
Bourne Shell Quick Reference Card

I. Introduction to Shell Scripts
A. The shell is the program that you run when you log in
B. It is a command interpreter
C. There are three standard shells - C, Korn and Bourne
D. Shell prompts users, accepts command, parses, then

interprets command
E. Most common form of input is command line input

cat file1 file2 file3
F. Most commands are of the format

command [- option list] [argument
list]

G. Redirection and such
1. < redirect input from standard input
2. > redirect output from standard output
3. >> redirect output and append
4. | "pipes" output from one command to another

ls -l | more
5. tee "pipes" output to file and standard out

ls -l | tee rpt2 | more
H. Entering commands
1. Multiple commands can be entered on the same line if

separated by ;
2. Command can span multiple lines if \R is typed at the

end of each line except the last (R stands for
carriage return, i.e. ENTER). This is escape
sequence.

I. Wild card characters can be used to specify file names
in commands

1. * 0 or more characters
2. ? one character of any kind
3. [, ,] list of characters to match single character
J. Simplest scripts combine commands on single line

like
ls -l | tee rpt2 | more

K. Slightly more complex script will combine commands
in a file

1. Use any text editor to create file, say my_sc
2. Type commands into file, one per line (unless you use

; to seperate)
3. Save file
4. Make file readable and executable (more later on this)

chmod a+rx my_sc
5. run script by entering path to file

./my_sc
We will make this a little easier later

L. See examples 1 and 2

II. Variables
A. The statment name=value creates and assigns value to

variable
SUM=12

B. Traditional to use all upper case characters for names
C. Access content of variable by preceding name with $

echo $SUM
D. Arguments go from right to left
E. Results of commands can be assigned to variables

SYS=`hostname ̀
F. Strings are anything delimited by ""
G. Variables used in strings are evaluated
H. See example 3
I. System/standard variables
1. Command line arguments

Accessed by $1 through $9 for the first 9 command
line arguments. Can access more by using the shift
command. This makes $1 .. $9 reference command
line arguments 2-10. It can be repeated to access a
long list of arguments.

2. $# number of arguments passed on the command line
3. $- Options currently in effect (supplied to sh or to set
4. $* all the command line arguments as one long double

quoted string
5. $@ all the command line arguments as a series of

double quoted strings
6. $? exit status of previous command
7. $$ PID ot this shell's process
8. $! PID of most recently started background job
9. $0 First word, that is, name of command/script

III. Conditional Variable Substitution
A. ${var:-string} Use var if set, otherwise use string
B. ${var:=string} Use var if set, otherwise use string

and assign string to var
C. ${var:?string} Use var if set, otherwise print string

and exit
D. ${var:+string} Use string if var if set, otherwise

use nothing

IV. Conditional
A. The condition part can be expressed two ways. Either as

test condition
or
[condition]
where the spaces are significant.

B. There are several conditions that can be tested for
1. -s file file greater than 0 length
2. -r file file is readable

3. -w file file is writable
4. -x file file is executable
5. -f file file exists and is a regular file
6. -d file file is a directory
7. -c file file is a character special file
8. -b file file is a block special file
9. -p file file is a named pipe

10. -u file file has SUID set
11. -g file file has SGID set
12. -k file file has sticky bit set
13. -z string length of string is 0
14. -n string length of string is greater than 0
15. string1 = string2 string1 is equal to string2
16. string1 != string2 string1 is different from

string2
17. string string is not null
18. int1 -eq int2 integer1 equals integer2
19. int1 -ne int2 integer1 does not equal integer2
20. int1 -gt int2 integer1 greater than integer2
21. int1 -ge int2 integer1 greater than or equal to

integer2
22. int1 -lt int2 integer1 less than integer2
23. int1 -le int2 integer1 less than or equal to integer2
24. !condition negates (inverts) condition
25. cond1 -a cond2 true if condition1 and condition2 are

both true
26. cond1 -o cond2 true if either condition1 or

condition2 are true
27. \(\) used to group complex conditions

V. Flow Control
A. The if statement

if condition
then
commands
else
commands
fi

B. Both the while and until type of loop structures are
supported
while condition
do
commands
done

until condition
do
commands
done

C. The case statement is also supported
case string in
pattern1)
commands
;;

pattern2)
commands
;;

esac

The pattern can either be an integer or a single
quoted string

The * is used as a catch-all default pattern

D. The for command
for var [in list]
do
commands
done

where either a list (group of double quoted strings)
is specified, or $@ is used

VI. Other Commands
A. Output
1. Use the echo command to display data
2. echo "This is some data" will output the

string
3. echo "This is data for the file =

$FILE" will output the string and expand the
variable first. The output from an echo command
is automatically terminated with a newline.

B. Input
1. The read command reads a line from standard input
2. Input is parsed by whitespace, and assigned to each

respective variable passed to the read command
3. If more input is present than variables, the last

variable gets the remainder
4. If for instance the command was read a b c and

you typed "Do you Grok it" in response, the
variables would contain $a="Do", $b="you"
$c="Grok it"

C. Set the value of variables $1 thru $n
1. If you do set c̀ommand̀ , then the results for the

command will be assigned to each of the variables
$1, $2, etc. parsed by whitespace

D. Evaluating expressions
1. The expr command is used to evaluate expressions

2. Useful for integer arithmetic in shell scripts i=`expr
$i +1`

E. Executing arguments as shell commands
1. The eval command executes its arguments as a shell

command

VII. Shell functions
A. General format is
B. function_name ()
C. {
D. commands
E. }

VIII. Miscellaneous
A. \n at end of line continues on to next line
B. Metacharacters
1. * any number of characters
2. ? any one character
3. [,] list of alternate characters for one character position
C. Substitution
1. delimit with `` (back quote marks, generally top left

corner of keyboard)
2. executes what is in `` and substitutes result in string
D. Escapes
1. \ single character
2. ' groups of characters
3. " groups of characters, but some special characters

processed ($\̀)
E. Shell options
1. Restricted shell sh -r
a. can't cd, modify PATH, specify full path names or

redirect output
b. should not allow write permissions to directory
2. Changing shell options
a. Use set option +/- to turn option on/off
b. e interactive shell
c. f filename substitution
d. n run, no execution of commands
e. u unset variables as errors during substitution
f. x prints commands and arguments during execution

Examples

Single Line Script

#! bin/sh
Script lists all files in current
directory in decending order by size

ls -l | sort -r -n +4 -5

Multiline Script

#!/usr/bin/ksh
Lists 10 largest files in current
directory by size

ls -l > /tmp/f1
sort -r -n +4 -5 /tmp/f1 > /tmp/f2
rm /tmp/f1
head /tmp/f2 > /tmp/f3
rm /tmp/f2
more /tmp/f3
rm /tmp/f3

#!/usr/bin/ksh
Uses variables to store data from
commands

SYS=`hostname`
ME=`whoami`
W="on the system"
echo "I am $ME $W $SYS"

Copyright © 2002 Hooman Baradaran
http://www.hoomanb.com

