client-side state.

Figure 11.4. Communication Between Two Application-Level Windows

@ Application window - Mozilla

File Edit Wiew History Bookmarks To

{;:-:‘\)v@ S}uhttp:f'ﬁ'

Name

Earth

Mars

Select item to add

I Mars j

Click to open second window

The following example creates a second window that changes the contents of the main window,
as illustrated in the figure above. In this simple case, changing the main window contents is
safe.

// Create a table in the main window to hold items added
// in the second window

final Table table = new Table();

table.setPagelLength(5);

table.getSize() -setWidth(100, Size.UNITS_PERCENTAGE);
table.addContainerProperty(*'Name', String.class, "'');
main.addComponent(table);

// Create the second window
final Window adderWindow = new Window(**Add Items'™);
adderWindow.setName("'win-adder');

252

Caveats in Using Multiple Windows

Advanced Web Application Topics

main.getApplication() .addWindow(adderWindow) ;

// Create selection component to add items to the table

final NativeSelect select = new NativeSelect(''Select item to add");
select.setlmmediate(true);

adderWindow.addComponent(select);

// Add some items to the selection
String items[] = new String[]1{"-- Select --", "Mercury", "Venus",
“Earth", "Mars', "Jupiter', "Saturn, "Uranus', "Neptune'};
for (int i=0; i<items.length; i++)
select.addltem(items[i]);
select.setNullSelectionltemld(items[0]);

// When an item is selected in the second window, add
// table in the main window
select.addListener(new ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
// If the selected value is something else
// but a null selection item.
if (select.getvalue() != null) {
// Add the selected item to the table
// in the main window
table.addltem(new Object[]{select.getValue()},
new Integer(table.size())):

3
D:;

// Link to open the selection window

Link link = new Link(*"Click to open second window",
new ExternalResource(adderWindow.getURL()),
"_new", 50, 200,
Link.TARGET_BORDER_DEFAULT);

main.addComponent(link);

// Enable polling to update the main window
Progressindicator poller = new Progressindicator();
poller._addStyleName(*'invisible™);
main.addComponent(poller);

The example uses an invisible Progressindicator to implement polling. This is sort of a trick
and a more proper API for polling is under design. Making the progress indicator invisible requires
the following CSS style definition:

.v-progressindicator-invisible {
display: none;

3
11.3. Embedding Applications in Web Pages

Many web applications and especially web sites are not all AJAX, but AJAX is used only for
specific functionalities. In practice, many web applications are a mixture of dynamic web pages
and AJAX applications embedded to such pages.

Embedding Vaadin applications is easy. There are two basic ways to embed them. One is to
have a <div> placeholder for the web application and load the Vaadin Client-Side Engine with
a simple JavaScript code. The second method is even easier, which is to simply use the
<iframe> element. Both of these methods have advantages and disadvantages. The <div>
method can only embed one application in a page, while the <iframe> method can embed
as many as needed. One disadvantage of the <i frame> method is that the size of the <i frame>

Embedding Applications in Web Pages 253

Advanced Web Application Topics

element is not flexible according to the content while the <div> method allows such flexibility.
The following sections look closer into these two embedding methods.

11.3.1. Embedding Inside a div Element

The loading code for the Client-Side Engine changed in IT Mill toolkit version 5.1.2 and the ex-
planation below is no longer compatible with Vaadin. Please view the source code of the initial
page of your application in your browser.

You can embed a Vaadin application inside a web page with a method that is equivalent to
loading the initial page content from the application servlet in a non-embedded application.
Normally, the ApplicationServlet serviet generates an initial page that contains the correct
parameters for the specific application. You can easily configure it to load multiple Vaadin ap-
plications on the same page, assuming that they use the same widget set.

You can view the initial page for your application easily simply by opening the application in a
web browser and viewing the HTML source code. You could just copy and paste the embedding
code from the default initial page. It has, however, some extra functionality that is not normally
needed: it generates some of the script content with document ..write() calls, which is useful
only when you are running the application as a portlet in a portal. The method outlined below is
much simpler.

The WebContent/multiapp.html file included in the Vaadin installation package provides
an example of embedding (multiple) Vaadin applications in a page. After launching the demo
application, you can view the example at URL http://localhost:8888/multiapp.html.
Notice that the example assumes the use of root context for the applications (/).

Embedding requires four elements inside the HTML document:

1. In the <head> element, you need to define the application URI and parameters and
load the Vaadin Client-Side Engine. The vaadin variable is an associative map that
can contain various runtime data used by the Client-Side Engine of Vaadin. The
vaadinConfigurations item is itself an associate map that contains parameters
for each of the applications embedded in the page. The map must contain the following

items:

appUri The application URI consists of the context and the application path.
If the context is /mycontext and the application path is myapp, the
appUri would be /mycontext/myapp. The multiapp.html ex-
ample assumes the use of root context, which is used in the demo
application.

pathinfo The PATHI NFO parameter for the Servlet.

themeUri URI of the application theme. The URI must include application context

and the path to the theme directory. Themes are, by default, stored
under the /VAADIN/themes/ path.

versioninfo This item is itself an associative map that contains two parameters:
vaadi nVer si on contains the version number of the Vaadin version
used by the application. The appl i cati onVer si on parameter
contains the version of the particular application.

The following example defines two applications to run in the same window: the Calcu-
lator and Hello World examples. In the example, the application context is /tk5.

254

Embedding Inside a div Element

Advanced Web Application Topics

<script type="text/javascript'>
var vaadin = {
vaadinConfigurations: {
“calc": {
appUri:-/tk5/Calc™,
pathinfo: */ ",
themeUri: "/tk5/VAADI Nt hemes/ exanple”,
versioninfo : {
vaadinVersion:"5.9.9-INTERNAL-
NONVERS10NED-DEBUG-BUILD",
applicationVersion:""NONVERSIONED"
}
3.
“hello®": {
appUri:"/tk5/ Hel l oWworl d=,
pathinfo: */ ",
themeUri: "/tk5/VAADI Nt hemes/ exanple”®,
versioninfo : {
vaadinVersion:"5.9.9-INTERNAL-
NONVERS10NED-DEBUG-BUILD",
applicationVersion: " "NONVERSIONED"

3
3

</script>

2. Loading the Vaadin Client-Side Engine is done with the following kind of line in the
<head> element:

<script language="javascript”

G Aeed neay esAADINV ichetets/Aon\eedin-tamiral gt Defaulthichpt St \eedin taniral gt DefaultlicstSet road e s>/t

The engine URI consists of the context of the web application, vaadin-examples
above, followed by the path to the JavaScript (. js) file of the widget set, relative to
the WebContent directory. The file contains the Client-Side Engine compiled for the
particular widget set. The line above assumes the use of the default widget set of
Vaadin. If you have made custom widgets that are defined in a custom widget set, you
need to use the path to the compiled widget set file. Widget sets must be compiled
under the WebContent/VAADIN/widgetsets directory.

3. In the <htmlI> element, you need to do a routine inclusion of GWT history iframe
element as follows:

<iframe id="__gwt_historyFrame"
style="width:0;height:0;border:0"></iframe>

4. The location of the Vaadin application is defined with a div placeholder element having
id=""calc", where the identifier is the same as in the vaadi nConfi gurati ons
parameter, as follows:

<div id="calc'/>

Below is a complete example of embedding an application. It works out-of-the-box with the
Calculator demo application.

<IDOCTYPE html PUBLIC *"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional .dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Embedding Example</title>

Embedding Inside a div Element 255

Advanced Web Application Topics

<I-- Set parameters for the Vaadin Client-Side Engine. -->
<script type="text/javascript''>

var vaadin = {appUri:“Calc®, pathInfo: "/"};

</script>

<l-- Load the Vaadin Client-Side Engine. -->
<script language="javascript”

ST="AeedineaplesANDINcEtsats/on. veedin. temirel gt DefeultiicptSat/con veedin temirel gt DefeultichptSet rocad e s >/ript>

<I-- We can stylize the web application. -->
<style>
#vaadin-ajax-window {background: #cOcOff;}
-v-button {background: pink;}

</style>

</head>

<body>
<I-- This <iframe> element is required by GWT. -->
<iframe id=""__gwt_historyFrame"

style="width:0;height:0;border:0"></iframe>

<h1>This is a HTML page</h1l>
<p>Below is the Vaadin application inside a table:</p>
<table align="center" border="3" style="background: yellow;">
<tr><th>The Calculator</th></tr>
<tr>
<td>
<I-- Placeholder <div> for the Vaadin application -->
<div id="vaadin-ajax-window"/>
</td>
</tr>
</table>
</body>
</html>

The page will look as shown in Figure 11.5, “Embedded Application”.

You can style the web application with themes as described in Chapter 8, Themes. The Client-
Side Engine loads the style sheets required by the application. In addition, you can do styling
in the embedding page, as was done in the example above.

The Reservation Demo and Windowed Demos provide similar examples of embedding an ap-
plication in a web page. The embedding web pages are WebContent/reservr_html and
WebContent/windoweddemos . html, respectively.

The disadvantage of this embedding method is that there can only be one web application
embedded in a page. One is usually enough, but if it is not, you need to use the <iframe>
method below.

11.3.2. Embedding Inside an iframe Element

Embedding a Vaadin application inside an <i frame> element is even easier than the method
described above, as it does not require definition of any Vaadin specific definitions. The use of
<iframe> makes it possible to embed multiple web applications or two different views to the
same application on the same page.

You can embed an application with an element such as the following:

<iframe src="/vaadin-examples/Calc'></iframe>

256

Embedding Inside an iframe Element

Advanced Web Application Topics

Figure 11.5. Embedded Application

FEile Edit \iew History Bookmarks Tools Help

€ - - & (i |LI httpulocalhost:gog0/itmill-toolki | +| b

This is a HTML page

Below is the IT Toolkit Application inside a table:

The Calculator

Result
0.0

2]l s]]
JEN R N
2] s] -]
o] =] c| -]

The problem with <i frame> elements is that their size of is not flexible depending on the content
of the frame, but the content must be flexible to accommodate in the frame. You can set the
size of an <iframe> element with height and width attributes.

Below is a complete example of using the <iframe> to embed two applications in a web page.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
“http://www._w3.0org/TR/xhtml1/DTD/xhtml1l-transitional .dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"" >
<head>
<title>Embedding in IFrame</title>
</head>

<body style="background: #dOffdO;">
<h1>This is a HTML page</h1l>
<p>Below are two Vaadin applications embedded inside
a table:</p>

<table align="center" border="3">
<tr>
<th>The Calculator</th>
<th>The Color Picker</th>
</tr>
<tr valign=""top">
<td>
<iframe src="/vaadin-examples/Calc" height="200"
width=""150" frameborder="0"></iframe>
</td>
<td>
<iframe src="/vaadin-examples/colorpicker"
height="330" width="400"
frameborder="0"></iframe>
</td>
</tr>
</table>
</body>
</html>

The page will look as shown in Figure 11.6, “Vaadin Applications Embedded Inside IFrames”
below.

Embedding Inside an iframe Element 257

Advanced Web Application Topics

Figure 11.6. Vaadin Applications Embedded Inside IFrames

Embedding in IFrame - Mozilla Firefox

FEile Edit \iew History Bookmarks Tools Help
@ - E{> - @ ﬁ ||_| http:HIocthost:8080IitmiII-tooIkit-examplesfembeddingii|'| [i“]

This is a HTML page

Below are two IT Mill Toolkit applications embedded inside a table:

The Calculator The Color Picker

Result
0.0
agua black blue
N I A
EE T
;I il il ;I maroon
ol el +] e
..
silver . white vellow

Selected color: white

Set to white |

11.4. Debug and Production Mode

Vaadin applications can be run in two modes: debug mode and production mode. The debug
mode, which is on by default, enables a number of built-in debug features for the developers.

The features include:
¢ Debug Window for accessing debug functionalities
¢ Display debug information in the Debug Window and server console.
¢ Analyze layouting button that analyzes the layout for possible problems.

All applications are run in the debug mode by default (since IT Mill Toolkit version 5.3.0). The
production mode can be enabled, and debug mode thereby disabled, by adding a
pr oduct i onMode=t r ue parameter to the servlet context in the web . xml deployment descriptor:

<context-param>
<description>Vaadin production mode</description>
<param-name>productionMode</param-name>
<param-value>true</param-value>

</context-param>

Enabling the production mode disables the debug features, thereby preventing users from
easily inspecting the inner workings of the application from the browser.

11.4.1. Debug Mode

Running an application in the debug mode enables the client-side Debug Window in the browser.
You can open the Debug Window by adding "?debug' to the application URL, e.g.,

Debug and Production Mode

Advanced Web Application Topics

http://1ocalhost:8080/myapp/?debug. The Debug Window, shown in Figure 11.7, “Debug
Window”, consists of buttons controlling the debugging features and a scrollable log of debug
messages.

Figure 11.7. Debug Window

[Clear console l[Restart app l[Farce layout l[Analyze layouts l

IOz Sirore, shif-d@g Sesine, dowhlecich=mind s U debug sguiet o log ofly o Amwssr consode.
Toolkit application senvlet wersion: 5.3.0-rc3
idget zet iz built on wersion: 5.3.0-rc4
pplication version: HONWYERSIONED
inzering load indicator
hiaking UIDL Request with params: init
Server visit took 42ms

[# change
Funning layout functions due wind o resize
Frocessing time was 1141 ms for 15215 characters of JS0ON
Feferenced paintables: 83

idget IEmbedded size updated

Clear console Clears the log in the Debug Window.
Restart app Restarts the application.
Force layout Causes all currently visible layouts to recalculate their appearance.

Layout components calculate the space required by all child
components, so the layout appearance must be recalculated
whenever the size of a child component is changed. In normal
applications, this is done automatically, but when you do themeing
or alter the CSS with Firebug, you may need to force all layouts to
recalculate themselves, taking into account the recently made
changes.

Analyze layouts This is described in the following section.

If you use the Firebug plugin in Mozilla Firefox, the log messages will also be printed to the
Firebug console. In such a case, you may want to enable client-side debugging without showing
the Debug Window with "?debug=quiet" in the URL. In the quiet debug mode, log messages
will only be printed to the Firebug console.

11.4.2. Analyzing Layouts

The Analyze layouts button analyzes the currently visible layouts and makes a report of possible
layout related problems. All detected layout problems are displayed in the log and also printed
to the console.

The most common layout problem is caused by placing a component that has a relative size
inside a container (layout) that has undefined size, e.g., adding a 100% wide Panel inside a
HorizontalLayout with no width specification. In such a case, the error will look as shown below:

Vaadin DEBUG
- Window/1a8bd74 "My window" (width: MAIN WINDOW)
- HorizontalLayout/1cf243b (width: UNDEFINED)
- Panel/12e43f1 "My panel™ (width: RELATIVE, 100.0 %)
Layout problem detected: Component with relative width inside a HorizontalLayout with no
width defined
Relative sizes were replaced by undefined sizes, components may not render as expected.

Analyzing Layouts 259

Advanced Web Application Topics

This particular error tells that the Panel "My panel" is 100% wide while the width of the containing
HorizontalLayout is undefined. The components will be rendered as if the the width of the
contained Panel was undefined, which might not be what the developer wanted. There are two
possible fixes for this case: if the Panel should fill the main window horizontally, set a width for
the HorizontalLayout (e.g. 100% wide), or set the width of the Panel to "undefined" to render
the it as it is currently rendered but avoiding the warning message.

The same error is shown in the Debug Window in a slightly different form and with an additional
feature (see Figure 11.8, “Debug Window Showing the Result of Analyze layouts.”). Checking
the Emphasize component in Ul box will turn red the background of the component that
caused a warning, making it easy for the developer to figure out which component each warning
relates to. The messages will also be displayed hierarchically, as a warning from a containing
component often causes more warnings from its child components. A good rule of thumb is to
work on the upper-level problems first and only after that worry about the warnings from the
children.

Figure 11.8. Debug Window Showing the Result of Analyze layouts.

el
L=youts analyzed on server, total top lewel problems: 1

= Rootproblems

IFanel id: FIDS
Wiidth problem: "Component with relative width inside a HorizontalLayout with no width defined"

R
D Emphaziz component in Ul
Expznd thiz mode o show gmblens that may be deperdent on this ombled.

Froceszing time was 195ms for 11228 characters of JS0M

Feferenced paintables: 3 bt

11.4.3. Custom Layouts

CustomLayout components can not be analyzed in the same way as other layouts. For custom
layouts, the Analyze layouts button analyzes all contained relative-sized components and
checks if any relative dimension is calculated to zero so that the component will be invisible.
The error log will display a warning for each of these invisible components. It would not be
meaningful to emphasize the component itself as it is not visible, so when you select such an
error, the parent layout of the component is emphasized if possible.

11.4.4. Debug Functions for Component Developers

You can take advantage of the debug mode when developing client-side components. The
static function ApplicationConnection.getConsole() will return areference to a Console
object which contains logging methods such as log(String msg) and error(String
msg). These functions will print messages to the Debug Window and Firebug console in the
same way as other debugging functionalities of Vaadin do. No messages will be printed if the
Debug Window is not open or if the application is running in production mode.

11.5. Resources

In addition to high-level resource classes described in Section 4.5, “Referencing Resources”,
Vaadin provides low-level facilities for retrieving the URI and other parameters of HTTP requests.
In the following, we will look into low-level interfaces for handling URIs and parameters to provide
resources and functionalities.

260

Custom Layouts

Advanced Web Application Topics

Notice that using URI or parameter handlers to create "pages" is not meaningful in Vaadin or in
AJAX applications generally. See Section 11.1, “Special Characteristics of AJAX Applications”
for reasons.

11.5.1. URI Handlers

The URI parameter for the application is useful mainly for two purposes: for providing some
special functionality according to the URI or for providing dynamic content. Dynamic content
can also be provided with StreamResource.

You can retrieve the URI for the HTTP request made for your application by implementing the
com.vaadin.terminal.URIHandler interface. The handler class needs to be registered in the
main window object of your application with the addURIHandler () method. You then get the
URI by implementing the handleURI () method. The method gets two parameters: a context
and a URI relative to the context. The context is the base URI for your application.

public void init(Q) {
final Window main = new Window(*'Hello window');
setMainWindow(main);

URIHandler uriHandler = new URIHandler() {
public DownloadStream handleURI(URL context,
String relativeUri) {
// Do something here
System.out._printin("handleURI="" + relativeUri);

// Should be null unless providing dynamic data.
return null;

}

main.addURIHandler(uriHandler);
}

If you have multiple URI handlers attached to a window, they are executed after one another.
The URI handlers should return nul | , unless you wish to provide dynamic content with the call.
Other URI handlers attached to the window will not be executed after some handler returns non-
null data. The combined parameter and URI handler example below shows how to create dy-
namic content with a URI handler.

Notice that if you do provide dynamic content with a URI handler, the dynamic content is returned
in the HTTP response. If the handler makes any changes to the Ul state of the application, these
changes are not rendered in the browser, as they are usually returned in the HTTP response
made by the Application object and now the custom URI handler overrides the default behaviour.
If your client-side code makes a server call that does update the Ul state, the client-side must
initiate an update from the server. For example, if you have an integration situation where you
make a JavaScript call to the server, handle the request with a URI handler, and the server state
changes as a side-effect, you can use the vaadin.forceSync() method to force the update.

11.5.2. Parameter Handlers

You can retrieve the parameters passed to your application by implementing the com.vaad-
in.terminal.ParameterHandler interface. The handler class needs to be registered in the main
window object of your application with the addParameterHandler () method. You then get
the parameters in the handleParameters() method. The parameters are passes as a map
from string key to a vector of string values.

URI Handlers 261

Advanced Web Application Topics

class MyParameterHandler implements ParameterHandler {
public void handleParameters(Map parameters) {
// Print out the parameters to standard output
for (lterator it = parameters._keySet().iterator();
it.hasNext();) {

String key = (String) it.next();
String value = ((String[]) parameters.get(key))[0];
System.out.printin("Key: "+key+", value: "+value);

}

The parameter handler is not called if there are no parameters. Parameter handler is called
before the URI handler, so if you handle both, you might typically want to just store the URI
parameters in the parameter handler and do actual processing in URI handler. This allows you,
for example, to create dynamic resources based on the URI parameters.

import java.awt.>;

import java.awt.image.Bufferedlmage;
import java.io.*;

import java.net.URL;

import java.util_Map;

import javax.imageio.lmagelO;

import com.vaadin.terminal_*;

/**
* Demonstrates handling URI parameters and the URI itself to
* create a dynamic resource.
*/
public class MyDynamicResource implements URIHandler,
ParameterHandler {
String textToDisplay = "- no text given -";

/**
* Handle the URL parameters and store them for the URI
* handler to use.
*/
public void handleParameters(Map parameters) {
// Get and store the passed HTTP parameter.
if (parameters.containskey(''text™))
textToDisplay =
((string[])parameters.get("text™))[0];

}
/**

* Provides the dynamic resource if the URI matches the
* resource URI. The matching URI is "/myresource' under
* the application URI context.

*

* Returns null if the URI does not match. Otherwise

* returns a download stream that contains the response
* from the server.

*/

public DownloadStream handleURI(URL context,
String relativeUri) {
// Catch the given URI that identifies the resource,
// otherwise let other URI handlers or the Application
// to handle the response.
if (IrelativeUri.startsWith(*'myresource'))
return null;

// Create an image and draw some background on it.
Bufferedlmage image = new Bufferedlmage (200, 200,
BufferedImage.TYPE_INT_RGB);
Graphics drawable = image.getGraphics();
drawable.setColor(Color.lightCGray);

262 Parameter Handlers

Advanced Web Application Topics

drawable.fillRect(0,0,200,200);
drawable.setColor(Color.yellow);
drawable.fillOval (25,25,150,150);
drawable.setColor(Color.blue);
drawable.drawRect(0,0,199,199);

// Use the parameter to create dynamic content.

drawable.setColor(Color.black);

drawable.drawString("'Text: "+textToDisplay, 75, 100);

try {

// Write the image to a buffer.
ByteArrayOutputStream imagebuffer
new ByteArrayOutputStream();

ImagelO.write(image, ''png",

imagebuffer);

// Return a stream from the buffer.
ByteArraylnputStream istream =
new ByteArraylnputStream(

imagebuffer.toByteArray());
return new DownloadStream (istream,null,null);

} catch (10Exception e) {
return null;

}
}

When you use the dynamic resource class in your application, you obviously need to provide

the same instance of the class as both types of handler:

MyDynamicResource myresource = new MyDynamicResource();

mainWindow.addParameterHandler(myresource);
mainWindow.addURIHandler(myresource);

Figure 11.9. Dynamic Resource with URI Parameters

myresource (PN

Fle Edit

Wiew

History Bookmarks Tools

ﬁ [http:fflocalhost:8080/tkS/book/myresource?text=Hello | v | [

Text Hello

Help

Done

11.6. Shortcut Keys

Vaadin provides simple ways for defining shortcut keys for field components and a default button,
and a lower-level generic shortcut key binding APl based on actions.

11.6.1. Click Shortcuts for Default Buttons

You can add or set a click shortcut to a button to set it as "default" button; pressing the defined

key, typically Enter, in any component in the window causes a click event for the button.

Shortcut Keys

263

Advanced Web Application Topics

You can define a click shortcut with the setClickShortcut() shorthand method:
// Have an OK button and set it as the default button
Button ok = new Button("'OK");

ok.setClickShortcut(KeyCode .ENTER) ;
ok.addStyleName('primary');

The primary style name highlights a button to show the default button status; usually with a
bolder font than usual, depending on the theme. The result can be seen in Figure 11.10, “Default
Button with Click Shortcut”.

Figure 11.10. Default Button with Click Shortcut

Name ofthe Field Agent

OK Cancel

11.6.2. Field Focus Shortcuts

You can define a shortcut key that sets the focus to a field component (any component that in-
herits AbstractField) by adding a FocusShortcut as a shortcut listener to the field.

// A field with AIt+N bound to it
TextField name = new TextField('Name (AIt+N)');
name .addShortcutListener(
new AbstractField.FocusShortcut(name, KeyCode.N,
ModifierKey.ALT));
layout.addComponent(name);

// A field with AIt+A bound to it
TextField address = new TextField('Address (AIt+A)");
address.addShortcutListener(
new AbstractField.FocusShortcut(address, KeyCode.A,
ModifierKey.ALT));
layout.addComponent(address);

The constructor of the FocusShortcut takes the field component as its first parameter, followed
by the key code, and an optional list of modifier keys, as listed in Section 11.6.4, “Supported
Key Codes and Modifier Keys”.

11.6.3. Generic Shortcut Actions

Shortcut keys can be defined as actions using the ShortcutAction class. ShortcutAction extends
the generic Action class that is used for example in Tree and Table for context menus. Currently,
the only classes that accept ShortcutActions are Window and Panel.

To handle key presses, you need to define an action handler by implementing the Handler in-
terface. The interface has two methods that you need to implement: getActions() and
handleAction().

The getActions() method must return an array of Action objects for the component, specified
with the second parameter for the method, the sender of an action. For a keyboard shortcut,
you use a ShortcutAction. The implementation of the method could be following:

/1 Have the unnodified Enter key cause an event
Action action_ok = new ShortcutAction("Default key",
ShortcutAction.KeyCode .ENTER, null);

/1 Have the C key nodified with Alt cause an event
Action action_cancel = new ShortcutAction("Alt+C',

264

Field Focus Shortcuts

Advanced Web Application Topics

ShortcutAction.KeyCode.C,
new i nt [1 { ShortcutAction_ModifierKey.ALT });

Action[] actions = new Action[] {action_cancel, action_ok};

publ i c Action[] getActions(Object target, Object sender) {
if (sender == myPanel)
return actions;

return null;

}

The returned Action array may be static or you can create it dynamically for different senders
according to your needs.

The constructor of ShortcutAction takes a symbolic caption for the action; this is largely irrel-
evant for shortcut actions in their current implementation, but might be used later if implementors
use them both in menus and as shortcut actions. The second parameter is the key code and
the third a list of modifier keys, which are listed in Section 11.6.4, “Supported Key Codes and
Modifier Keys”.

The following example demonstrates the definition of a default button for a user interface, as
well as a normal shortcut key, Alt-C for clicking the Cancel button.

public class DefaultButtonExample extends CustomComponent

i mpl enents Handler {

/1 Define and create user interface conponents

Panel panel = new Panel("Login");

FormLayout formlayout = new FormLayout();

TextField username = new TextField("Usernane");

TextField password = new TextField("Password");

HorizontalLayout buttons = new HorizontalLayout();

/'l Create buttons and define their |istener nethods
Button ok = new Button("OK", this, "okHandler");
Button cancel = new Button("Cancel", this, "cancel Handl er");

/1 Have the unnodified Enter key cause an event
Action action_ok = new ShortcutAction("Default key",
ShortcutAction.KeyCode .ENTER, null);

/1 Have the C key nodified with AlIt cause an event
Action action_cancel = new ShortcutAction("Alt+C',
ShortcutAction.KeyCode.C,
new i nt [] { ShortcutAction_ModifierKey.ALT });

publ i ¢ DefaultButtonExample() {
/1 Set up the user interface
setCompositionRoot(panel);
panel _.addComponent(formlayout) ;
formlayout.addComponent(username) ;
formlayout.addComponent(password) ;
formlayout.addComponent(buttons);
buttons.addComponent(ok) ;
buttons.addComponent(cancel);

/1 Set focus to usernane
username.focus();

/Il Set this object as the action handl er
System.out._printIn("addi ng ah");
panel _.addActionHandler(t hi s);

System.out._printin("start done.");

Generic Shortcut Actions 265

Advanced Web Application Topics

/**
* Retrieve actions for a specific conmponent. This method
* will be called for each object that has a handler; in

* this exanple just for login panel. The returned action
* list mght as well be static list.
*
/
publ i c Action[] getActions(Object target, Object sender) {
System.out.printin("get Actions()");
return new Action[] { action_ok, action_cancel };

3
/**
* Handl e actions received fromkeyboard. This sinply directs
* the actions to the same |istener methods that are called
* with ButtonCick events.
*
/
public void handleAction(Action action, Object sender,
Object target) {

if (action == action_ok) {
okHandler(Q);

}

if (action == action_cancel) {

cancelHandler();

}
}

public void okHandler() {
/1 Do sonething: report the click
formlayout.addComponent(new Label ("X cl i cked
+ "User=" + username.getValue() + ", password="
+ password.getValue()));

}

public void cancelHandler() {
/1 Do sonething: report the click
formlayout.addComponent(new Label (" Cancel clicked. User="
+ username.getvValue() + ", password="
+ password.getValue()));

}

Notice that the keyboard actions can currently be attached only to Panels and Windows. This
can cause problems if you have components that require a certain key. For example, multi-line
TextField requires the Enter key. There is currently no way to filter the shortcut actions out
while the focus is inside some specific component, so you need to avoid such conflicts.

11.6.4. Supported Key Codes and Modifier Keys

The shortcut key definitions require a key code to identify the pressed key and modifier keys,
such as Shift, Alt, or Ctrl, to specify a key combination.

The key codes are defined in the ShortcutAction.KeyCode interface and are:
Keys Ato Z Normal letter keys
F1to F12 Function keys

BACKSPACE, DELETE, ENTER, Control keys
ESCAPE, | NSERT, TAB

NUMD to NUMB Number pad keys

266 Supported Key Codes and Modifier Keys

Advanced Web Application Topics

ARROW DOWN, ARROW UP, Arrow keys

ARROW LEFT, ARROW RI GHT

HOVE, END, PAGE_UP, Other movement keys
PAGE_DOWN

Modifier keys are defined in ShortcutAction.ModifierKey and are:
Modi fi er Key. ALT Alt key
Modi fi erKey. CTRL Ctrl key
Mbdi fi er Key. SHI FT Shift key

All constructors and methods accepting modifier keys take them as a variable argument list
following the key code, separated with commas. For example, the following defines a Ctrl-Shift-N
key combination for a shortcut.

TextField name = new TextField(“'Name (Ctrl+Shift+N)'");
name.addShortcutListener(
new AbstractField.FocusShortcut(name, KeyCode.N,
ModifierKey.CTRL,
ModifierKey.SHIFT));

Supported Key Combinations

The actual possible key combinations vary greatly between browsers, as most browsers have
a number of built-in shortcut keys, which can not be used in web applications. For example,
Mozilla Firefox allows binding almost any key combination, while Opera does not even allow
binding Alt shortcuts. Other browsers are generally in between these two. Also, the operating
system can reserve some key combinations and some computer manufacturers define their
own system key combinations.

11.7. Printing

Vaadin does not currently have any special support for printing. Printing on the server-side is,
in any case, largely independent from the web Ul of an application. You just have to take care
that the printing does not block server requests, possibly by running printing in another thread.

For client-side printing, most browsers support printing the web page. Vaadin does not explicitly
support launching the printing in browser, but you can easily use the JavaScript print()
method that opens the print window of the browser.

final Button print = new Button("Print This Page');
print.addListener(new ClickListener() {
public void buttonClick(ClickEvent event) {
print_getWindow() -executeJavaScript('print();");

}
»:;

This button would print the current page, including the button itself. Often, you want to be able
to print a report or receipt and it should not have any visible Ul components. In such a case,
you could offer it as a PDF resource, or you could open a new window, as is done below, and
automatically launch printing.

// A button to open the printer-friendly page.
Button print = new Button("Click to Print');

print._addListener(new Button.ClickListener() {

Printing 267

Advanced Web Application Topics

public void buttonClick(ClickEvent event) {
// Create a window that contains what you want to print
Window window = new Window(*Window to Print');

// Have some content to print

window.addComponent(new Label(
""<hl>Here"s some dynamic content</h1>\n" +
"<p>This is to be printed to the printer.</p>",
Label .CONTENT_XHTML));

// Add the printing window as a new application-level
// window
getApplication() .addWindow(window) ;

// Open it as a popup window with no decorations
getWindow() -open(new ExternalResource(window.getURL()),
" _blank'™, 500, 200, // Width and height
Window.BORDER_NONE); // No decorations

// Print automatically when the window opens.
// This call will block until the print dialog exits!
window.executeJavaScript('print();");

// Close the window automatically after printing
window.executeJavaScript(“'self.close();");

3
D:;

How the browser opens the window, as an actual (popup) window or just a tab, depends on the
browser. Notice that calling the print() method in the window will block the entire application
until the print dialog exits. After printing, we automatically close the window with another
JavaScript call, as there is no close() method in Window.

Printing as PDF would not require creating a Window object, but you would need to provide
the content as a static or a dynamic resource for the open() method. Printing a PDF file would
obviously require a PDF viewer cabability (such as Adobe Reader) in the browser.

11.8. Portal Integration

Vaadin supports running applications as portlets, as defined in the JSR-168 (Java Portlet API)
and JSR-286 (Java Portlet API 2.0) standards. While providing generic support for all portals
implementing the standards, Vaadin especially supports the Liferay portal and the needed
portal-specific configuration is given below for Liferay.

You can deploy the Vaadin demo package WAR (available from the download site) directly to
a portal such as Liferay. It contains all the necessary portlet configuration files. For optimal
performance with Liferay, you can install the Vaadin library and other needed resources in Liferay
as described later in this section.

You can find more documentation and examples from the Vaadin Developer's Site at
http://dev.vaadin.con/.

11.8.1. Deploying to a Portal

Deploying a Vaadin application as a portlet is essentially just as easy as deploying a regular
application to an application server. You do not need to make any changes to the application
itself, but only the following:

e Application packaged as a WAR

268

Portal Integration

Advanced Web Application Topics

WEB-INF/portlet.xml descriptor

WEB-INF/web .xml descriptor for Portlet 1.0 portlets
WEB-INF/liferay-portlet.xml descriptor for Liferay
WEB-INF/liferay-display.xml descriptor for Liferay

WEB- INF/liferay-plugin-package.properties for Liferay
Widget set installed to portal (optional)

Themes installed to portal (optional)

Vaadin library installed to portal (optional)

Portal configuration settings (optional)

Installing the widget set and themes to the portal is required for running two or more Vaadin
portlets simultaneously in a single portal page. As this situation occurs quite easily, we recom-
mend installing them in any case.

In addition to the Vaadin library, you will need to copy the portlet. jar to your project. It is
included in the Vaadin installation package. Notice that you must not put the portlet. jar in
the same WebContent/WEB-INF/1ib directory as the Vaadin JAR or otherwise include it in
the WAR to be deployed, because it would create a conflict with the internal portlet library of
the portal.

How you actually deploy a WAR package depends on the portal. In Liferay, you simply drop it
to the deploy subdirectory under the Liferay installation directory. The deployment depends
on the application server under which Liferay runs; for example, if you use Liferay bundled with
Tomcat, you will find the extracted package in the webapps directory under the Tomcat install-
ation directory included in Liferay.

11.8.2. Creating a Portal Application Project in Eclipse

While you can create the needed deployment descriptors manually for any existing Vaadin ap-
plication, as described in subsequent sections, the Vaadin Plugin for Eclipse provides a wizard
for easy creation of portal application projects.

Creation of a portal application project is almost identical to the creation of a regular application
project. For a full treatment of the New Project Wizard and the possible options, please see
Section 2.4.1, “Creating the Project”.

1. Start creating a new project by selecting from the menu File - New - Project....

Creating a Portal Application Project in Eclipse 269

Advanced Web Application Topics

2. Inthe New Project window that opens, select Web - Vaadin Project and click Next.

3. In the Vaadin Project step, you need to set the basic web project settings. You need
to give at least the project name, the runtime, and select Generic Portlet for the de-
ployment configuration; the default values should be good for the other settings.

LY New Vaadin Proje o x

Vaadin Project

P
Create a Vaadin Dynamic Web project. | G

Project name: | myportlat]

Project contents
Use default

[I)

Target runtime

[Apache Tomcat v6.0 -][Ngwm]

Configuration

[Default Configuration for Apache Temcat v6.0 -] [Medify .,]

A good starting point for working with Apache Tomcat v6.0
runtime. Additional facets can later be installed to add new
functionality to the project.

Vaadin
Deployment configuration:
Generic portlet (Portlet 2.0) -]
Waadin version: [6.2.4 -][Down\oad...]
@) [< Back l Next =] i Finish i [Cancel]

You can click Finish here to use the defaults for the rest of the settings, or click Next.

4. The settings in the Web Module step define the basic servlet-related settings and the

structure of the web application project. All the settings are pre-filled, and you should
normally accept them as they are and click Next.

5. The Vaadin project step page has various Vaadin-specific application settings. These

are largely the same as for regular applications. You should not need to change anything
as you can change the application titles and other details afterwards. The Create
portlet template option should be automatically selected. You can give another
portlet title of you want. You can change most of the settings afterward.

(o} New Vaadin Proje: o x

Vvaadin project

Configure Vaadin specific project details s

Application
Create project template

Application name

[Myportlet Application]

Base package name:

| com.example.myportlet]

Application class name

[Myportletapplication]

Portlet
Portlet version: [portiet 2,0 -]
Portlet title: [myportlet]

vaadin Version

vaadin version: | 6.2.4 [Download... |

@ [<Back | |[Enish][cancel

270

Creating a Portal Application Project in Eclipse

Advanced Web Application Topics

Create project template Creates an application class and all the needed
portlet deployment descriptors.

Application name The application name is used in the title of the main
window (which is usually invisible in portlets) and as
an identifier, either as is or with a suffix, in various
deployment descriptors.

Base package name Java package for the application class.

Application class name Name of the application class. The default is derived
from the project name.

Portlet version Same as in the project settings.

Portlet title The portlet title, defined in portlet_xml, can be
used as the display name of the portlet (at least in
Liferay). The default value is the project name. The
title is also used as a short description in
liferay-plugin-package.properties.

Vaadin version Same as in the project settings.
Finally, click Finish to create the project.

6. Eclipse may ask you to switch to J2EE perspective. A Dynamic Web Project uses an
external web server and the J2EE perspective provides tools to control the server and
manage application deployment. Click Yes.

11.8.3. Portlet Deployment Descriptors

To deploy a portlet WAR in a portal, you need to provide the basic portlet.xml descriptor
specified in the Java Portlet standard. In addition, you may need to include possible portal
vendor specific deployment descriptors. The ones required by Liferay are described below.

Portlet 2.0 Deployment Descriptor

The portlet WAR must include a portlet descriptor located at
WebContent/WEB-INF/portlet.xml. A portlet definition includes the portlet name, mapping
to a servlet in web . xml, modes supported by the portlet, and other configuration. Below is an
example of a simple portlet definition in portlet.xml descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<portlet-app
xmIns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
version="2.0"
xsi:schemalLocation=
"http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">

<portlet>
<portlet-name>Port| et Exanpl e portl et </portlet-name>
<display-name>Vaadi n Portl et Exanpl e</display-name>

<I-- Map portlet to a servlet. -->
<portlet-class>
com.vaadin.terminal .gwt._server _ApplicationPortlet2

Portlet Deployment Descriptors 271

Advanced Web Application Topics

</portlet-class>
<init-param>
<name>application</name>

<I-- The application class with package name. -->
<value>com exanpl e. nyportl et. Myportl et Appl i cati on</value>
</init-param>

<I-- Supported portlet modes and content types. -->

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>

<I-- Not always required but Liferay requires these. -->
<portlet-info>
<title>Vaadin Portlet Exanpl e</title>
<short-title>Portl| et Exanpl e</short-title>
</portlet-info>
</portlet>
</portlet-app>

Listing supported portlet modes in portlet.xml enables the corresponding portlet controls
in the portal user interface that allow changing the mode, as described later.

Portlet 1.0 Deployment Descriptor

The portlet deployment descriptor for Portlet 1.0 APl is largely the same as for Portlet 2.0. The
main differences are:

1. XML namespace and schema names
2. Portlet-class: ApplicationPortlet vs ApplicationPortlet2

3. The application parameter is a name of the servlet (defined in web .xml in Portlet
1.0, but name of the application class in Portlet 2.0. There is no longer a separate
web . xml file in Servlet 2.0.

4. The portlet-name must not be same as the servlet name in Portlet 1.0; in Portlet 2.0
this does not matter.

5.

Below is an example of a complete deployment descriptor for Portlet 1.0:

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app
version="1.0"
xmIns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

<portlet>
<!-- Must not be the same as servlet name. -->
<portlet-name>Port| et Exanpl e portl et </portlet-name>
<display-name>Vaadi n Portl et Exanpl e</display-name>

<I-- Map portlet to a servlet. -->
<portlet-class>

272 Portlet Deployment Descriptors

Advanced Web Application Topics

com.vaadin.terminal .gwt.server_ApplicationPortlet
</portlet-class>
<init-param>

<name>application</name>

<I-- Must match the servlet URL mapping in web.xml. -->
<value>port| et exanpl e</value>
</init-param>

<I-- Supported portlet modes and content types. -->

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>

<I-- Not always required but Liferay requires these. -->
<portlet-info>
<title>Vaadin Portlet Exanpl e</title>
<short-title>Portl| et Exanpl e</short-title>
</portlet-info>
</portlet>
</portlet-app>

The value of the application parameter must match the context in the <url-pattern> element
in the <servlet-mapping>in the web.xml deployment descriptor, without the path qualifiers
in the pattern. The above example would match the following servlet mapping in web .xml:

<servlet-mapping>
<servlet-name>Portlet Example</servlet-name>
<url-pattern>/port| et exanpl e/*</url-pattern>
</servlet-mapping>

In fact, it would also match the /* mapping.
Using a Single Widget Set

If you have just one Vaadin application that you ever need to run in your portal, you can just
deploy the WAR as described above and that's it. However, if you have multiple applications,
especially ones that use different custom widget sets, you run into problems, because a portal
window can load only a single Vaadin widget set at a time. You can solve this problem by
combining all the different widget sets in your different applications into a single widget set using
inheritance or composition.

For example, the portal demos defined in the portlet.xml in the demo WAR have the following
setting for all portlets so that they will all use the same widget set:

<portlet>

<!-- Use the portal default widget set for all portal demos. -->
<init-param>

<name>widgetset</name>

<value>com.vaadin.portal .gwt.PortalDefaultWidgetSet</value>
</init-param>

The PortalDefaultWidgetSet extends SamplerWidgetSet, which extends the DefaultWid-
getSet. The DefaultWidgetSet is therefore essentially a subset of PortalDefaultWidgetSet,
which contains also the widgets required by the Sampler demo. Other applications that would
otherwise require only the regular DefaultWidgetSet, and do not define their own widgets, can

Portlet Deployment Descriptors 273

Advanced Web Application Topics

just as well use the larger set, making them compatible with the demos. The PortalDefaultWid-
getSet will also be the default Vaadin widgetset bundled in Liferay 5.3 and later.

If your portlets are contained in multiple WARs, which can happen quite typically, you need to
install the widget set and theme portal-wide so that all the portlets can use them. See Sec-
tion 11.8.5, “Installing Vaadin in Liferay” on configuring the widget sets in the portal itself.

Liferay Portlet Descriptor

Liferay requires a special liferay-portlet.xml descriptor file that defines Liferay-specific
parameters. Especially, Vaadin portlets must be defined as "instanceable", but not "ajaxable’.

Below is an example descriptor for the earlier portlet example:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE liferay-portlet-app PUBLIC
"-//Liferay//DTD Portlet Application 4.3.0//EN"
“http://www.liferay.com/dtd/liferay-portlet-app_4_3 0.dtd">

<liferay-portlet-app>

<portlet>
<I-- Matches definition in portlet.xml. -—>
<I-- Note: Must not be the same as servlet name. -->

<portlet-name>Port| et Exanpl e portl et </portlet-name>

<instanceable>true</instanceable>
<ajaxable>false</ajaxable>
</portlet>
</liferay-portlet-app>

See Liferay documentation for further details on the liferay-portlet.xml deployment
descriptor.

Liferay Display Descriptor

The WEB-INF/liferay-display.xml file defines the portlet category under which portlets
are located in the Add Application window in Liferay. Without this definition, portlets will be or-
ganized under the "Undefined" category.

The following display configuration, which is included in the demo WAR, puts the Vaadin portlets
under the "Vaadin" category, as shown in Figure 11.11, “Portlet Categories in Add Application
Window”.

<?xml version="1.0"7?>

<IDOCTYPE display PUBLIC
"-//Liferay//DTD Display 4.0.0//EN"
"http://www._liferay.com/dtd/liferay-display_4 0_0.dtd">

<display>
<category name="Vaadin''>
<portlet id="Portlet Example portlet" />
</category>
</display>

274

Portlet Deployment Descriptors

Advanced Web Application Topics

Figure 11.11. Portlet Categories in Add Application Window

Search applications (searches as you type).
& Collaboration o
& Community o
“, Social
) Tools
1 Vaadin <«——-——Portlet Category
Calc Add
FeatureBrowser Add
PortletDemo Add
Sampler Add
\aadin Portiet Example ———hes—— The Example Portlet
) Wiki o
"1 World of Liferay ¥]
) Drag a portlet to place it on the
= page.

See Liferay documentation for further details on how to configure the categories in the
liferay-display.xml deployment descriptor.

Liferay Plugin Package Properties

The liferay-plugin-package.properties file defines a number of settings for the portlet,
most importantly the Vaadin JAR to be used.

name=Port| et Exanple portlet

short-description=nyportl et

module-group-id=Vaadi n

module-incremental-version=1

#change-log=

#page-uri=

#author=

license=Proprietary

portal-dependency-jars=\
vaadi n. j ar

name The plugin name must match the portlet name.

short-description A short description of the plugin. This is by default the
project name.

nodul e- gr oup-i d The application group, same as the category id defined
in liferay-display.xml.

license The plugin license type; "proprietary" by default.

portal -dependency-jars The JAR libraries on which this portlet depends. This
should have value vaadin. jar, unless you need to use
a specific version. The JAR must be installed in the portal,

Portlet Deployment Descriptors 275

Advanced Web Application Topics

for example, in Liferay bundled with Tomcat to
tomcat-x.x.x/webapps/ROOT/WEB- INF/1ib/vaadin_jar.

11.8.4. Portlet Hello World

The Hello World program that runs as a portlet is no different from a regular Vaadin application,
as long as it doesn't need to handle portlet actions, mode changes, and so on.

import com.vaadin.Application;
import com.vaadin.ui.*;

public class PortletExample extends Application {
@0verride
public void init(Q) {
Window mainWindow = new Window(''Portlet Example');

Label label = new Label("'Hello Vaadin user');

mainWindow.addComponent(label);
setMainWindow(mainWindow) ;

}

In addition to the application class, you need the descriptor files, libraries, and other files as
described earlier. Figure 11.12, “Portlet Project Structure in Eclipse” shows the complete project
structure under Eclipse.

Installed as a portlet in Liferay from the Add Application menu, the application will show as il-
lustrated in Figure 11.13, “Hello World Portlet”.

Figure 11.13. Hello World Portlet

Lictionary ;l Find

Vaadin Portlet Example @ a 0 0

Hello Vaadin user

'}}_} Message Bi

11.8.5. Installing Vaadin in Liferay

Loading widget sets, themes, and the Vaadin JAR from a portlet is possible as long as you have
a single portlet, but causes a problem if you have multiple portlets. To solve this, Vaadin portlets
need to use a globally installed widget set, themes, and Vaadin JAR. They, and all the required
configuration, are bundled with Liferay 5.3 and later, but if you are using an earlier version of
Liferay or use a custom widget set, custom themes, or a specific version of Vaadin, you will
need to do the configuration manually.

In these instructions, we assume that you use Liferay bundled with Apache Tomcat, although
you can use many other application servers with Liferay just as well. The Tomcat installation is
included in the Liferay installation package, under the tomcat-x.x.x directory.

The Vaadin JAR should be put in tomcat-x. x . x/webapps/ROOT/WEB- INF/lib/vaadin.jar.
The Vaadin version number should normally be left out from the JAR.

276

Portlet Hello World

Advanced Web Application Topics

Figure 11.12. Portlet Project Structure in Eclipse

= % portletexample
b 'zg Deployment Descriptor: Portlet Example
~ ## Java Resources: src
¥ i com.vaadin.book
= [J] PortletExample.java
b @ PortletExample
~ m) Libraries
P =i JRE System Library [jdkl.6.0_01]
b =i Apache Tomcat v6.0 [Apache Tomecat v6.0]

b fms gwt-dev-linux.jar - fhome/magi/projec

b (@3 gwt-user.jar - /home/magi/project/eclipse/co
b (ms portlet.jar
¥ m=, Web App Libraries
b 4 vaadin-6.0.development.jar
=), EAR Libraries
(= build
v =lib
| portlet.jar
P =i JavaScript Support
¥ = WebContent
P = META-INF
< = WEB-INF
v =lib
| vaadin-6.0.development.jar
WX liferay-displayxml
K| liferay-portlet.xml
| portlet.xml

| web.xml

The widget set needs to be located at Zhtml/VAADIN/widgetsets/ and themes at
/html/VAAD IN/themes/ path under the portal context. You simply need to copy the contents
from under your WebContent/VAADIN directory to the
tomcat-x.x.x/webapps/ROOT/html/VAADIN directory under the Liferay installation directory.
If you use a built-in widget set or theme included in Vaadin, such as the PortalDefaultWidget-
Set, you should copy it from the Vaadin installation directory, from under
WebContent/VAADIN/widgetsets. The default themes are located under
WebContent/VAADIN/themes in the installation directory.

You need to define the widget set, the theme, and the JAR in the portal-ext.properties
configuration file for Liferay, as described earlier. The file should normally be placed in the
Liferay installation directory. See Liferay documentation for details on the configuration file.

Below is an example of a portal-ext.properties file:
Path under which the VAADIN directory is located.

(/html is the default so it is not needed.)

vaadin.resources.path=/html

Portal-wide widget set
vaadin.widgetset=com.vaadin.portal .gwt.PortalDefaultWidgetSet

Theme to use
vaadin.theme=reindeer

The allowed parameters are:

Installing Vaadin in Liferay 277

Advanced Web Application Topics

vaadi n. resour ces. pat h Specifies the resource root path under the portal context.
This is Zhtml by default. Its actual location depends on
the portal and the application server; in Liferay with Tomcat
it would be located at webapps/ROOT/html under the
Tomcat installation directory.

vaadi n. wi dget set The widget set class to use. Give the full path to the class
name in the dot notation. If the parameter is not given, the
default widget set is used.

vaadi n. t hene Name of the theme to use. If the parameter is not given,
the default theme is used, which is reindeer in Vaadin
6.

You will need to restart Liferay after creating or modifying the portal-ext.properties file.

11.8.6. Handling Portlet Requests

Portals such as Liferay are not AJAX applications but reload the page every time a user interaction
requires data from the server. They consider a Vaadin application to be a regular web application
that works by HTTP requests. All the AJAX communications required by the Vaadin application
are done by the Vaadin Client-Side Engine (the widget set) past the portal, so that the portal is
unaware of the communications.

The only way a portal can interact with an application is to load it with a HTTP request; reloading
does not reset the application. The Portlet 2.0 APl supports four types of requests: render, action,
resource, and event requests. The old Portlet 1.0 API supports only the render and action re-
quests. Requests can be caused by user interaction with the portal controls or by clicking action
URLs displayed by the portlet. You can handle portlet requests by implementing the PortletL-
istener interface and the handler methods for each of the request types. You can use the request
object passed to the handler to access certain portal data, such as user information, the portlet
mode, etc.

The PortletListener interface is defined in the PortletApplicationContext2 for Portlet 2.0 API
and com.vaadin.terminal.gwt.server.PortletApplicationContext class for the old Portlet 1.0
API. You can get the portlet application context with getContext() method of the application
class.

You need to have the portlet. jar in your class path during development. However, you must
notdeploy the portlet. jar with the portlet, because it would create a conflict with the internal
portlet library of the portal. You should put it in a directory that is not deployed with the portlet,
for example, if you are using Eclipse, under the L'ib directory under the project root, not under
WebContent/WEB-INF/11ib, for example.

You can also define portal actions that you can handle in the handleActionRequest()
method of the interface.

You add your portlet request listener to the application context of your application, which is a
PortletApplicationContext when (and only when) the application is being run as a portlet.

// Check that we are running as a portlet.
if (getContext() instanceof PortletApplicationContext2) {
PortletApplicationContext2 ctx =
(PortletApplicationContext2) getContext();

// Add a custom listener to handle action and

278

Handling Portlet Requests

Advanced Web Application Topics

// render requests.
ctx.addPortletListener(this, new MyPortletListener());
} else {
getMainWindow() -showNotification(
“Not initialized via Portal!",
Notification.TYPE_ERROR_MESSAGE) ;

}

The handler methods receive references to request and response objects, which are defined
in the Java Servlet API. Please refer to the Servlet APl documentation for further details.

The PortletDemo application included in the demo WAR package includes examples of pro-
cessing mode and portlet window state changes in a portlet request listener.

11.8.7. Handling Portlet Mode Changes

Portals support three portlet modes defined in the Portlet API: view, edit, and help modes. The
view mode is the default and the portal can have buttons to switch the portlet to the other modes.
In addition to the three predefined modes, the Portlet API standards allow custom portlet modes,
although portals may support custom modes to a varying degree.

You need to define which portlet modes are enabled in the portlet.xml deployment descriptor
as follows.

<l-- Supported portlet modes and content types. -->

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>

Changes in the portlet mode are received as resource requests, which you can handle with a
handleResourceRequest(), defined in the PortletListener interface. The current portlet
mode can be acquired with getPortletMode () from the request object.

The following complete example (for Portlet 2.0) shows how to handle the three built-modes in
a portlet application.

// Use Portlet 2.0 API
import com.vaadin.terminal .gwt.server.PortletApplicationContext2;
import com.vaadin.terminal.gwt.server._PortletApplicationContext2.PortletListener;

public class PortletModeExample extends Application
implements PortletListener {
Window mainWindow;
ObjectProperty data; // Data to view and edit
VerticallLayout viewContent = new VerticallLayout();
VerticallLayout editContent = new VerticallLayout();
VerticallLayout helpContent = new VerticallLayout();

@0verride

public void init(Q {
mainWindow = new Window("'Myportlet Application™);
setMainWindow(mainWindow) ;

// Data model
data = new ObjectProperty(‘'<hl>Heading</hl1>"+
"'<p>Some example content</p>");

// Prepare views for the three modes (view, edit, help)
// Prepare View mode content

Handling Portlet Mode Changes 279

Advanced Web Application Topics

Label viewText = new Label(data, Label .CONTENT_XHTML);
viewContent.addComponent(viewText);

// Prepare Edit mode content

RichTextArea editText = new RichTextArea();
editText.setCaption("'Edit the value:");
editText.setPropertyDataSource(data);
editContent.addComponent(editText);

// Prepare Help mode content

Label helpText = new Label(*'<hl1>Help</h1>" +
"<p>This helps youl</p>",
Label .CONTENT_XHTML) ;

helpContent.addComponent(helpText);

// Start in the view mode
mainWindow.setContent(viewContent);

// Check that we are running as a portlet.
if (getContext() instanceof PortletApplicationContext2) {
PortletApplicationContext2 ctx =
(PortletApplicationContext2) getContext();

// Add a custom listener to handle action and
// render requests.
ctx.addPortletListener(this, this);
} else {
mainWindow.showNotification(*'Not running in portal,
Notification.TYPE_ERROR_MESSAGE) ;

}

// Dummy implementations for the irrelevant request types

public void handleActionRequest(ActionRequest request,
ActionResponse response,
Window window) {

3

public void handleRenderRequest(RenderRequest request,
RenderResponse response,
Window window) {

3

public void handleEventRequest(EventRequest request,
EventResponse response,
Window window) {

}

public void handleResourceRequest(ResourceRequest request,
ResourceResponse response,
Window window) {
// Switch the view according to the portlet mode
if (request.getPortletMode() == PortletMode.EDIT)
window.setContent(editContent);
else if (request.getPortletMode() == PortletMode.VIEW)
window.setContent(viewContent);
else if (request.getPortletMode() == PortletMode.HELP)
window.setContent(helpContent);

}

Figure 11.14, “Portlet Modes in Action” shows the resulting portlet in the three modes: view, edit,
and help. In Liferay, the edit mode is shown in the popup menu as a Preferences item.

280 Handling Portlet Mode Changes

Advanced Web Application Topics

Figure 11.14. Portlet Modes in Action

Portlet Mode Example @ Q 0 Q

%8 Look and Feel

Headlng & Configuration

@ Preferences
Some example content.

& Help

Portlet Mode Example ¢ Return to Full Page
Editthe value:

BIUX Y E=SER+=e=—i=iZ pa=2e2T

Backoround ~| Foreground | Font | size hd|

Heading

Some example content.,
Portlet Mode Example <a Return to Full Page

Help

This helps you.

11.8.8. Non-Vaadin Portlet Modes

In some cases, it can be useful to implement certain modes of a portlet as pure HTML or JSP
pages instead of running the full Vaadin application user interface in them. Common reasons
for this are static pages (e.g. a simple help mode), integrating legacy content to a portlet (e.g.
a JSP configuration interface) and providing an ultra-lightweight initial view for a portlet (for users
behind slow connections).

Fully static modes that do not require the Vaadin server side application to be running can be
implemented by subclassing the portlet class ApplicationPortlet2 (Portlet 2.0). The subclass
can either create the HTML content directly or dispatch the request to e.g. a HTML or JSP page
via the portal. When using this approach, any Vaadin portlet and portlet request listeners are
not called.

Customizing the content for the standard modes (view, edit, and help) can be performed by
overriding the methods doView, doEdit and doHelp, respectively. Custom modes can be
handled by implementing similar methods with the @javax.portlet.RenderMode(name =
"mymode") annotation.

Non-Vaadin Portlet Modes 281

Advanced Web Application Topics

You need to define which portlet modes are enabled in the portlet.xml deployment descriptor
as described in Section 11.8.7, “Handling Portlet Mode Changes”. Also, the portlet class in
portlet.xml should point to the customized subclass of ApplicationPortlet2.

The following example (for Portlet 2.0) shows how to create a static help page for the portlet.

portlet.xml:

<I-- Supported portlet modes and content types. -->

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>

HtmlHelpPortlet._java::

// Use Portlet 2.0 API
import com.vaadin.terminal .gwt.server _ApplicationPortlet2;

public class HtmlHelpPortlet extends ApplicationPortlet2 {

// override the help mode, let the Vaadin application handle the view mode
@0verride
protected void doHelp(RenderRequest request, RenderResponse response)
throws PortletException, I0Exception {
// bypass the Vaadin application entirely
response.setContentType(''text/html');
response.getWriter().printIn(""This is the help text as plain HTML.");

// alternatively could use the dispatcher for e.g. JSP help pages:
// PortletRequestDispatcher dispatcher = getPortletContext()

// .getRequestDispatcher('/html/myhelp.jsp™);

// dispatcher.include(request, response);

}

To produce pure HTML portlet content from a running Vaadin application instead of statically
outside an application, the ApplicationPortlet2 method writeAjaxPage should be overridden.
This approach allows using the application state in HTML content generation, and all relevant
Vaadin portlet request and portlet listeners are called around the portlet content generation.
However, the client side engine (widgetset) is not loaded by the browser, which can shorten
the initial page display time.

<portlet-class>com.vaadin.demo.portlet_HtmIModePortlet</portlet-class>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>help</portlet-mode>
</supports>

public class CountApplication extends Application {
private int count = 0;

public void init(Q) {
Window window = new Window("'Portlet mode example'™);
window.addComponent(new Label ('This is the Vaadin application.™));
window.addComponent(new Label ("'Try opening the help mode.'));
setMainWindow(window) ;

}

public int incrementCount() {
return ++count;

282

Non-Vaadin Portlet Modes

Advanced Web Application Topics

}

// Use Portlet 2.0 API
public class HtmIModePortlet extends AbstractApplicationPortlet {

@0verride
protected void writeAjaxPage(RenderRequest request,
RenderResponse response, Window window,
Application application) throws PortletException, I0Exception {
if (PortletMode.HELP.equals(request.getPortletMode())) {
CountApplication app = (CountApplication) application;
response.setContentType(""text/html™);
response.getWriter() .printIn("This is the HTML help, shown ™
+ app-incrementCount() + " times so far.");
} else {
super.writeAjaxPage(request, response, window, application);
b

}

@0verride

protected Class<? extends Application> getApplicationClass() {
return CountApplication.class;

b

}

The user can freely move between Vaadin and non-Vaadin portlet modes with the user interface
provided by the portal (for standard modes) or the portlet (e.g. action links). Once the server
side application has been started, it continues to run as long as the session is alive. If necessary,
specific portlet mode transitions can be disallowed in portlet.xml.

In the case of Portlet 1.0, both a portlet and a servlet are involved. A render request is received
by ApplicationPortlet when the portlet mode is changed, and serving pure HTML in some
modes can be achieved by overriding the method render and handling the modes of interest
separately while calling super.render() for other modes. As always, when extending the
portlet, the reference to the portlet class in portlet.xml needs to be updated.

To serve HTML-only content in the Portlet 1.0 case after starting the server side application and
calling the relevant listeners, the servlet class ApplicationServlet should be subclassed instead
of the portlet. The method writeAjaxPage can be overridden to produce custom HTML content
for certain modes. However, it should be noted that some HTML content (e.g. loading the portal-
wide Vaadin theme) is created by the portlet and not the servlet.

11.9. Google App Engine Integration

Vaadin includes support to run Vaadin applications in the Google App Engine (GAE). The most
essential requirement for GAE is the ability to serialize the application state. Vaadin applications
are serializable through the java.io.Serializable interface.

To run as a GAE application, an application must use GAEApplicationServlet instead of Ap-
plicationServlet in web.xml, and of course implement the java.io.Serializable interface for
all persistent classes. You also need to enable session support in appengine-web.xml with:

<sessions-enabled>true</sessions-enabled>

The Vaadin Project wizard can create the configuration files needed for GAE deployment. See
Section 2.4.1, “Creating the Project”. When the Google App Engine deployment configuration
is selected, the wizard will create the project structure following the GAE Servlet convention in-
stead of the regular Servlet convention. The main differences are:

Google App Engine Integration 283

Advanced Web Application Topics

* Source directory: src/main/java
¢ QOutput directory: war/WEB-INF/classes

¢ Content directory: war

Rules and Limitations

Running Vaadin applications in Google App Engine has the following rules and limitations:

¢ Avoid using the session for storage, usual App Engine limitations apply (no synchron-
ization, that is, it is unreliable).

¢ Vaadin uses memcache for mutex, the key is of the form _vmut ex<sessi oni d>.

¢ The Vaadin WebApplicationContext class is serialized separately into memcache and
datastore; the memcache key is _vac<sessi oni d> and the datastore entity kind is
_vac with identifiers of the type _vac<sessi oni d>.

¢ Do not update the application state when serving an ApplicationResource (such as
ClassResource.getStream()).

¢ Avoid (or be very careful when) updating application state in a TransactionListener
- it is called even when the application is not locked and won't be serialized (such as
with ApplicationResource), and changes can therefore be lost (it should be safe to
update things that can be safely discarded later, that is, valid only for the current re-
quest).

¢ The application remains locked during uploads - a progress bar is not possible.

11.10. Common Security Issues

11.10.1. Sanitizing User Input to Prevent Cross-Site Scripting

You can put raw XHTML content in many components, such as the Label and CustomLayout,
as well as in tooltips and notifications. In such cases, you should make sure that if the content
has any possibility to come from user input, the input is well sanitized before displaying it. Oth-
erwise, a malicious user can easily make a cross-site scripting attack by injecting offensive
JavaScript code in such components.

Offensive code can easily be injected with <script> markup or in tag attributes as events,
such as onLoad. Cross-site scripting vulnerabilities are browser dependent, depending on the
situations in which different browsers execute scripting markup.

There is no generic way to sanitize user input as different applications can allow different kinds
of input. Pruning (X)HTML tags out is somewhat simple, but some applications may need to allow
(X)HTML. It is therefore the responsibility of the application to sanitize the input.

Character encoding can make sanitization more difficult, as offensive tags can be encoded so
that they are not recognized by a sanitizer. This can be done, for example, with HTML character
entities and with variable-width encodings such as UTF-8 or various CJK encodings, by abusing
multiple representations of a character. Most trivially, you could input < and > with < and
>, respectively. The input could also be malformed and the sanitizer must be able to interpret
it exactly as the browser would, and different browsers can interpret malformed HTML and
variable-width character encodings differently.

284

Rules and Limitations

Advanced Web Application Topics

Notice that the problem applies also to user input from a RichTextArea is transmitted as XHTML
from the browser to server-side and is not sanitized. As the entire purpose of the RichTextArea
component is to allow input of formatted text, you can not just remove all HTML tags. Also many
attributes, such as st yl e, should pass through the sanitization.

11.11. URI Fragment and History Management with UriFrag-
mentUtility

A major issue in AJAX applications is that as they run in a single web page, bookmarking the
application URL (or more generally the UR/) can only bookmark the application, not an application
state. This is a problem for many applications such as product catalogs and forums, in which
it would be good to provide links to specific products or messages. Consequently, as browsers
remember the browsing history by URI, the history and the Back button do not normally work.
The solution is to use the fragment part of the URI, which is separated from the primary part
(address + path + optional query parameters) of the URI with the hash (#) character. For example:

http://example.com/path#myfragment

The exact syntax of the fragment part is defined in RFC 3986 (Internet standard STD 66) that
defines the URI syntax. A fragment may only contain the regular URI path characters (see the
standard) and additionally the slash and the question mark.

The UriFragmentUtility is a special-purpose component that manages the URI fragment; it
allows setting the fragment and to handle user-made changes toit. As it is a regular component,
though invisible, you must add it to a layout in an application window with the addComponent (),
as usual.

public void init(Q) {
Window main = new Window("'URl Fragment Example'™);
setMainWindow(main);

// Create the URI fragment utility
final UriFragmentUtility urifu = new UriFragmentUtility(Q);
main.addComponent(urifu);

Notice that the utility component can work only when it is attached to the window, so in practice
it must be added in the Init() method of the application and must afterwards always remain
in the application's user interface.

You can set the URI fragment with the setFragment() method of the UriFragmentUtility
object. The method takes the fragment as a string parameter. In the following example, we have
a menu, from which the user can select the URI fragment.

// Application state menu

final ListSelect menu = new ListSelect(''Select a URI Fragment'™);
menu.addltem(*'mercury');

menu.addltem(*'venus');

menu.addltem("'earth™);

menu.addltem(*'mars');

menu.setIimmediate(true);

main.addComponent(menu);

// Set the URI Fragment when menu selection changes
menu.addListener(new Property.ValueChangeListener() {
public void valueChange(ValueChangeEvent event) {
String itemid = (String) event.getProperty().getvValue();
urifu.setFragment(itemid);

»:

URI Fragment and History Management with UriFragmentUtility 285

Advanced Web Application Topics

The URI fragment and any changes to it are passed to an application as Frag-
mentChangedEvents, which you can handle with a FragmentChangedListener. You can
get the new fragment value with the getFragment() method from the URI fragment utility
component.

// When the URI fragment is given, use it to set menu selection
urifu.addListener(new FragmentChangedListener() {
public void fragmentChanged(FragmentChangedEvent source) {
String fragment =
source.getUriFragmentUtility().getFragment();
if (fragment != null)
menu.setValue(fragment);
3
D:;

Figure 11.15, “Application State Management with URI Fragment Utility” shows an application
that allows specifying the menu selection with a URI fragment and correspondingly sets the
fragment when the user selects a menu item, as done in the code examples above.

Figure 11.15. Application State Management with URI Fragment Utility

[}::- http://localhost:8080/book-examplesfuriexample#earth]

Select a URI Fragment

mercury
VENnuS

mars

“almis [;?q

11.12. Capturing HTTP Requests

Behind the event-driven processing model of Vaadin lies the Java Servlet API, which is based
on processing HTTP requests. These requests are normally hidden from Vaadin applications,
but can be caught using the HttpServletRequestListener interface. You must implement the
interface in your application class. The two methods defined in the interface, onRequestStart()
and onRequestEnd(), allow processing the request before and after other processing.

import javax.servlet._http.HttpServletRequest;
import javax.servlet._http._HttpServletResponse;

import com.vaadin.Application;
import com.vaadin.terminal .gwt.server _HttpServletRequestListener;
import com.vaadin.ui.*;

public class HttpServletRequestApplication extends Application
implements HttpServletRequestListener {

@Override
public void init(Q) {
System.out.printIin(* Application.init() called.™);

Window main = new Window("'URI Fragment Example'™);
setMainWindow(main);
setTheme(*'book-examples™);

// Does nothing but causes a request
Button button = new Button (‘‘Make a request™);

286

Capturing HTTP Requests

Advanced Web Application Topics

1121,

main.addComponent(button);
}

public void onRequestStart(HttpServletRequest request,
HttpServletResponse response) {
System.out.printin(*"[Start of request™);
System.out.printIn(’" Query string: " +
request.getQueryString());
System.out._printin(* Path: " +
request.getPathinfo());

}

public void onRequestEnd(HttpServletRequest request,
HttpServletResponse response) {
System.out.printin(* End of request]™);

}

The onRequestStart() is called for the first time when the application class is loaded but the
init() is not yet called. This can be seen in the output of the above code example:

[Start of request
Query string: null
Path: null
Application.init() called.
End of request]
[Start of request
Query string: repaintAll=1&sh=1050&sw=1680&cw=500&ch=300&vw=500
Path: /UIDL/
End of request]
[Start of request
Query string: windowName=1071684214
Path: /UIDL/
End of request]

The first call is a regular HTML page load, so the URL path is simply the application path. The
subsequent calls are AJAX calls made using the UIDL protocol, so the request path includes
the ZUIDL/ part. This is important to know when using cookies, as explained later.

Using Request and Response Objects

The HttpServletRequest object provides access to the request data, such as request headers,
path info, and query string, as well as to some higher-level information such as cookies.

The HttpServietResponse object is somewhat different, as most write operations write data
directly to the output stream of the server request. It is therefore possible to add new headers
and cookies in the onRequestStart(), and make other settings, but not later on, especially
not in the onRequestEnd(), as all the UIDL response data has already been written to the
output stream. The framework writes the UIDL response to the output stream of the response
before calling onRequestEnd (). You therefore have to be careful when writing to the response
object. You can usually write to it when handling component events in listeners, as is done in
the cookie example later.

While it is theoretically possible to redirect the output stream of the response object to write
custom data to the response, you should never need to do that, as it would break the UIDL
communication protocol.

The servlet request and response objects are defined in the Java Servlet API. Please refer to
its documentation for more detailed information.

Using Request and Response Objects 287

Advanced Web Application Topics

11.12.2. Managing Cookies

Setting and reading cookies is one of the typical uses of HttpServletRequestListener. The
application gets the HttpServletRequest object containing the cookies in the
onRequestStart() method.

Setting a Cookie

You normally set a cookie in an event listener. As the request object is a transient object that
exists only for the duration of the request, it is not accessible from the Application object. The
only way to access it is to store it in onRequestStart(), as done in the following example.

public class CookieExampleApplication extends Application
implements HttpServletRequestListener {
HttpServletResponse response;

public void onRequestStart(HttpServletRequest request,
HttpServletResponse response) {
// Store the reference to the response object for
// using it in event listeners
this.response = response;

We can then use the reference to set or delete cookies in event listeners. Notice that the cookie
path property is automatically set to the application path (such as /book-examples/cookies)
on the first request, but contains the UIDL subpath on subsequent calls (such as
/book-examples/cookies/UIDL). As the cookies are matched against this path, you may
need to set the path explicitly with setPath().

newuser = new TextField ("Give a user name");
login = new Button(*'Login™);
login.addListener(new Button.ClickListener() {
public void buttonClick(ClickEvent event) {
Object value = newuser.getValue();
it (value = null &&
1((Sstring)value).equals(")) {
username = (String) value;

Cookie cookie = new Cookie(''username’,
username);
// Use a fixed path
cookie.setPath("'/book-examples™);
cookie.setMaxAge(3600); // One hour
response.addCookie(cookie);
System.out.printIn('Set cookie.");

newuser.setEnabled(false);
login.setEnabled(false);
restart.setEnabled(true);
logout.setEnabled(true);

}
H:
loginrow.addComponent(newuser) ;
loginrow.addComponent(login);

Removing cookie can be set in similar way by setting the maxAge property to zero.

// Delete the cookie
Cookie cookie = new Cookie(''username', username);
cookie.setPath(""/book-examples™);

288

Managing Cookies

Advanced Web Application Topics

cookie.setMaxAge(0); // Delete
response.addCookie(cookie);

Reading a Cookie

Reading a cookie can be done in the onRequestStart() event. As this method is called also
on the first client request before the application is initialized, it is possible to read user identific-
ation cookies and such on the first request.

public class CookieExampleApplication extends Application
implements HttpServletRequestListener {
String username;

public void onRequestStart(HttpServletRequest request,
HttpServletResponse response) {
if (username == null) {
Cookie[] cookies = request.getCookies();
for (int i=0; i<cookies.length; i++) {
if (cookies[i]-getName() -equals("'username'))

// Log the user in automatically
username = cookies[i].getValue();

Notice that the request path is the application path (such as /book-examples/cookies) on
the first request, but contains the UIDL subpath on subsequent AJAX calls (such as
/book-examples/cookies/UIDL). So, if you have set the cookie in an AJAX request without
setting the cookie path explicitly to such that does not contain the UIDL subpath, the cookie
will be filtered out on the initial onRequestStart() call.

11.13. Drag and Drop

Dragging an object from one location to another by grabbing it with mouse, holding the mouse
button pressed, and then releasing the button to "drop" it to the other location is a common way
to move, copy, or associate objects. For example, most operating systems allow dragging and
dropping files between folders or dragging a document on a program to open it. In Vaadin, it
is possible to drag and drop components and parts of certain components.

Dragged obijects, or transferables, are essentially data objects. You can drag and drop rows in
Table and nodes in Tree components, either within or between the components. You can also
drag entire components by wrapping them inside DragAndDropWrapper.

Dragging starts from a drag source, which defines the transferable. Transferables implement
the Transferable interfaces. For trees and tables, which are bound to Container data sources,
a node or row transferable is a reference to an ltem in the Vaadin Data Model. Dragged com-
ponents are referenced with a WrapperTransferable. Starting dragging does not require any
client-server communication, you only need to enable dragging. All drag and drop logic occurs
in two operations: determining (accepting) where dropping is allowed and actually dropping.
Drops can be done on a drop target, which implements the DropTarget interface. Three com-
ponents implement the interface: Tree, Table, and DragAndDropWrapper. These accept and
drop operations need to be provided in a drop handler. Essentially all you need to do to enable
drag and drop is to enable dragging in the drag source and implement the
getAcceptCriterion() and drop() methods in the DropHandler interface.

The client-server architecture of Vaadin causes special requirements for the drag and drop
functionality. The logic for determining where a dragged object can be dropped, that is, accepting

Drag and Drop 289

Advanced Web Application Topics

1.13.1.

1.13.2.

a drop, should normally be done on the client-side, in the browser. Server communications are
too slow to have much of such logic on the server-side. The drag and drop feature therefore
offers a number of ways to avoid the server communications to ensure a good user experience.

Handling Drops

Most of the user-defined drag and drop logic occurs in a drop handler, which is provided by
implementing the drop() method in the DropHandler interface. A closely related definition is
the drop accept criterion, which is defined in the getAcceptCriterion() method in the same
interface. It is described in Section 11.13.4, “Accepting Drops” later.

The drop() method gets a DragAndDropEvent as its parameters. The event object provides
references to two important object: Transferable and TargetDetails.

A Transferable contains a reference to the object (component or data item) that is being
dragged. A tree or table item is represented as a TreeTransferable or TableTransferable
object, which carries the item identifier of the dragged tree or table item. These special transfer-
ables, which are bound to some data in a container, are DataBoundTransferable. Dragged
components are represented as WrapperTransferable objects, as the components are wrapped
in a DragAndDropWrapper.

The TargetDetails object provides details regarding the exact location where the transferable
object is being dropped. If the target is a tree or a table, the TreeTargetDetails and TableTar-
getDetails objects provide the tree or table item on which the drop is being made. For entire
components, the information is provided in a WrapperDropDetails object. In addition to the
target item or component, the details objects provide a drop location. For selection components,
the location can be obtained with the getDropLocation() and for wrapped components with
verticalDropLocation() and horizontalDropLocation(). The locations are specified
as either VerticalDropLocation or HorizontalDropLocation objects. The drop location objects
specify whether the transferable is being dropped above, below, or directly on (at the middle
of) a component or item.

Dropping on a Tree, Table, and a wrapped component is explained further in the following
sections.

Dropping Iltems On a Tree

You can drag items from, to, or within a Tree. Making tree a drag source requires simply setting
the drag mode with setDragMode(). Tree currently supports only one drag mode,
TreeDragMode . NODE, which allows dragging single tree nodes. While dragging, the dragged
node is referenced with a TreeTransferable object, which is a DataBoundTransferable. The
tree node is identified by the item ID of the container item.

When a transferable is dropped on a tree, the drop location is stored in a TreeTargetDetails
object, which identifies the target location by item ID of the tree node on which the drop is made.
You can get the item ID with getltemldOver() method in AbstractSelectTargetDetails,
which the TreeTargetDetails inherits. A drop can occur directly on or above or below a node;
the exact location is a VerticalDropLocation, which you can get with the getDropLocation()
method.

In the example below, we have a Tree and we allow reordering the tree items by drag and drop.

final Tree tree = new Tree('Inventory");
tree.setContainerDataSource(TreeExample.createTreeContent());
layout.addComponent(tree);

290

Handling Drops

Advanced Web Application Topics

// Expand all items

for (lterator<?> it = tree.rootltemlds().iterator(); it._hasNext(Q);)
tree._expandltemsRecursively(it.next());

// Set the tree in drag source mode
tree.setDragMode(TreeDragMode .NODE) ;

// Allow the tree to receive drag drops and handle them

tree.setDropHandler(new DropHandler()

{

public AcceptCriterion getAcceptCriterion() {

return AcceptAll._get();
}

public void drop(DragAndDropEvent

event) {

// Wrapper for the object that is dragged
Transferable t = event._getTransferable();

// Make sure the drag source i
if (t.getSourceComponent() !=
return;

s the same tree
tree)

TreeTargetDetails target = (TreeTargetDetails)

event.getTargetDetails();

// Get ids of the dragged item and the target item
Object sourceltemld = t.getData("itemld™);

Object targetltemld

target.getltemldOver();

// On which side of the target the item was dropped

VerticalDropLocation location

= target.getDropLocation();

HierarchicalContainer container = (HierarchicalContainer)

tree._getContainerDataSource();

// Drop right on an item -> make it a child
if (location == VerticalDropLocation.MIDDLE)

tree._setParent(sourcelteml

d, targetltemid);

// Drop at the top of a subtree -> make it previous

else if (location == VerticalDropLocation.TOP) {
Object parentld = container.getParent(targetltemld);
container.setParent(sourceltemld, parentld);
container.moveAfterSibling(sourceltemld, targetltemld);
container.moveAfterSibling(targetltemld, sourceltemld);

}

// Drop below another item ->

make it next

else if (location == VerticalDropLocation.BOTTOM) {
Object parentld = container.getParent(targetltemld);
container.setParent(sourceltemld, parentld);
container.moveAfterSibling(sourceltemld, targetltemld);

3
D:;

Accept Criteria for Trees

Tree defines some specialized accept criteria for trees.

TargetinSubtree (client-side)

Accepts if the target item is in the specified sub-tree.
The sub-tree is specified by the item ID of the root of
the sub-tree in the constructor. The second constructor
includes a depth parameter, which specifies how deep
from the given root node are drops accepted. Value

Dropping Items On a Tree 291

Advanced Web Application Topics

-1 means infinite, that is, the entire sub-tree, and is
therefore the same as the simpler constructor.

TargetltemAllowsChildren (cli- Accepts a drop if the tree has

ent-side) setChildrenAl lowed() enabled for the target item.
The criterion does not require parameters, so the class
is a singleton and can be acquired with
Tree.TargetltemAllowsChildren.get(). For
example, the following composite criterion accepts
drops only on nodes that allow children, but between
all nodes:

return new Or (Tree.TargetltemAllowsChildren.get(),
new Not(VerticallLocationls_MIDDLE));

TreeDropCriterion (server-side) Accepts drops on only some items, which as specified
by a set of item IDs. You must extend the abstract class
and implement the getAl lowed I'temlds() to return
the set. While the criterion is server-side, it is lazy-
loading, so that the list of accepted target nodes is
loaded only once from the server for each drag opera-
tion. See Section 11.13.4, “Accepting Drops” for an
example.

In addition, the accept criteria defined in AbstractSelect are available for a Tree, as listed in
Section 11.13.4, “Accepting Drops”.

11.13.3. Dropping Items On a Table

You can drag items from, to, or within a Table. Making table a drag source requires simply
setting the drag mode with setDragMode (). Table supports dragging both single rows, with
TableDragMode .ROW, and multiple rows, with TableDragMode - MULT IROW. While dragging,
the dragged node or nodes are referenced with a TreeTransferable object, which is a
DataBoundTransferable. Tree nodes are identified by the item IDs of the container items.

When a transferable is dropped on a table, the drop location is stored in a AbstractSelectTar-
getDetails object, which identifies the target row by its item ID. You can get the item ID with
getltemldOver() method. A drop can occur directly on or above or below a row; the exact
location is a VerticalDropLocation, which you can get with the getDropLocation() method
from the details object.

Accept Criteria for Tables

Table defines one specialized accept criterion for tables.

TableDropCriterion (server- Accepts drops only on (or above or below) items that
side) are specified by a set of item IDs. You must extend the
abstract class and implement the

getAllowedltemlds() to return the set. While the
criterion is server-side, it is lazy-loading, so that the
list of accepted target items is loaded only once from
the server for each drag operation.

292

Dropping Items On a Table

Advanced Web Application Topics

11.13.4. Accepting Drops

You can not drop the objects you are dragging around just anywhere. Before a drop is possible,
the specific drop location on which the mouse hovers must be accepted. Hovering a dragged
object over an accepted location displays an accept indicator, which allows the user to position
the drop properly. As such checks have to be done all the time when the mouse pointer moves
around the drop targets, it is not feasible to send the accept requests to the server-side, so
drops on a target are normally accepted by a client-side accept criterion.

A drop handler must define the criterion on the objects which it accepts to be dropped on the
target. The criterion needs to be provided in the getAcceptCriterion() method of the DropHand-
ler interface. A criterion is represented in an AcceptCriterion object, which can be a composite
of multiple criteria that are evaluated using logical operations. There are two basic types of cri-
teria: client-side and server-side criteria. The various built-in criteria allow accepting drops based
on the identity of the source and target components, and on the data flavor of the dragged ob-
jects.

To allow dropping any transferable objects, you can return a universal accept criterion, which
you can get with AcceptAll .get().
tree.setDropHandler(new DropHandler() {

public AcceptCriterion getAcceptCriterion() {

return AcceptAll_get();
b

Client-Side Criteria

The client-side criteria, which inherit the ClientSideCriterion, are verified on the client-side, so
server requests are not needed for verifying whether each component on which the mouse
pointer hovers would accept a certain object.

The following client-side criteria are define in com.vaadin.event.dd.acceptcriterion:
AcceptAll Accepts all transferables and targets.

And Logical AND operation on two client-side criterion; accepts
the transferable if all the defined sub-criteria accept it.

ContainsDataFlavour The transferable must contain the defined data flavour.

Not Logical NOT operation on two client-side criterion; accepts
the transferable if and only if the sub-criterion does not accept
it.

Or Logical OR operation on two client-side criterion; accepts the
transferable if any of the defined sub-criteria accept it.

Sourcels Accepts all transferables from any of the given source com-
ponents
SourcelsTarget Accepts the transferable only if the source component is the

same as the target. This criterion is useful for ensuring that
items are dragged only within a tree or a table, and not from
outside it.

Accepting Drops 293

Advanced Web Application Topics

TargetDetaills Accepts any transferable if the target detail, such as the item
of a tree node or table row, is of the given data flavor and has
the given value.

In addition, target components such as Tree and Table define some component-specific client-
side accept criteria. See Section 11.13.2, “Dropping Items On a Tree” for more details.

AbstractSelect defines the following criteria for all selection components, including Tree and
Table.

Acceptltem Accepts only specific items from a specific selection
component. The selection component, which must in-
herit AbstractSelect, is given as the first parameter
for the constructor. It is followed by a list of allowed
item identifiers in the drag source.

Acceptltem.ALL Accepts all transferables as long as they are items.

Targetltemls Accepts all drops on the specified target items. The
constructor requires the target component (AbstractSe-
lect) followed by a list of allowed item identifiers.

VerticalLocationls.MIDDLE, The three static criteria accepts drops on, above, or
TOP, and BOTTOM below an item. For example, you could accept drops
only in between items with the following:

public AcceptCriterion getAcceptCriterion() {
return new Not(VerticallLocationls_MIDDLE);

}

Server-Side Criteria

The server-side criteria are verified on the server-side with the accept() method of the
ServerSideCriterion class. This allows fully programmable logic for accepting drops, but the
negative side is that it causes a very large amount of server requests. A request is made for
every target position on which the pointer hovers. This problem is eased in many cases by the
component-specific lazy loading criteria TableDropCriterion and TreeDropCriterion. They
do the server visit once for each drag and drop operation and return all accepted rows or nodes
for current Transferable at once.

The accept() method gets the drag event as a parameter so it can perform its logic much like
indrop().

public AcceptCriterion getAcceptCriterion() {
// Server-side accept criterion that allows drops on any other
// location except on nodes that may not have children
ServerSideCriterion criterion = new ServerSideCriterion() {
public boolean accept(DragAndDropEvent dragEvent) {
TreeTargetDetails target = (TreeTargetDetails)
dragEvent._getTargetDetails();

// The tree item on which the load hovers
Object targetltemld = target.getltemldOver();

// On which side of the target the item is hovered
VerticalDropLocation location = target.getDropLocation();
if (location == VerticalDropLocation.MIDDLE)

if (I tree.areChildrenAllowed(targetltemld))

294

Accepting Drops

Advanced Web Application Topics

return false; // Not accepted

return true; // Accept everything else

T
};
return criterion;

}

The server-side criteria base class ServerSideCriterion provides a generic accept() method.
The more specific TableDropCriterion and TreeDropCriterion are conveniency extensions
that allow definiting allowed drop targets as a set of items. They also provide some optimization
by lazy loading, which reduces server communications significantly.

public AcceptCriterion getAcceptCriterion() {
// Server-side accept criterion that allows drops on any
// other tree node except on node that may not have children
TreeDropCriterion criterion = new TreeDropCriterion() {
@Override
protected Set<Object> getAllowedltemlds(
DragAndDropEvent dragEvent, Tree tree) {
HashSet<Object> allowed = new HashSet<Object>();
for (lterator<Object> i =
tree.getltemlds().iterator(); i.-hasNext();) {
Object itemld = i.next();
if (tree.hasChildren(itemld))
allowed.add(itemld);
3

return allowed;

3
¥
return criterion;

3
Accept Indicators

When a dragged object hovers on a drop target, an accept indicator is displayed to show
whether or not the location is accepted. For M DDLE location, the indicator is a box around the
target (tree node, table row, or component). For vertical drop locations, the accepted locations
are shown as horizontal lines, and for horizontal drop locations as vertical lines.

You can disable the accept indicators or drag hints with the no-verti cal - drag- hi nts,
no- hori zont al - dr ag- hi nt s, and no- box- dr ag- hi nt s styles, as shown in the following
example.

wrapper .addStyleName(*'no-vertical-drag-hints™);
wrapper .addStyleName(*'no-horizontal-drag-hints™™);
wrapper .addStyleName(*'no-box-drag-hints™™);

11.13.5. Dragging Components

Dragging a component requires wrapping the source component within a DragAndDropWrap-
per. You can then allow dragging by putting the wrapper (and the component) in drag mode
with setDragStartMode (). The method supports two drag modes: Dr agSt ar t Mode. WRAPPER
and Dr agSt ar t Mode. COVPONENT, which defines whether the entire wrapper is shown as the
drag image while dragging or just the wrapped component.

// Have a component to drag
final Button button = new Button(''An Absolute Button');

// Put the component in a D& wrapper and allow dragging it
final DragAndDropWrapper buttonWrap = new DragAndDropWrapper (button);
buttonWrap.setDragStartMode(DragStartMode . COMPONENT) ;

Dragging Components 295

Advanced Web Application Topics

// Set the wrapper to wrap tightly around the component
buttonWrap.setSizeUndefined();

// Add the wrapper, not the component, to the layout
layout.addComponent(buttonWrap, "left: 50px; top: 50px;');

The default height of DragAndDropWrapper is undefined, but the default width is 100%. If you
want to ensure that the wrapper fits tightly around the wrapped component, you should call
setSizeUndefined() for the wrapper. Doing so, you should make sure that the wrapped
component does not have a relative size, which would cause a paradox.

Dragged components are referenced in the WrapperTransferable. You can get the reference
to the dragged component with getDraggedComponent(). The method will return nul I if the
transferable is not a component. Also HTML 5 drags (see later) are held in wrapper transferables.

11.13.6. Dropping on a Component

Drops on a component are enabled by wrapping the component in a DragAndDropWrapper.
The wrapper is an ordinary component; the constructor takes the wrapped component as a
parameter. You just need to define the DropHandler for the wrapper with setDropHandler ().

In the following example, we allow moving components in an absolute layout. Details on the
drop handler are given later.

// A layout that allows moving its contained components
// by dragging and dropping them

final AbsolutelLayout abslLayout = new AbsolutelLayout();
absLayout.setWidth(*'100%");
absLayout.setHeight(**400px');

. put some (wrapped) components in the layout ...

// Wrap the layout to allow handling drops
DragAndDropWrapper layoutWrapper =
new DragAndDropWrapper(absLayout);

// Handle moving components within the AbsolutelLayout
layoutWrapper .setDropHandler(new DropHandler() {
public AcceptCriterion getAcceptCriterion() {
return AcceptAll.get();
}

public void drop(DragAndDropEvent event) {

3
»:

Target Details for Wrapped Components

The drop handler receives the drop target details in a WrapperTargetDetails object, which
implements the TargetDetails interface.

public void drop(DragAndDropEvent event) {
WrapperTransferable t =
(WrapperTransferable) event.getTransferable();
WrapperTargetDetails details =
(WrapperTargetDetails) event.getTargetDetails();

The wrapper target details include a MouseEventDetails object, which you can get with
getMouseEvent(). You can use it to get the mouse coordinates for the position where the

296

Dropping on a Component

Advanced Web Application Topics

1.13.7.

mouse button was released and the drag ended. Similarly, you can find out the drag start position
from the transferable object (if it is a WrapperTransferable) with getMouseDownEvent().

// Calculate the drag coordinate difference

int xChange = details.getMouseEvent().getClientX()
- t.getMouseDownEvent().getClientX();

int yChange = details.getMouseEvent().getClientY()
- t.getMouseDownEvent().getClientY();

// Move the component in the absolute layout
ComponentPosition pos =
absLayout.getPosition(t.getSourceComponent());
pos.setlLeftValue(pos.getLeftValue() + xChange);
pos.setTopValue(pos.getTopValue() + yChange);

You can get the absolute x and y coordinates of the target wrapper with getAbsoluteLeft()
and getAbsoluteTop(), which allows you to translate the absolute mouse coordinates to
coordinates relative to the wrapper. Notice that the coordinates are really the position of the
wrapper, not the wrapped component; the wrapper reserves some space for the accept indic-
ators.

The verticalDropLocation() and horizontalDropLocation() return the more detailed
drop location in the target.

Dragging Files from Outside the Browser

The DragAndDropWrapper allows dragging files from outside the browser and dropping them
on a component wrapped in the wrapper. Dropped files are automatically uploaded to the ap-
plication and can be acquired from the wrapper with getFiles(). The files are represented
as HtmiSFile objects as defined in the inner class. You can define an upload Receiver to receive
the content of a file to an OutputStream.

Dragging and dropping files to browser is supported in HTML 5 and requires a compatible
browser, such as Mozilla Firefox 3.6 or newer.

11.14. Using Add-on Components

1.1441.

In addition to the built-in components, layouts, themes, and data sources, many others are
available as add-ons, either from the Vaadin Directory or from independent sources. Both
commercial and free components exist.

Installation of themes, data sources, and components built with server-side component compos-
ition is simple, just dropping a JAR package in a project and, usually, compiling the included
widget set (the client-side implementation).

Downloading Add-ons from Vaadin Directory

Vaadin Directory at http://vaadin.com/directory/ provides a rich collection of add-ons
for Vaadin. You can download Directory add-on packages from the details page of an add-on.

1. Select the version; some add-ons have several versions available. The latest is shown
by default, but you can choose another the version to download from the dropdown
menu in the header of the details page.

2. Click Download Now and save the JAR or Zip file on your computer.

Dragging Files from Outside the Browser 297

Advanced Web Application Topics

3. If the add-on is packaged in a Zip package, unzip the package and follow any instruc-
tions provided inside the package. Typically, you just need to copy a JAR file to your
web project under the WEB-INF/1ib directory.

4. Update and recompile your project. In Eclipse, select the project and press F5.

5. You need to compile the client-side implementations of the add-on components, that
is, a widget set. This is the case for majority of add-ons, except for pure server-side,
theme, or data binding add-ons. You must recompile the widget set if you install a new
version of the add-on or the Vaadin library. See the subsequent sections for detailed
instructions for compiling widget sets.

6. Update the project in web server and possibly restart the server.

After trying out an add-on, you can give some feedback to the author of the add-on by rating
the add-on with one to five stars and optionally leaving a comment.

Please note the add-on license. While most commercial add-ons can be downloaded directly,
you should note their license and other terms and conditions. Many are offered under a dual li-
censing agreement so that they can be used in open source projects for free, and many have
a trial period for closed-source development.

11.14.2. Compiling Add-on Widget Sets in Eclipse

To be able to compile widget sets in Eclipse, you need to have the Vaadin Plugin for Eclipse
installed, as instructed in Section 2.2.5, “Vaadin Plugin for Eclipse”.

An application can only have one widget set, so if you use multiple add-ons and possibly your
own custom widgets, they need to be combined to a single widget set that inherits them. You
can create the combining widget set manually and the Eclipse plugin simply update it when
you add new add-ons. Otherwise, the Eclipse plugin automatically creates a project-specific
widget set under the project root source folder.

The Eclipse plugin compiles widget sets automatically by default. They do not normally need
to be recompiled after changes to server-side classes, so if the automatic recompilation get
annoying, disable it from the project settings.

To compile the widget set(s) manually, click the Compile Vaadin widgets button in Eclipse

toolbar or press Ctrl-6. You must recompile the widget set(s) always when you install a new
version of the add-on or of the Vaadin library.

Figure 11.16. The Compile Vaadin widgets Button in Eclipse Toolbar

@ | B[R] EH~ G v oo

Further information on defining and compiling widget sets is given in Section 10.2.2, “Recompiling
the Widget Set”, Section 10.5, “Defining a Widget Set”, and Section 10.8.4, “Compiling GWT
Widget Sets”.

298

Compiling Add-on Widget Sets in Eclipse

Advanced Web Application Topics

11.14.3. Compiling Add-on Widget Sets with an Ant Script

The Vaadin installation package (the Zip package) includes an example Ant build script for
compiling a widget set. The script is located in
WebContent/docs/example-source/bui ld-widgetset.xml. Once you have unpacked
the installation package and changed to the directory in a command-line window, you can enter:

$ ant -f WebContent/ docs/ exanpl e-source/ bui | d-w dget set . xni

You can copy the build script to your project. See Section 10.8.4, “Compiling GWT Widget Sets”
for details on configuring the build script and the available build targets, and Section 10.5,
“Defining a Widget Set” for information on the widget set definition file.

If you are using an IDE such as Eclipse, always remember to refresh the project after compiling
the widget set.

11.14.4. Troubleshooting

If you experience problems, do the following:

* Checkthe .gwt.xml widget set definition file under the widget set folder in the project
root package. For example, if the project root package is com.example ..myproject,
the widget set definition file would be
com.example.myproject.widgetset_MyprojectWidgetset.gwt.xml. See
Section 10.5, “Defining a Widget Set” for details on the contents of the widget set
definition file.

* Check the WEB-INF/web .xml deployment descriptor and see that the servlet for your
application has a widget set parameter, such as the following:

<init-param>
<description>Application widgetset</description>
<param-name>widgetset</param-name>
<param-value>com.example._myproject.widgetset_MyprojectWidgetset</param-value>
</init-param>

¢ See the VAADIN/widgetsets directory and check that the widget set appears there.
You can remove it and recompile to see that compilation works properly.
¢ Use the Net tab in Firebug to see that the widget set (and theme) is loaded properly.

* Use the ?debug parameter for the application to see if there is any version conflict
between the widget set and the Vaadin library, or the themes. See Section 11.4.1,
“Debug Mode” for details.

¢ Refresh and recompile the project. In Eclipse, select the project and press F5, stop
the server, clean the server temporary directories, and restart it.

e Check the Error Log view in Eclipse (or the IDE you use).

For more specific problems related to widget sets definition and compilation, see Section 10.8.8,
“Troubleshooting”.

Compiling Add-on Widget Sets with an Ant Script 299

Advanced Web Application Topics

11.14.5. Removing Widget Sets

Version mismatch problems with custom widget sets are a common source of grief for many
beginners in Vaadin. If you need add-ons or your own custom components that include widget
sets, you of course need to compile them, but otherwise it is unnecessary.

If you do not use any such add-ons or your own custom components, do the following:

1. If you are using the Eclipse plugin, disable automatic widget set compilation from
project preferences, in the Vaadin category, by selecting Suspend automatic wid-
getset builds. This prevents accidental compilation of the unnecessary widget sets.
You may want to do this anyhow as the automatic builds can be annoying. You can
still always build the widget set with the button in the toolbar.

2. Remove all widget set folders from under the VAADIN/widgetsets folder.

3. Edit the WEB-INF/web.xml file and remove the wi dget set init parameter from the
servlet. It looks as follows:

<init-param>
<description>Application widgetset</description>
<param-name>widgetset</param-name>

<param-value>com.vaadin.demo.colorpicker.widgetset.ColorPickerWidgetSet</param-value>
</init-param>

4. Refresh the project. In Eclipse, select the project and press F5, stop the server, clean
the server temporary directories, and restart it.

At least in development environments, if you have extracted Vaadin themes to the
VAAD IN/themes folder, you should remove them and let them be loaded dynamically from the
Vaadin JAR.

300

Removing Widget Sets

Appendix A

User Interface
Definition
Language (UIDL)

User Interface Definition Language (UIDL) is a language for serializing user interface contents
and changes in responses from web server to a browser. The idea is that the server-side com-
ponents "paint' themselves to the screen (a web page) with the language. The UIDL messages
are parsed in the browser and translated to GWT widgets.

The UIDL is used through both server-side and client-side APIs. The server-side API consists
of the PaintTarget interface, described in Section A.1, “API for Painting Components”. The
client-side interface depends on the implementation of the client-side engine. In Vaadin Release
5, the client-side engine uses the Google Web Toolkit framework. Painting the user interface
with a GWT widget is described in Section 10.3, “Google Web Toolkit Widgets”.

UIDL supports painting either the entire user interface or just fragments of it. When the application
is started by opening the page in a web browser, the entire user interface is painted. If a user
interface component changes, only the changes are painted.

Since Vaadin Release 5, the UIDL communications are currently done using JSON (JavaScript
Object Notation), which is a lightweight data interchange format that is especially efficient for
interfacing with JavaScript-based AJAX code in the browser. The use of JSON as the interchange
format is largely transparent; IT Mill Toolkit version 4 (predecessor of Vaadin released in 2006)

Book of Vaadin 301

User Interface Definition Language (UIDL)

the older versions used an XML-based UIDL representation with the same API. Nevertheless,
the UIDL API uses XML concepts such as attributes and elements. Below, we show examples
of a Button component in both XML and JSON notation.

With XML notation:

<button id="PID2" immediate="true"
caption="My Button" focusid="1">
<boolean id="v1" name='state"
value=""false"></boolean>
</button>

With JSON notation:

["button”,

{"id": "PID2",
"immediate":true,
"‘caption': "My Button",
"focusid":1,
"v'"':{"state":false}

3

1

Components are identified with a PID or paintable identifier in the 1d attribute. Each component
instance has its individual PID, which is usually an automatically generated string, but can be
set manually with setDebugld() method.

Section A.2, “JSON Rendering” gives further details on JSON. For more information about
handling UIDL messages in the client-side components, see Chapter 10, Developing Custom
Components.

You can track and debug UIDL communications easily with the Firebug extension for Mozilla
Firefox, as illustrated in Section A.2, “JSON Rendering” below.

A.1. API for Painting Components

Serialization or "painting" of user interface components from server to the client-side engine
running in the browser is done through the PaintTarget interface. In Vaadin Release 5, the only
implementation of the interface is the JsonPaintTarget, detailed in Section A.2, “JSON Render-
ing” below.

The abstract AbstractComponent class allows easy painting of user interface components by
managing many basic tasks, such as attributes common for all components. Components that
inherit the class need to implement the abstract getTag() method that returns the UIDL tag of
the component. For example, the implementation for the Button component is as follows:

public String getTag() {
return "button';
}

AbstractComponent implements the paint() method of the Paintable interface to handle
basic tasks in painting, and provides paintContent() method for components to paint their
special contents. The method gets the PaintTarget interface as its parameter. The method
should call the default implementation to paint any common attributes.

/* Paint (serialize) the component for the client. */
public void paintContent(PaintTarget target)
throws PaintException {
// Superclass writes any common attributes in
// the paint target.

302

API for Painting Components

User Interface Definition Language (UIDL)

super.paintContent(target);

// Set any values as variables of the paint target.
target.addVariable(this, *colorname™, getColor());
}

Serialized data can be attributes or variables, serialized with the addAttribute() and
addvariable() methods, respectively. You must always serialize the attributes first and the
variables only after that.

The API provides a number of variations of the methods for serializing different basic data types.
The methods support the native Java data types and strings of the String class. addVariable()
also supports vectors of strings.

Contained components are serialized by calling the paint() method of a sub-component,
which will call the paintContent() for the sub-component, allowing the serialization of user
interfaces recursively. The paint() method is declared in the server-side Paintable interface
and implemented in the abstract base classes, AbstractComponent and AbstractCompon-
entContainer (for layouts).

Layout components have to serialize the essential attributes and variables they need, but not
the contained components. The AbstractComponentContainer and AbstractLayout base-
classes manage the recursive painting of all the contained components in layouts.

The AbstractField provides an even higher-level base class for user interface components.
The field components hold a value or a property, and implement the Property interface to access
this property. For example the property of a Button is a Boolean value.

public void paintContent(PaintTarget target)
throws PaintException {
super.paintContent(target);

// Serialize the switchMode as an attribute
ifT (isSwitchMode())
target.addAttribute("type™, "switch™);

// Get the state of the Button safely
boolean state;

try {

state = ((Boolean) getValue())-booleanvalue();
} catch (NullPointerException e) {

state = false;
}

target.addvVariable(this, ''state', state);

3
A.2. JSON Rendering

Vaadin 5 uses JSON, a lightweight data-interchange format, to communicate Ul rendering with
the browser, because it is very fast to parse compared to XML. JSON messages are essentially
JavaScript statements that can be directly evaluated by the browser. The client-side engine of
Vaadin parses and evaluates the UIDL messages with the JSON library that comes with the
Google Web Toolkit.

Section 3.2.3, “JSON” gave a general introduction to JSON as part of the architecture of Vaadin.
In this section, we look into the technical details of the format. The technical details of the JSON
messages are useful mainly for debugging purposes, for example using the Firebug plugin for
Mozilla Firefox.

JSON Rendering 303

User Interface Definition Language (UIDL)

To view a UIDL message, open the Firebug panel in Firefox, select Net tab, select a "POST
UIDL" request, open the Response tab, and click Load Response. This displays the entire
UIDL message, as shown in Figure A.1, “Debugging UIDL Messages with Firebug” below.

Figure A.1. Debugging UIDL Messages with Firebug

alculator Application - Mozilla Firefox RERN=Fs"5
File Edit Wiew History Bookmarks Tools Help
< A [8] hetpusrtoolkit.itmill.com/demo/Calc/ [=] [w~]] @)

#" Inspect Clear HTML CSS JS XHR Images Flash =[]
Console HTML CS55 Script DOM | Net~ -
+ GET Calc 200 0K toolkit.itmill.com 2 KB 20ms z
* GET com.itm toolkit.itmill.com 3 KB 3ms
= POST UIDL?n 200 QK toolkit.itmill.com 7 =

Params Headers Post Response |

({"changes":[["change".{"format": "uidl","pid": "PIDO"}.["window",{"id": "PIDG","caption":
Application”,"name": "480779721","theme": "","resizable":true,"main":true, "layoutRelativew
v i{"scrollLeft": 0, "scrollTop": @, "positionx":-1, "positiony":-1,"close": false}}, ["vertical
: "PIDL", "width": "100.0%","margins":15,"alignments":[],"expandRatios":[1}], ["window",{"id"
: J"theme": "","resizable":true,"v" rollLeft" scrollTop":0, "positiol
et}. ["gridlayout", {"id": " "margins": 0, "h":5, "w":4,"structural Change":
,"250", "250"], "rowExpand": [" 200", ", "200","200", "200"], "alignments": ["5", "5
,"S","5", 5", "8", "5, "5, "5", "5, "5", "5]}, ["gr*, {}. ["gc", {"x" 10, "y" 10, "w": 4},

I

L]

JSON messages are represented as nested lists and associative arrays (objects with named
properties) in JavaScript syntax. At the top level, we can find an associative array with the fol-
lowing fields:

changes Changes to the Ul caused by the request.

meta Meta-information regarding the response and the application state.
resources Information about application resources.

locales Locale-specific data for locale-dependent components, such as names of

months and weekdays.

The "changes' field contains the actual Ul changes as a list of components. Components that
can contain other components are represented in a recursive list structure.

A component is represented as a list that first contains the UIDL tag of the component, which
identifies its class, followed by data fields. The basic representation of component data as at-
tributes and variables is defined in the base classes of the framework. Attributes are represented
as an associative array and variables as a separate associative array inside the special "v" at-
tribute. For example, a Button component is communicated with a JSON representation such
as the following:

["button”,

{id": "PID5",
"immediate": true,
“caption': 7",

304

JSON Rendering

User Interface Definition Language (UIDL)

"v'"':{"state":false}}
1

A component can give its data also in additional fields in the list instead of the attributes or
variables, as is done for the Label component:

["label™,

{"id": "PID4",
"width™: "100.0%"},
"'Some text here']

The meta-information field can contain certain types of information, which are not displayed in
the Ul, but used by the client-side engine. The repaintAll parameter tells that the changes
include the entire window contents, not just partial changes. Other data includes redirection
details for expired sessions.

JSON Rendering 305

306

Appendix B

Songs of Vaadin

Vaadin is a mythological creature in Finnish folklore, the goddess and divine ancestor of the
mountain reindeer. It appears frequently in the poetic mythos, often as the trustworthy steed of
either Seppo limarinen or Vaindmdinen, the two divine hero figures. In many of the stories, it is
referred to as Steed of Seppo or Seponratsu in Finnish. An artifact itself, according to most ac-
counts, Vaadin helped Seppo limarinen in his quests to find the knowledge necessary to forge
magical artefacts, such as Sampo.

Some of the Vaadin poems were collected by Elias Lénnrot, but he left them out of Kalevala, the
Finnish epic poem, as they were somewhat detached from the main theme and would have
created inconsistencies with the poems included in the epos. Lénnrot edited Kalevala heavily
and it represents a selection from a much larger and more diverse body of collected poems.
Many of the accounts regarding Vaadin were sung by shamans, and still are. A shamanistic
tradition, centered on the tales of Seppo and Vaadin, still lives in South-Western Finland, around
the city of Turku. Some research in the folklore suggests that the origin of Vaadin is as a sham-
anistic animal spirit used during trance for voyaging to Tuonela, the Land of Dead, with its
mechanical construction reflecting the shamanistic tools used for guiding the trance. While the
shamanistic interpretation of the origins is disputed by a majority of the research community in
a maximalist sense, it is considered a potentially important component in the collection of tradi-
tions that preserve the folklore.

Origin or birth poems, synnyt in Finnish, provide the most distinct accounts of mythological
artefacts in the Finnish folklore, as origin poems or songs were central in the traditional magical
practices. Vaadin is no exception and its origin poems are numerous. In many of the versions,
Vaadin was created in a mill, for which Seppo had built the millstone. After many a year, grinding
the sacred acorns of the Great Oak (a version of the World Tree in Finnish mythology), the mill-
stone had become saturated with the magical juices of the acorns. Seppo found that the stone
could be used to make tools. He cut it in many peaces and built a toolkit suitable for fashioning
spider web into any imaginable shape. When Seppo started making Sampo, he needed a steed

Book of Vaadin 307

Songs of Vaadin

that would help him find the precious components and the knowledge he required. The magical
tools became the skeleton of Vaadin.

‘Lost, his mind was,

gone, was his understanding,

ran away, were his memories,

in the vast land of hills of stone.
Make a steed he had to,

forge bone out of stone,

flesh out of moss,

and skin of bark of the birch.

The length of his hammer,

he put as the spine and the hip,
bellows as the lungs,

fongs as the legs, paired.

So woke Vaadin from the first slumber,
lichen did Seppo give her for eating,
mead did he give her for drinking,
then mounted her for the journey.”

Other versions associate the creation with Vainamaoinen instead of Seppo limarinen, and give
different accounts for the materials. This ambiguity can be largely explained through the frequent
cooperation between Vaindmoéinen and Seppo in the mythos. Nevertheless, the identity of the
steed or steeds is largely implicit in the myths and, because of the differences in the origin
myths, can not be unambiquously associated with a unique identity.

The theme of animal ancestor gods is common in the Finnish myth, as we can see in the wide-
spread worship of Tapio, the lord of the bear and the forest. With respect to Vaadin, the identi-
fication of the animal is not completely clear. The Finnish word vaadin refers specifically to an
adult female of the semi-domesticated mountain reindeer, which lives in the Northern Finland
in Lapland as well as in the Northern Sweden and Norway. On the other hand, the Finnish folklore
represented in Kalevala and other collections has been collected from Southern Finland, where
the mountain reindeer does not exist. Nevertheless, Southern Finnish folklore and Kalevala do
include many other elements as well that are distinctively from Lapland, so we may assume that
the folklore reflects a record of cultural interaction. The distinction between the northern mountain
reindeer and the deer species of Southern Finland, the forest reindeer and the elk, is clear in
the modern language, but may not have been in old Finnish dialects. For example, peura,
reindeer, may have been a generic word for a wild animal, as can be seen in jalopeura, the old
Finnish word for lion. The identification is further complicated by the fact that the line of poems
included in Kalevala often refers to a horse. This could be due to the use of the word for horse
as a generic name for a steed. While a mountain reindeer is not suitable for riding, animal gods
are typically portrayed as uncommonly large in mythology, even to the extremes, so the identi-
fication fits quite well in the variety of magical mounts.

The mythology related to Vaadin, especially as represented in Kalevala, locates some important
characters and people in Pohjola, a mythical land in the north from where all evil originates,
according to most accounts. For example, Louhi or Pohjolan eméant&, Queen of Pohjola, is the
primary antagonist in the Kalevala mythos. Both Seppo limarinen and Vainamaoinen make services
to Louhi to earn the hand of her daughters for marriage. Vaadin is often mentioned in connection
with these services, such as the making of Sampo. On the other hand, as Sampo can be identified
with the mill mentioned in creation stories of Vaadin, its identification in the stories becomes
unclear.

308

Songs of Vaadin

While beginning its life as an artifact, Vaadin is later represented as an antropomorphic divine
being. This is in contrast with the Bride of Gold, another creation of Seppo, which failed to become
a fully living and thinking being. Finding magical ways around fundamental problems in life are
central in Kalevala. In some areas, magical solutions are morally acceptable, while in others
they are not and the successes and failures in the mythos reflect this ethic. Research in the
folklore regarding the Bride of Gold myth has provided support for a theory that creating a wife
would go against very fundamental social rules of courting and mating, paralleling the disap-
proval of "playing god" in acts involving life and death (though "cheating death" is usually con-
sidered a positive act). The main motivation of the protagonists in Kalevala is courting young
daughters, which always ends in failure, usually for similar reasons. Animals, such as Vaadin,
are outside the social context and considered to belong in the same category with tools and
machines. The Vaadin myths present a noteworthy example of this categorization of animals
and tools in the same category at an archetypal level.

The Vaadin myths parallel the Sleipnir myths in the Scandinavian mythology. This connection is
especially visible for the connection of Vainamoinen with Odin, who used Sleipnir in his journeys.
The use of tongs for the legs of Vaadin actually suggests eight legs, which is the distinguishing
attribute of Sleipnir. While Sleipnir is almost universally depicted as a horse, the exact identific-
ation of the steed may have changed during the transmission between the cultures.

The Bridle of Vaadin is a special artifact itself. There is no headstall, but only the rein, detached
from the creature, kept in the hand of the rider. The rein is a chain or set of "gadgets" used for
controlling the creature. The rein was built of web with special tools, with Seppo wearing mag-
nifying goggles to work out the small details.

The significance and cultural influence of Vaadin can be seen in its identification with a constel-
lation in the traditional Finnish constellation system. The famous French astronomer Pierre Charles
Le Monnier (1715-99), who visited Lapland, introduced the constellation to international star
charts with the name Tarandus vel Rangifer. The constellation was present in many star charts
of the time, perhaps most notably in the Uranographia published in 1801 by Johann Elert Bode,
as shown in Figure B.1, “Constellation of Tarandus vel Rangifer in Bode's Uranographia (1801)”.
It was later removed in the unification of the constellation system towards the Greek mythology.

309

Songs of Vaadin

Figure B.1. Constellation of Tarandus vel Rangifer in Bode's Uranographia

310

Index
A

AbstractComponent, 66, 69
paintContent(), 210
AbstractComponentContainer, 66
AbstractField, 66
paintContent(), 210
AJAX, 5, 37, 38

C
caption property, 72
Client-Side Engine, 36, 39, 210
Color Picker, 211
compatibility, 191
Component, 66
Component interface, 68, 69
caption, 72
description, 73
enabled, 74
icon, 75
locale, 75
read-only, 78
style name, 78
visible, 79
cookies, 288-289
CSS, 37, 38, 185-197, 210
compatibility, 191
introduction, 187-192

D

Data Model, 37

DefaultWidgetSet, 210

description property, 73

DOM, 38

Drag and Drop, 289-297
Accept Criteria, 293-295

E

Eclipse
widget development, 212-216
enabled property, 74
events, 37
executedJavaScript(), 267

F
Field, 69-72

G

getlLocale(), 76

Google Web Toolkit, 2, 5, 10, 36, 37, 38, 39, 138,

210, 216, 301
Development Mode, 21

GWT Compiler, 210, 211
GWT Module Descriptor, 210

importing, 232
themeing, 188
widgets, 209-244

GWT Module Descriptor, 210

H

HTML templates, 37
HTTP, 36
HttpServletRequest, 287

HttpServletRequestListener, 286-289

HttpServletResponse, 287

icon property, 75
interfaces, 67
IT Mill Toolkit, 5, 37

J

Java, 39, 210
JavaDoc, 67
JavaScript, 2, 38, 210

executedavaScript(), 267

print(), 267-268
JSON, 36, 37

L

layout, 67
Layout, 67
Liferay

display descriptor, 274-275
plugin properties, 275-276

portlet descriptor, 274

liferay-display.xml, 274-275
liferay-plugin-package.xml, 275-276

locale property
in Component, 75

P

Paintable, 68, 210

PDF, 268

portal integration, 268-283
print(), 267-268

printing, 267-268

Book of Vaadin

311

Index

R
read-only property, 78

S

Sampler, 67

Serializable, 68

server-side component, 210
Sizeable interface, 80

SQL, 38

style name property, 78

T

Terminal Adapter, 37
theme, 37, 185-197
tooltips, 73

U

UIDL, 36, 37, 210, 301

\")
VariableOwner, 68
visible property, 79

W

widget set, 210
widget, definition, 210
widgets, 209
Window, 67

closing, 268

X

XHTML, 38

XML, 38
XMLHttpRequest, 38

312

	Book of Vaadin
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Example Application Walkthrough
	1.3. Support for the Eclipse IDE
	1.4. Goals and Philosophy
	1.5. Background

	Chapter 2. Getting Started with Vaadin
	2.1. Installing Vaadin
	2.1.1. Installing the Distribution Package
	2.1.2. Starting the Content Browser
	Windows
	Linux / UNIX
	Mac OS X

	2.1.3. Package Contents
	2.1.4. Demo Applications

	2.2. Setting up the Development Environment
	2.2.1. Installing Java SDK
	Windows
	Linux / UNIX

	2.2.2. Installing Eclipse IDE
	Windows
	Linux / UNIX

	2.2.3. Installing Apache Tomcat
	2.2.4. Firefox and Firebug
	2.2.5. Vaadin Plugin for Eclipse
	Updating the Vaadin Plugin
	Updating the Vaadin Library

	2.3. QuickStart with Eclipse
	2.3.1. Starting Eclipse
	2.3.2. Importing Vaadin as a Project
	2.3.3. Running the Demo Applications in Eclipse
	Launching the GWT Development Mode
	How to Stop the Run

	2.3.4. Debugging the Demo Applications in Eclipse
	2.3.5. Using QuickStart as a Project Skeleton

	2.4. Your First Project with Vaadin
	2.4.1. Creating the Project
	2.4.2. Exploring the Project
	2.4.3. Setting Up and Starting the Web Server
	2.4.4. Running and Debugging

	Chapter 3. Architecture
	3.1. Overview
	3.2. Technological Background
	3.2.1. AJAX
	3.2.2. Google Web Toolkit
	3.2.3. JSON

	3.3. Applications as Java Servlet Sessions
	3.4. Client-Side Engine
	3.5. Events and Listeners

	Chapter 4. Writing a Web Application
	4.1. Overview
	4.2. Managing the Main Window
	4.3. Child Windows
	4.3.1. Opening and Closing a Child Window
	4.3.2. Window Positioning
	4.3.3. Modal Windows

	4.4. Handling Events with Listeners
	4.5. Referencing Resources
	4.5.1. Resource Interfaces and Classes
	4.5.2. File Resources
	4.5.3. Class Loader Resources
	4.5.4. Theme Resources
	4.5.5. Stream Resources

	4.6. Shutting Down an Application
	4.6.1. Closing an Application
	4.6.2. Handling the Closing of a Window

	4.7. Handling Errors
	4.7.1. Error Indicator and message
	4.7.2. Notifications
	4.7.3. Handling Uncaught Exceptions

	4.8. Setting Up the Application Environment
	4.8.1. Creating Deployable WAR in Eclipse
	4.8.2. Web Application Contents
	4.8.3. Deployment Descriptor web.xml
	Deployment Descriptor Parameters

	Chapter 5. User Interface Components
	5.1. Overview
	5.2. Interfaces and Abstractions
	5.2.1. Component Interface
	Component Tree Management

	5.2.2. AbstractComponent
	5.2.3. Field Components (Field and AbstractField)
	Field Interface
	Handling Field Value Changes
	AbstractField Base Class

	5.3. Common Component Features
	5.3.1. Caption
	5.3.2. Description and Tooltips
	5.3.3. Enabled
	5.3.4. Icon
	5.3.5. Locale
	5.3.6. Read-Only
	5.3.7. Style Name
	5.3.8. Visible
	5.3.9. Sizing Components
	5.3.10. Managing Input Focus

	5.4. Label
	5.5. Link
	5.6. TextField
	5.7. RichTextArea
	5.8. Date and Time Input
	5.8.1. Calendar
	5.8.2. DateField Locale

	5.9. Button
	5.10. CheckBox
	5.11. Selecting Items
	5.11.1. Binding Selection Components to Data
	Adding New Items
	Item Captions
	Getting and Setting Selection

	5.11.2. Basic Select Component
	Combo Box Behaviour
	Filtered Selection

	5.11.3. Native Selection Component NativeSelect
	5.11.4. Radio Button and Check Box Groups with OptionGroup
	Disabling Items

	5.11.5. Twin Column Selection with TwinColSelect
	5.11.6. Allowing Adding New Items
	5.11.7. Multiple Selection Mode
	5.11.8. Other Common Features
	Item Icons

	5.12. Table
	5.12.1. Selecting Items in a Table
	5.12.2. Table Features
	Page Length and Scrollbar
	Resizing Columns
	Reordering Columns
	Collapsing Columns
	Components Inside a Table
	Editing the Values of a Table
	Iterating Over a Table

	5.12.3. Column Headers and Footers
	Headers
	Footers
	Handling Mouse Clicks on Headers and Footers

	5.12.4. Generated Table Columns
	5.12.5. CSS Style Rules
	Setting Individual Cell Styles

	5.13. Tree
	5.14. MenuBar
	5.15. Embedded
	5.15.1. Embedded Objects
	5.15.2. Embedded Images
	5.15.3. Browser Frames

	5.16. Upload
	5.17. Form
	5.17.1. Form as a User Interface Component
	5.17.2. Binding Form to Data
	Generating Proper Fields with a FormFieldFactory

	5.17.3. Validating Form Input
	Using Validators in Forms
	Required Fields in Forms

	5.17.4. Buffering Form Data

	5.18. ProgressIndicator
	5.18.1. Doing Heavy Computation

	5.19. Slider
	5.20. LoginForm
	5.20.1. Customizing LoginForm

	5.21. Component Composition with CustomComponent

	Chapter 6. Managing Layout
	6.1. Overview
	6.2. Window and Panel Root Layout
	6.3. VerticalLayout and HorizontalLayout
	6.3.1. Sizing Contained Components

	6.4. GridLayout
	6.4.1. Sizing Grid Cells

	6.5. FormLayout
	6.6. Panel
	6.7. SplitPanel
	6.8. TabSheet
	6.9. Accordion
	6.10. AbsoluteLayout
	6.11. CssLayout
	6.12. Layout Formatting
	6.12.1. Layout Size
	Expanding Components

	6.12.2. Layout Cell Alignment
	6.12.3. Layout Cell Spacing
	6.12.4. Layout Margins

	6.13. Custom Layouts

	Chapter 7. Visual User Interface Design with Eclipse (experimental)
	7.1. Overview
	7.2. Creating a New CustomComponent
	7.3. Using The Visual Editor
	7.3.1. Adding New Components
	7.3.2. Setting Component Properties
	Basic Properties
	Size and Position
	Other Properties

	7.3.3. Editing an AbsoluteLayout

	7.4. Structure of a Visually Editable Component
	7.4.1. Sub-Component References
	7.4.2. Sub-Component Builders
	7.4.3. The Constructor

	Chapter 8. Themes
	8.1. Overview
	8.2. Introduction to Cascading Style Sheets
	8.2.1. Basic CSS Rules
	8.2.2. Matching by Element Class
	8.2.3. Matching by Descendant Relationship
	8.2.4. Notes on Compatibility

	8.3. Creating and Using Themes
	8.3.1. Styling Standard Components
	8.3.2. Built-in Themes
	8.3.3. Using Themes
	8.3.4. Theme Inheritance

	8.4. Creating a Theme in Eclipse

	Chapter 9. Binding Components to Data
	9.1. Overview
	9.2. Properties
	9.2.1. Property Viewers and Editors
	9.2.2. ObjectProperty Implementation
	9.2.3. Implementing the Property Interface

	9.3. Holding properties in Items
	9.3.1. The PropertysetItem Implementation
	9.3.2. Wrapping a Bean in a BeanItem

	9.4. Collecting items in Containers
	9.4.1. Iterating Over a Container

	Chapter 10. Developing Custom Components
	10.1. Overview
	10.2. Doing It the Simple Way in Eclipse
	10.2.1. Creating a Widget
	10.2.2. Recompiling the Widget Set
	10.2.3. Plugin Related Project Settings

	10.3. Google Web Toolkit Widgets
	10.3.1. Extending a Vaadin Widget
	10.3.2. Example: A Color Picker GWT Widget
	10.3.3. Styling GWT Widgets

	10.4. Integrating a GWT Widget
	10.4.1. Deserialization of Component State from Server
	10.4.2. Serialization of Component State to Server
	Immediateness

	10.4.3. Example: Integrating the Color Picker Widget

	10.5. Defining a Widget Set
	10.6. Server-Side Components
	10.6.1. Binding to the Client-Side Widget
	10.6.2. Server-Client Serialization
	10.6.3. Client-Server Deserialization
	10.6.4. Example: Color Picker Server-Side Component

	10.7. Using a Custom Component
	10.7.1. Example: Color Picker Application
	10.7.2. Web Application Deployment

	10.8. GWT Widget Development
	10.8.1. Creating a Widget Project
	10.8.2. Importing GWT Installation Package
	10.8.3. Writing the Code
	Guidelines for the Project Structure
	Importing the ColorPicker Demo

	10.8.4. Compiling GWT Widget Sets
	Compiling a Custom Widget Set
	Generating Widget Set Definition

	10.8.5. Ready to Run
	10.8.6. GWT Development Mode
	Configuring GWT Development Mode Launching in Eclipse
	Debugging with GWT Development Mode

	10.8.7. Packaging a Widget Set
	10.8.8. Troubleshooting

	Chapter 11. Advanced Web Application Topics
	11.1. Special Characteristics of AJAX Applications
	11.2. Application-Level Windows
	11.2.1. Creating New Application-Level Windows
	11.2.2. Creating Windows Dynamically
	11.2.3. Closing Windows
	11.2.4. Caveats in Using Multiple Windows
	Communication Between Windows

	11.3. Embedding Applications in Web Pages
	11.3.1. Embedding Inside a div Element
	11.3.2. Embedding Inside an iframe Element

	11.4. Debug and Production Mode
	11.4.1. Debug Mode
	11.4.2. Analyzing Layouts
	11.4.3. Custom Layouts
	11.4.4. Debug Functions for Component Developers

	11.5. Resources
	11.5.1. URI Handlers
	11.5.2. Parameter Handlers

	11.6. Shortcut Keys
	11.6.1. Click Shortcuts for Default Buttons
	11.6.2. Field Focus Shortcuts
	11.6.3. Generic Shortcut Actions
	11.6.4. Supported Key Codes and Modifier Keys
	Supported Key Combinations

	11.7. Printing
	11.8. Portal Integration
	11.8.1. Deploying to a Portal
	11.8.2. Creating a Portal Application Project in Eclipse
	11.8.3. Portlet Deployment Descriptors
	11.8.4. Portlet Hello World
	11.8.5. Installing Vaadin in Liferay
	11.8.6. Handling Portlet Requests
	11.8.7. Handling Portlet Mode Changes
	11.8.8. Non-Vaadin Portlet Modes

	11.9. Google App Engine Integration
	11.10. Common Security Issues
	11.10.1. Sanitizing User Input to Prevent Cross-Site Scripting

	11.11. URI Fragment and History Management with UriFragmentUtility
	11.12. Capturing HTTP Requests
	11.12.1. Using Request and Response Objects
	11.12.2. Managing Cookies
	Setting a Cookie
	Reading a Cookie

	11.13. Drag and Drop
	11.13.1. Handling Drops
	11.13.2. Dropping Items On a Tree
	Accept Criteria for Trees

	11.13.3. Dropping Items On a Table
	Accept Criteria for Tables

	11.13.4. Accepting Drops
	Client-Side Criteria
	Server-Side Criteria
	Accept Indicators

	11.13.5. Dragging Components
	11.13.6. Dropping on a Component
	Target Details for Wrapped Components

	11.13.7. Dragging Files from Outside the Browser

	11.14. Using Add-on Components
	11.14.1. Downloading Add-ons from Vaadin Directory
	11.14.2. Compiling Add-on Widget Sets in Eclipse
	11.14.3. Compiling Add-on Widget Sets with an Ant Script
	11.14.4. Troubleshooting
	11.14.5. Removing Widget Sets

	Appendix A. User Interface Definition Language (UIDL)
	A.1. API for Painting Components
	A.2. JSON Rendering

	Appendix B. Songs of Vaadin
	Index

