AWS Command Line Interface

User Guide

dWS

v-,

AWS Command Line Interface User Guide

AWS Command Line Interface: User Guide
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS Command Line Interface User Guide

Table of Contents

WHat IS the AWS CLI? .ottt ettt et et et et st et e e et e e et s e et s e e en s e en s e e e eeneaneenes 1
USING the EXAMIPLEScniiiiiiiit et et e ettt e e et et e e et e e et e e s e e e e e eenes 2
ADOUt AMAZON WED SEIVICES «..nevniiiiiiiiei ettt ettt ettt et et et ea et eaerennenennenennernens 3

INSLALlING The AWS CLI ceiiniiin ittt ettt et et e e et et e et e e e e ea e eneea e eneenenenenenannennannens 4
AWS CLI VEISION 2 .ottt ettt et e ettt et e ae e e e s e e et ea s e en e et e e e enetaensaeneananes 4
AWS CLI VEISION T ettt ettt et ettt et e et e e et et e e s e e et en s e en e et e e s e eneaaensaeneananes 4
Migrating from AWS CLI VErsion 1 £0 VEISION 2c.uieuuiiiniiiiiineiireineeineei et etieetieennseieeineenneesennsennss 4
INStalling the AWS CLI VEISION 2iniiiiiiiiiei ettt ettt ettt et et et et e e et e e e e e e eaneaneaneaneeaes 4

Installing on LinUX OF MACOSuuiiniiiiiii ettt et et e et e e et e e e e e eneens 5
INStAlling ON WINAOWS ...eniniiiii ettt et sttt et s et s et s e e easeneannan 10
INStalling the AWS CLI VEISION T ...cuiiiiiiieiiie et ettt et e e et e e e e et e e e e e e e e e e ens 11
Installing the AWS CLI Using the Bundled Installercooeiiiiiiiiiiiiiie e 12
INstalling the AWS CLI USING PP «evuerntuniniiiiiiiiiieieeie ettt ettt ettt et eneerenenenenenennens 12
Installing the AWS CLI in a Virtual ENVironmentc.oouiiiiiiiiiiiiii e 13
Steps to Take after INStallationc..oiuiiiiiii e 13
Detailed Instructions for Each ENVIFONMENToouiiiiiiiiiiiiii e e e e e e eaeeans 14
[T 1 TP PP RPN 14
T 1N 20
WINAOWS ..ottt ettt et e et et e e et e e eaeeaneeans 22
VIFBULENV oottt et ettt et e e ea e eanee 25
BUNALE INSTALLEN «.eneeeiiee ettt et et et st et e e et e e e e s e e e eenes 27
Using the AWS CLI version 1 with Python 2.6 or Python 3.3 ..o 29
MiIgrating from VT 10 V2 ..ottt et e e e e e e e e e s eb s et e et e eas e e seaneanns 30
No automatic retrieval of webpages for parametersc.ovvviiiriiiiiiiiiiiin e 30
All date/time values in 1SO 8607 fOrMAL ...ouiuininieieieiiiii ettt ea e eaeaeeeaeeeeeeenes 31
NO hidden QlIASES ...c..iviiiiiiiii et 31
Consistent Amazon S3 keys and Pathsc..ouiiiiiiiii e 32
NO SUPPOIt fOr [PLUGITIS T ttuitniineiiineiei ettt et et et et et et et et et et et sanetneanesnstnesnesesaesneanaanns 32

CoNFIGUIING The AWS CLI ..tiiniiiiiiiie ettt ettt et e e e te e te et s et e et e et e e et eansesnsatnsatneaaneanneansannns 33

Quickly ConfiIguring the AWS CLI ...cuuiiniiiiii ittt et et et s et s et e e s et e et e e e et eean e et eaaneenns 33
Access Key and SeCret ACCESS KBYuuiuniiniiiiiiii et ettt et et et et et e eneeneenenennas 33
0= [T] o E PP PRP 34
O 1014 o 10}l 2o T4 1 1 I- | A PP PP PPt 34

Creating MULEIPLE Profilesiieiieie ittt et et e e e s et e et e et e e eeanees 35

Configuration Settings and PreCeABNCEc..iuniiiniiiii ettt et e ea e e e e e aeeaeea e eanaaanes 35

Configuration and Credential File SEttINGSviuniiiiiiiiieeiie ettt e ee e eeeae e e e ereeinen 36
Where Are Configuration Settings Stored?c.cviuiiiiiiiiiiiiiii et eanes 36
Supported config File SETHNGS ...c.vvuiiniiii e 37

NAMEA Profiles ...ceeniiiiii et et ettt e ettt e et et e eaa e eaa e 46
Using Profiles With the AWS CLIcouiiniiii et e e e et e ea e e eeans 46

Configuring the AWS CLI to use AWS Single Sign-0Oncouviiiiiiniiiniiiiie ettt eeineeieeeaeenneannens 47
Configuring a Named Profile 10 Use AWS SSOciuiiiiiiiniiiiiieie et eie e et e e e eeieeanaennns 47
Using an AWS SSO Enabled Named Profilecoeviiiiiiiiiiiiiii e 50

ENVIronmMeNt Variablesc. oottt ettt e et e e e e e eanas 52

(@] aaTan Tale BT TS 0] o1 o] o LU 54

Sourcing Credentials with an EXternal ProCessc.ceueuiiiiuiiiiiiiriee et ee e 56

Getting Credentials from EC2 INStance Metadatacouuviuiiiiiiiieiiiiiiiei et e ei e e e e eans 58

USING @N HTTP PrOXY ..eueniininiiiinii ittt ettt ettt et et et e et et et e et en s e e e et ea e eneaaenaanens 58
AUthenticating t0 @ PrOXY ..ceueuuiiniiiiii it ettt et et et e e e e e e e e e e e e e eanees 59
Using a Proxy on Amazon EC2 INSTANCESuiuiuiniiiiiiiiiie et e e ens 59

Using an [AM Role in the AWS CLIiniiiiii ettt et et e et et et e e e e e e eaneanees 60
Configuring and USING @ ROLE ..c.uuiiniiiiiiii et ee e e it e e e e eaneaanas 61
USING M A et et et ettt ettt et et e et e teane 62
Cross-Account Roles and EXterNal IDc.coueuiiniiniiniiiiiie ettt ee e e e e ees 63

AWS Command Line Interface User Guide

Specifying a Role Session Name for Easier Auditingc.ooeuviiiiiiiiiiiiiniiiii e 63
Assume Role With WED Identitycuieiiiiiii e et e e e e e e e 64
Clearing Cached Credentialsviuiieiuiiiie et e e ea e e e e e e e e e e e e eanaanaes 65
CommaNd COMPLELION ...uiieiiiii e et e et et et et et et et et et sanesnsanaanesnennesneeneens 65
Identify YOUr SHell ... ettt ettt e e e et e e e eaaeees 66
Locate the AWS COMPLETENcuniiii ettt et et et e e e e e e e eaeeaeenns 66

Add the Completer's Folder t0 YOUr Pathccoiuiiiiiiiiiiiiin e e 67
Enable Command COmMPLELIONiuiuiiiiieii et e e e e e e e e e e ea e eieea e et eneannees 67

Test Command CoOmMPLELIONvuiiiiii et e e e e e e e e e e e ee e e e ens 68
USING the AWS CLI ..eniiiii ettt ettt et e e et e et et eeh e ta et e et e et e et e et eeneanaeeaaenaeeranes 69
(CT=] T o =1 o T PSPPI 69
AWS CLI DOCUMENTATION ..ttt et ettt ettt et et et e et et e e e e e e e e e e eaneans 72

AP DOCUMENTAtION ..euiniiiiii ettt ettt ea e e e e e eaeneens 72
COMMANG SEIUCTUIE L.eeiieiie ettt et e e et e et e et e et et et et e eaa e et e et eeaean e eaneeaneenns 73
SPECifYiNg Parameter VALUEScuuiiiiiiiiiiie et e e e e e e e e e et e e e et e et aae et aneateeneaneeneanns 73
COMMON Parameter TYPES . .un ittt ettt ettt e ettt et et e e e e e e enannns 74
USING JSON FOr ParameEters ... c...euueeieiieii ettt ettt e e e et et et et et et e et e eaneeanae 75
Using Quotation Marks With SEringscouiiiiiiiii e e 77
Loading Parameters from @ Filec.iuieiiiiieii et e e e e e e ees 78
Generating a CLI Skeleton TemMPLateceeiiiiiii ettt e e e e e 80
Controlling Command OUEPULennii ittt et e et et et e eea e ea e et eeneeneannees 88
How to Select the Output FOrMAtc..iuiiiiiii et e e 88
JSON OUEPUL FOFMAT .oeiitiniiiii et a e e 89
YAML OUtput FOIMAt c.ouininiiii et aa e 89

Text OULPUL FOrMAtt aees 90
Table OULPUL FOMMAt .o..ieiiiiii it et et e et e e e ee e e e e e e ete e e eaeeaeanaaaeanns 92

How to Filter the Output with the ——query Optioncoiiiiiiiiiiiii e, 93

S a Lol oF: [a o I V1 1 -) PRSP PR PPUPPRRINE 98
SErUCTUrE Parameters ..o.ouiniiiiii e e 98

S Lol aF: [a o IS} V1 -) PP PP PPN 99

[T |15 F= 1 (o] o EOO T P PP PP P PPN 100
RELUIN COABS ...ttt ettt ettt et ettt e et e et e et e et e et e ea e ea e an e eaa e et eeneenneanneennees 101
Using the AWS CLI With AWS SEIVICEScuuiiiiieiiiei ettt ettt et e e e et e et e eb e eb e e eeaeeannas 103
DYNAMODB ...t ettt et e e et ettt e et ettt eaeaaaans 103
AMAZON EC2 o.eiiiiiiii et a e e e e 105
AMAzon EC2 KEY Pairsuiniiiiiiie ittt ettt et et et et e e e e e e e e e eneanens 105
AmMAazon EC2 SECUNTY GrOUPS .. c.iuiiniiniiiiiiie ittt et ettt ettt et e e e e e eenee 107

EC2 INSTANCES .uenietiniiiii ittt ettt e a e 111
(€1 Lol =] T P PP P SRR PPPN 117
Create an Amazon S3 Glacier Vaultooiiiiiiiiii et e 117
Prepare a File for Uploadingc..eeeiiiiiiii ettt 117
Initiate a Multipart Upload and Upload Filesccouiiiiiiiiiiiiiiiiie e 118
Complete the UpPLoad ...t ettt et et et e e e e e eanae 119

1A O T P PP TE PP PR OPRUPPRTORt 120
Creating 1AM USers and GIOUPS ... c..ueuueuueeuneetein et et et et et et et et et e et eeneeneeneaneenneens 121
Attaching an 1AM Managed Policy t0 an [AM USErc.uieuniiiiiiieieeieei ettt ea e 122
Setting an Initial Password for an TAM USErccuuiiiiiiiiieeiie et e e 123
Create an Access Key fOr @n TAM USEFcuuiiuniiuiiiiei ettt et e e e e et e eaeeaaeens 123
AIMAZON S3 ottt ettt et e et et e et e e anes 124
High-Level (53) CoOmMMANAS ..ouuiiiiiiiiii et e e et e e et e e e e s e e e s e eeneaneens 124

APl Level (53api) COMMANGS . ..iuiiiniiiiet e et et et e et e et e e et et et et et et saetesaenesenesnens 128
AMAZON SNS L. ettt e e et e e ens 130
(@1=F | L T o] o] [PP P PRSPPI 130
SUDSCIIDE 10 @ TOPIC 1euiniiiiitit ittt e e et e e e et s e e e e e e e e e e e s e e e eanaens 130
8| o] [T o T o I T o] o] PRSP PPNt 131
UNSUbSCribe from @ TOPIC «.uenniiieiie i ettt e e e e e 131
DL =] I T o] o] ol PSPPI 131

AWS Command Line Interface User Guide

AMAZON SWF .ottt ettt e e e aas 132

List of AmMazon SWF COMMANGS ...c.uiuniiiiiiii ettt e ettt et e e een e eeneeans 132

Working with Amazon SWF DOMaAINSc.ueuuiiiiiiiiiiiiieie et et et e e et e e e e e eennes 135

SY=Tel1] 11 4 PP PP TP PP PRSPPIt 137
Data ProteCHIONenieiiii ittt ettt ettt ettt et et et e aeaeaa e 137

(D = I =l o Tel Y/ o1 i o] s IS PP PP PP PPTPPRN 138

Identity and AcCCeSS MaNAgeMIENTuiiuiinii it et e et et et et e e et e e et eaneaeaneanaanaans 138
ComPpliance Validationue ittt e e et e et a e aas 139

Lo 18] o] 11 p T il T T =l o) sSSP SPT 140
DOCUMENT HISTOIY uuiiiiiii ittt ettt et et ettt et et e e e et e et e ea et et s e aneaanesanenetneneaannes 147

AWS Command Line Interface User Guide

What Is the AWS Command Line
Interface?

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version T with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact with
AWS services using commands in your command-line shell.

The AWS CLI is available in two versions:

« Version 1.x — The generally available version of the AWS CLI that is suitable for use in production
environments.

« Version 2.x — A preview version of the AWS CLI that is intended for testing and evaluation. This version
does include some "breaking" changes that might require you to change your scripts so that they
continue to operate as you expect. For a list of new features and breaking changes in version 2, see
Migrating from AWS CLI version 1 to version 2 (p. 30).

Information in this guide applies to both versions unless we specifically state that it applies to only one
version or the other.

With minimal configuration, the AWS CLI enables you to start running commands that implement
functionality equivalent to that provided by the browser-based AWS Management Console from the
command prompt in your favorite terminal program:

« Linux shells — Use common shell programs such as bash, zsh, and tcsh to run commands in Linux or
macOS.

« Windows command line — On Windows, run commands at the Windows command prompt or in
PowerShell.

« Remotely - Run commands on Amazon Elastic Compute Cloud (Amazon EC2) instances through a
remote terminal program such as PuTTY or SSH, or with AWS Systems Manager.

All 1aaS (infrastructure as a service) AWS administration, management, and access functions in the AWS
Management Console are available in the AWS API and CLI. New AWS laaS features and services provide
full AWS Management Console functionality through the API and CLI at launch or within 180 days of
launch.

The AWS CLI provides direct access to the public APIs of AWS services. You can explore a service's
capabilities with the AWS CLI, and develop shell scripts to manage your resources. Or, you can take what
you learn to develop programs in other languages by using the AWS SDKs.

In addition to the low-level, API-equivalent commands, several AWS services provide customizations
for the AWS CLI. Customizations can include higher-level commands that simplify using a service with
a complex API. For example, the aws s3 commands provide a familiar syntax for managing files in
Amazon Simple Storage Service (Amazon S3).

https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://www.gnu.org/software/bash/
http://www.zsh.org/
https://www.tcsh.org/

AWS Command Line Interface User Guide
Using the Examples

Example Upload a file to Amazon S3

aws s3 cp provides a shell-like copy command, and automatically performs a multipart upload to
transfer large files quickly and resiliently.

$ aws s3 cp myvideo.mp4 s3://mybucket/

Performing the same task with the low-level commands (available under aws s3api) would take a lot
more effort.

Depending on your use case, you might want to choose one of the AWS SDKs or the AWS Tools for
PowerShell:

o AWS Tools for PowerShell

« AWS SDK for Java

e AWS SDK for .NET

« AWS SDK for JavaScript

« AWS SDK for Ruby

o AWS SDK for Python (Boto)
« AWS SDK for PHP

« AWS SDK for Go

o AWS Mobile SDK for iOS

« AWS Mobile SDK for Android

You can view—and fork—the source code for the AWS CLI on GitHub in the aws-cli repository. Join
the community of users on GitHub to provide feedback, request features, and submit your own
contributions!

Using the Examples

The examples in this guide are formatted using the following conventions:

« Prompt - The command prompt is typically displayed as a dollar sign followed by a space (¢). For
commands that are Windows specific, C:\> is used as the prompt. Do not include the prompt when
you type commands.

« Directory - When commands must be executed from a specific directory, the directory name is shown
before the prompt symbol.

« User input — Command text that you should enter at the command line is formatted as user input.

« Replaceable text - Variable text, including names of resources that you choose, or IDs generated by
AWS services that you must include in commands, is formatted as replaceable text.In multiple-
line commands or commands where specific keyboard input is required, keyboard commands can also
be shown as replaceable text.

o Output - Output returned by AWS services is shown under user input, and is formatted as computer
output.

For example, the following command includes user input, replaceable text, and output.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJdalrXUtnFEMI/K7MDENG/bPxXRfiCYEXAMPLEKEY
Default region name [None]: us-west-2

https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/
https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/
http://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/aws-sdk-php/guide/latest/
https://docs.aws.amazon.com/sdk-for-go/api/
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/
https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/
https://github.com/aws/aws-cli

AWS Command Line Interface User Guide
About Amazon Web Services

Default output format [None]: ENTER

To use this example, enter aws configure at the command line, and then press Enter. The command
is aws configure. This command is interactive, so the AWS CLI outputs lines of text, prompting you to
enter additional information. Enter each of your access keys in turn, and then press Enter. Then, enter an
AWS Region name in the format shown, press Enter, and then press Enter a final time to skip the output
format setting. The final Enter command is shown as replaceable text because there is no user input for
that line. Otherwise, it would be implied.

The following example shows a simple noninteractive command with output from the service in JSON
format.

$ aws ec2 create-security-group --group-name my-sg --description "My security group"

{
"GroupId": "sg-903004f8"

}

To use this example, enter the full text of the command (the highlighted text after the prompt), and
then press Enter. The name of the security group, my-sg, is replaceable. You can use the group name as
shown, but you probably want to use a more descriptive name.

Note

Arguments that must be replaced (such as AWS Access Key ID), and those that should be
replaced (such as group name), are both shown as replaceable text in italics.Ifan
argument must be replaced, it's noted in the text that describes the example.

The JSON document, including the curly braces, is output. If you configure your CLI to output in text or
table format, the output will be formatted differently. JSON is the default output format.

About Amazon Web Services

Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model. You are charged
only for the services that you—or your applications—use. Also, to make AWS more approachable as a
platform for prototyping and experimentation, AWS offers a free usage tier. On this tier, services are free
below a certain level of usage. For more information about AWS costs and the Free Tier, see Test-Driving
AWS in the Free Usage Tier. To obtain an AWS account, open the AWS home page and then click Sign Up.

https://json.org
https://json.org
https://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
https://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

AWS Command Line Interface User Guide
AWS CLI version 2

Installing the AWS CLI

The AWS Command Line Interface is available in two versions.

AWS CLI version 2

Preview Evaluation Software

AWS CLI version 2 is provided as a preview for testing and evaluation. At this time, we do not
recommend using it in a production environment. For production environments, we recommend
that you use the generally available version 1.x.

You can provide feedback for this developer preview version in the AWS CLI version 2 GitHub
repo. Be sure to attach the "V2" label to your issue.

AWS CLI version 2 is the most recent major version of the AWS CLI and supports all of the latest features.
Some features introduced in version 2 are not backward compatible with version 1 and you must
upgrade to access those features.

AWS CLI version 2 is available to install only as a bundled installer. Although you might find it in some
package managers, these are not produced or managed by AWS and are therefore not official and not
supported by AWS. We recommend that you install the AWS CLI from only the official AWS distribution
points, as documented in this guide.

For information about how to install AWS CLI version 2, see Installing the AWS CLI version 2 (p. 4).

AWS CLI version 1

AWS CLI version 1 is the original AWS CLI, and we continue to support it. However, major new features
that are introduced in AWS CLI version 2 might not be backported to AWS CLI version 1. To use those
features, you must install AWS CLI version 2.

For information about how to install AWS CLI version 1, see Installing the AWS CLI version 1 (p. 11).

Migrating from AWS CLI version 1 to version 2

If you ran commands or scripts with AWS CLI version 1 and you are considering migrating to AWS CLI
version 2, see Migrating from AWS CLI version 1 to version 2 (p. 30) for a description of the changes
that you should know about.

Installing the AWS CLI version 2

Preview Evaluation Software

AWS CLI version 2 is provided as a preview for testing and evaluation. At this time, we do not
recommend using it in a production environment. For production environments, we recommend
that you use the generally available version 1.x.

You can provide feedback for this developer preview version in the AWS CLI version 2 GitHub
repo. Be sure to attach the "V2" label to your issue.

https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2
https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2
https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2
https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2

AWS Command Line Interface User Guide
Installing on Linux or macOS

This topic provides links to information about how to install version 2 of the AWS Command Line
Interface (AWS CLI) on the supported operating systems. For information about how to install AWS CLI
version 1, see Installing the AWS CLI version 1 (p. 11).

Note

For AWS CLI version 2, it doesn't matter if you have Python installed and if you do, it doesn't
matter which version. AWS CLI version 2 uses only the version of Python (and all other
dependencies) that are included and installed into a local virtual environment that is isolated.

Topics
o Installing the AWS CLI version 2 on Linux or macOS (p. 5)
« Installing AWS CLI version 2 on Windows (p. 10)

Installing the AWS CLI version 2 on Linux or macOS

Preview Evaluation Software

AWS CLI version 2 is provided as a preview for testing and evaluation. At this time, we do not
recommend using it in a production environment. For production environments, we recommend
that you use the generally available version 1.x.

You can provide feedback for this developer preview version in the AWS CLI version 2 GitHub
repo. Be sure to attach the "V2" label to your issue.

This section describes how to install, upgrade, and remove the AWS CLI version 2 on Linux or macOS.

Topics
 Prerequisites (p. 5)
« Installing (p. 5)
» Upgrading (p. 7)
« Uninstalling (p. 8)
« Verifying the Integrity and Authenticity of the Downloaded Files (p. 8)

Prerequisites

« The AWS CLI version 2 has no dependencies on other software packages. It has a self-contained copy
of all dependencies included with the installer. You no longer need to have Python installed first.

« You must be able to "unzip" the downloaded package. If your operating system doesn't have a built-in
unzip command, use your favorite package manager to download it or an equivalent.

« Linux: We support the AWS CLI version 2 on recent distributions of CentOS, Fedora, Ubuntu, Amazon
Linux 1, and Amazon Linux 2.

« macO0S: We support the AWS CLI version 2 on versions of macOS that are supported by Apple,
including High Sierra (10.13), Mojave (10.14), and Catalina (10.15).

Installing

Follow these steps from the command line to install the AWS CLI on either Linux or macOS. The only
difference in the following commands is the name of the file that you download. Everything else is the
same.

Important
Ensure that the paths you install to contain no volume or folder names that contain any spaces
or the installation fails.

https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2
https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2

AWS Command Line Interface User Guide
Installing on Linux or macOS

We provide the steps in one easy to copy and paste group. See the descriptions of each line in the steps
that follow.

You can verify that integrity and authenticity of the installation file after you download it and before you
extract the files from the package. For more information, see Verifying the Integrity and Authenticity of
the Downloaded Files (p. 8).

Commands for Linux

curl "https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

Commands for macOS

curl "https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-macos.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

You can download the file using the curl command. The options on the following example
command cause the downloaded file to be written to the current directory with the local name
awscliv2.zip.

Linux

$ curl "https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-linux-x86_64.zip" -o
"awscliv2.zip"

macOS

$ curl "https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-macos.zip" -o "awscliv2.zip"

In this example, the -o option specifies the file name that the downloaded package is written to. In
the previous example, the file is written to awscliv2.zip in the current folder.

Alternatively, you can use your browser to download the installer from the following URLs:
For Linux: https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-linux-x86_64.zip
For macOS: https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-macos.zip

You can verify the integrity and authenticity of the installation file after you download it. For more
information, see Verifying the Integrity and Authenticity of the Downloaded Files (p. 8) before
you unzip the package.

Unzip the installer. The following example command unzips the package to the current folder. If
your Linux distribution doesn't have a built-in unzip command, use your favorite package manager,
or an equivalent, to install it.

$ unzip awscliv2.zip

This creates a folder named aws under the current folder.

Run the install program.

$ sudo ./aws/install

AWS Command Line Interface User Guide
Installing on Linux or macOS

The installation command is a file named install found in the newly unzipped aws folder. By
default, the files are all installed to /usr/local/aws, and a symlink is created in /usr/local/
bin. The command includes sudo to grant write permissions to those folders. You can install
without sudo if you specify folders that you already have write permissions to.

You can use the following parameters with the install command to specify those folders:

Important

Ensure that the paths you provide to the -i and -b parameters contain no volume name or
folder names that contain any space characters or other white space characters. If there is a
space, the installation fails.

e ——install-diror-i

This option specifies the folder to copy all of the files to. This example installs the files to a folder
named /usr/local/aws-cli. You must have write permissions to /usr/local to create this
folder.

The default value is fusr/local/aws-cli.
e ——bin-diror-b

This option specifies that the main aws program in the install folder is symlinked to the file aws2
in the specified path. This example creates the symlink /usr/local/bin/aws2. You must have
write permissions to the specified folder. Creating a symlink to a folder that is already in your path
eliminates the need to add the install directory to the user's $PATH variable.

The default value is /usr/local/bin.

Note

The preview release of the AWS CLI version 2 names the symlink aws2 to enable the AWS
CLI version 1 and version 2 to coexist side by side. Future releases of the AWS CLI version
2 might change this command name.

4. Confirm the installation.

$ aws2 --version
aws-cli/2.0.0dev0 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/2.0.0dev0

Upgrading

To upgrade your copy of the AWS CLI version 2, run the same steps that you used to install it, but this
time include the --update or -u option on the install command line. If the installer finds an existing
version of the AWS CLI version 2 in the target installation folder and the --upgrade option isn't used,
the install fails.

Find the symlink that the installer created. This gives you the path to use with the --bin-dir
parameter.

$ which aws2
/usr/local/bin/aws2

Use that to find the folder that the symlink points to. This gives you the path to use with the --
install-dir parameter.

$ 1ls -1 /usr/local/bin/aws2
lrwxrwxrwx 1 ec2-user ec2-user 49 Oct 22 09:49 /usr/local/bin/aws2 -> Jusr/local/aws-cli/
v2/current/bin/aws

AWS Command Line Interface User Guide
Installing on Linux or macOS

Then use that information to construct the install command.

$ sudo ./aws/install --bin-dir /usr/local/bin --install-dir /usr/local/aws-cli --update

Uninstalling

To uninstall the AWS CLI version 2, run the following commands, substituting the paths you used to
install.

Find the symlinks that you created in the --bin-dir folder.

$ which aws2
/usr/local/bin/aws2

Use that to find the --install-dir folder that the symlink points to.

$ 1s -1 /usr/local/bin/aws2
lrwxrwxrwx 1 ec2-user ec2-user 49 Oct 22 09:49 /usr/local/bin/aws2 -> /usr/local/aws-cli/
v2/current/bin/aws

Now delete the two symlinks in the --bin-dir folder. If your user account has write permission to these
folders, you don't need to use sudo.

$ sudo rm /usr/local/bin/aws2
$ sudo rm /usr/local/bin/aws2_completer

Finally, you can delete the --install-dir folder. Again, if your user account has write permission to
this folder, you don't need to use sudo.

$ sudo ¥rm -rf Jusr/local/aws-cli

Verifying the Integrity and Authenticity of the Downloaded Files

The AWS CLI version 2 installer package .zip files are cryptographically signed using PGP signatures. You
can use the following steps to verify the signatures by using the GnuPG tool. If there is any damage or
alteration of the files, this verification fails and you should not proceed with installation.

The following example assumes you downloaded the installer package and saved it locally as
awscliv2.zip. If you named it something else, substitute that name in the following steps.

Steps 1, 2, and 3 are prerequisite steps that you need to perform only once. You should perform steps 4
and 5 every time you download a new copy of the installer package.

To validate the files using the PGP signature

1. Download and install the gpg command using your favorite package manager. For more information
about GnuPG, see the GnuPG website.

2. Create a text file and paste in the following text.

MQINBF2Cx7UBEADJZHcgusOJ17ENSyumXh85z0TRVOxJorM2B/JLOKHOyigQluUG
ZMLhENaGObYatdrKP+3H911vKO50pXwnO/R7£fB/FSTouki4ciIx50uLlnJZIxSzx
PgGlOmkxIMLNbGWoi6LtoOLYxgHN2iQtz1wTVmg9733zd3XfcXrZ3+LblHAgEt5G
TfNXEKJ8soPLyWmwDH6HWCNnjZ/aIQRBTIQ05uVeEoYxShéwOai7ss/KveoSNBbYz
gbdzoqI2Y8cgH2nbfgp3DSasaLZEdCSsIsK1u05CinE7k2qZ7KgKAUIcT/cR/grk

https://www.gnupg.org/

AWS Command Line Interface User Guide
Installing on Linux or macOS

C6VwsnDUOOUCideXcQ8WeHutqvgZH1JgKDbznoIzeQHID238GEu+eKhRHcz8/jeG
94zkcgJ0z3KbZGYMiTh277Fvj9zzvZsbMBCedV1BTg3TqgvdX4bdkhf5cH+7NtWO
1rFj6UwAsGukBTROxXCO0l/dnSmZhJ7Z1KmEWilro/gOrjtOxqRQutlIqG22TaqoPG
fYVN+en3Zwbt97kcgZDwgbuykNt640ZWc4XKCa3mprEGC3IbJTBFqglXmZ719ywG
EEUJYOlb2XrSuPWml39beWdKM8kzr10jnlOmé6+1pTRCBfoOwa9F 8YZRhHPAKkwKKX
XDeOGPWRj40h0x0d2GWkyV5xyN14p2t00Cd00DMz80yUTgRpPVQUtOEhXQARAQAB
tCFBV1MgQOxXxJIFR1YWOgPGF3cyljbGlAYWlhem9uLmNvbT6JA1QEEWEIAD4WIQT7
Xbd/1cEYuAURraimMQrMRnIHXAUCXYKvtQIbAwWUIB4TOARAULCQgHAGYVCGKICWIE
FgIDAQIeAQIXgAAKCRCMMOrMRNIJHXJIXEAChLUIkg80uPUKGjE3jejvQSAlaWuAM
yzy6£dpd1l1RUzZ6M6nmsUhOEXxjVIVibEJpzK5mhuSZ41b0vJI2ZUPgCv4zs2nBd7BGJT
MxKiWgBReGVTAdqZ0SzyYH4PYCJSE732x/Fw9hfnh1dMTXNcrQXzwOmmFNNegGOOx
au+VnpcR5Kz3smiTrIwZbRudolijhCYPQ7t5CMp9kjC6bObvylhSIg2xNbMAN/Do
ikebAl136uR6Y/Ucz]jj3GxZW4ZWeFirMidKbtqvUz2yOUFszobjiBSqZZHCreC34B
hw9bFNpuWC/0SrXgohdsc6vK50pDGAV5kM2qo9tMQ/izsAwTh/d/GzZv8H41V9eO0
tEis+EpR497PaxKKh9tJfON6Q1YLRHof5xePZt0I1S3gfvsH5hXA3HI9yIxb8TOH
QYmVr3alIUes20i6meI3fuV36VFupwfrTKaL7VXnsrK2fq5cRvyJLNzXucgOWAjPF
RrAGLzY7nPlxeglaOaeP+pdsqjqlPJom80CWc1l+6DWbg0jsC74WoesAqgBItODMB
rsally/q+bPzpsnWjzHV8+1/EtZmSc8ZUGSJOPKkfC7hObnfk1l18h+1Q0tKTjZme4d
H17gsBJr+opwIw/Zio2LMjQBOqlm3K1A4zFTh7wBC7He6KPQealp2XAMgtvATtNe
YLZATHZKTJyigA==

=vYOk

Here are the details of the public key for reference.

Key ID: A6310ACC4672

Type: RSA

Size: 4096/4096

Created: 2019-09-18

Expires: 2023-09-17

User ID: AWS CLI Team &aws-cli@amazon.com>

Key fingerprint: FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C

Import the AWS CLI public key with the following command, substituting public-key-file-name
with whatever you named the file in step 2.

$ gpg --import public-key-file-name

gpg: /home/username/.gnupg/trustdb.gpg: trustdb created

gpg: key A6310ACC4672475C: public key "AWS CLI Team <aws-cli@amazon.com>" imported
gpg: Total number processed: 1

gpg: imported: 1

Download the AWS CLI signature file for the package you downloaded. It has the same path and
name as the .zip file it corresponds to, but has the extension . sig. In the following examples, we
save it to the current folder as a file named awscliv2.sig.

Linux version

$ curl -o awscliv2.sig https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-linux-
xX86_64.zip.sig

macOS version

$ curl -o awscliv2.sig https://dlvvhvl2y92vvt.cloudfront.net/awscli-exe-macos.zip.sig

Verify the signature, passing both the .sig and .zip file names as parameters to the gpg command.

$ gpg --verify awscliv2.sig awscliv2.zip

The output should look similar to the following.

https://d1vvhvl2y92vvt.cloudfront.net/awscli-exe-linux-x86_64.zip.sig
https://d1vvhvl2y92vvt.cloudfront.net/awscli-exe-linux-x86_64.zip.sig
https://d1vvhvl2y92vvt.cloudfront.net/awscli-exe-macos.zip.sig

AWS Command Line Interface User Guide
Installing on Windows

gpg: Signature made Mon Nov 4 19:00:01 2019 PST

gpg: using RSA key FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C
gpg: Good signature from "AWS CLI Team <aws-cli@amazon.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C

Important

The warning in the output is expected and doesn't indicate a problem. It occurs because
there isn't a chain of trust between your personal PGP key (if you have one) and the AWS
CLI PGP key. For more information, see Web of trust.

Installing AWS CLI version 2 on Windows

This section describes how to install, upgrade, and remove AWS CLI version 2 on Windows.

Preview Evaluation Software

AWS CLI version 2 is provided as a preview for testing and evaluation. At this time, we do not
recommend using it in a production environment. For production environments, we recommend
that you use the generally available version 1.x.

You can provide feedback for this developer preview version in the AWS CLI version 2 GitHub
repo. Be sure to attach the "V2" label to your issue.

Topics
« Prerequisites for Windows (p. 10)
« Installing on Windows (p. 10)
» Upgrading on Windows (p. 11)

» Removing from Windows (p. 11)

Prerequisites for Windows

o The AWS CLI version 2 is supported on Windows XP or later.
« The AWS CLI version 2 supports only 64-bit versions of Windows.

Installing on Windows

For Windows users, the MSI installation package offers a familiar and convenient way to install the AWS
CLI version 2 without installing any other prerequisites.

To install the AWS CLI version 2 using the MSI installer

Download the AWS CLI MSI installer for Windows (64-bit)

2. Run the downloaded MSI installer and follow the onscreen instructions. By default, the AWS CLI
installs to C: \Program Files\Amazon\AWSCLI2.

Note

The preview release of AWS CLI version 2 names the program aws2 to enable AWS CLI
version 1 and version 2 to coexist side-by-side. Future releases of AWS CLI version 2 might
change this command name.

3. To confirm the installation, use the aws2 --version command at a command prompt (open the
Start menu and search for emd to start a command prompt).

10

https://wikipedia.org/wiki/Web_of_trust
https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2
https://github.com/aws/aws-cli/issues?q=is%3Aopen+is%3Aissue+label%3Av2
https://d1vvhvl2y92vvt.cloudfront.net/AWSCLIV2.msi

AWS Command Line Interface User Guide
Installing the AWS CLI version 1

C:\> aws2 --version
aws-cli/2.0.0dev0 Python/3.7.3 Windows/10 botocore/2.0.0dev0

Don't include the prompt symbol (C:\>, shown above) when you type a command. These are included in
program listings to differentiate commands that you type from output returned by the AWS CLI. The rest
of this guide uses the generic prompt symbol, $, except in cases where a command is Windows-specific.

If Windows is unable to find the program, you might need to close and reopen the command prompt to
refresh the path, or add the installation directory to your PATH (p. 24) environment variable manually.

Upgrading on Windows

AWS CLI is updated regularly. Check the Releases page on GitHub to see when the latest version was
released.

To update to the latest version, download the latest version of the MSI installer and run it, as described
previously. It automatically overwrites the previous version.

Removing from Windows

To uninstall the AWS CLI, open the Control Panel, and then choose Programs and Features. Select
the entry named AWS Command Line Interface, and then choose Uninstall to launch the uninstaller.
Confirm that you want to uninstall the AWS CLI when you're prompted.

You can also launch the Programs and Features program from the command line with the following
command.

C:\> appwiz.cpl

Installing the AWS CLI version 1

This topic describes how to install version 1 of the AWS Command Line Interface (AWS CLI). For
information about how to install version 2, see Installing the AWS CLI version 2 (p. 4).

You can install the AWS CLI version 1 using any of the following techniques:

» Using a bundled installer (p. 12)
« Using pip (p. 12)
 Using a virtual environment (p. 13)

Prerequisites

« Python 2 version 2.7+ or Python 3 version 3.4+

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

« Windows, Linux or macOS

11

https://github.com/aws/aws-cli/releases
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/

AWS Command Line Interface User Guide
Installing the AWS CLI Using the Bundled Installer

You can find the version number of the most recent CLI at: https://github.com/aws/aws-cli/blob/
master/CHANGELOG.rst.

In this guide, the commands shown assume you have Python v3 installed and the pip commands shown
use the pip3 version.

Installing the AWS CLI Using the Bundled Installer

For offline or automated installations on Linux or macOS, we recommend that you try the bundled
installer (p. 27). The bundled installer includes the AWS CLl, its dependencies, and a shell script that
performs the installation for you.

On Windows, the bundled installer is in the form of an MSI installer (p. 23).

Installing the AWS CLI Using pip

The pip package manager for Python provides an easy way to install, upgrade, and remove Python
packages and their dependencies.

Installing the current AWS CLI Version

The AWS CLI is updated frequently with support for new services and commands. To determine whether
you have the latest version, see the releases page on GitHub.

If you already have pip and a supported version of Python, you can install the AWS CLI by using the
following command. If you have Python version 3 installed, we recommend that you use the pip3
command.

$ pip3 install awscli --upgrade --user

The --upgrade option tells pip3 to upgrade any requirements that are already installed. The --user
option tells pip3 to install the program to a subdirectory of your user directory to avoid modifying
libraries used by your operating system.

Upgrading to the latest version of the AWS CLI

We recommend that you regularly check to see if there is a new version of the AWS CLI and upgrade to it
when you can.

Use the pip3 list -o command to check which packages are "outdated".

$ aws --version
aws-cli/1.16.273 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13.0

$ pip3 list -o

Package Version Latest Type
awscli 1.16.170 1.16.198 wheel
botocore 1.12.160 1.12.188 wheel

Because the previous command shows that there is a newer version of the AWS CLI available, you can run
pip3 install --upgrade to get the latest version.

$ pip3 install --upgrade --user awscli
Collecting awscli

Downloading https://files.pythonhosted.org/packages/dc/70/
b32e9534c32fe9331801449elf7eacbabal992c2e4af9c82ac9116661d3b/awscli-1.16.198-py2.py3-none-
any.whl (1.7MB)

12

https://github.com/aws/aws-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-cli/releases

AWS Command Line Interface User Guide
Installing the AWS CLI in a Virtual Environment

| #EHBHH R ARRA R ARARAS #| 1.7MB 1.6MB/s
Collecting botocore==1.12.188 (from awscli)

Using cached https://files.pythonhosted.org/packages/10/
cb/8dcfb3e035a419f228df7d3a0eea5d52b528bde7cal62£62£3096a930472/botocore-1.12.188-py2.py3-
none-any.whl
Requirement already satisfied, skipping upgrade: docutils>=0.10 in ./venv/lib/python3.7/
site-packages (from awscli) (0.14)

Requirement already satisfied, skipping upgrade: rsa<=3.5.0,>=3.1.2 in ./venv/lib/
python3.7/site-packages (from awscli) (3.4.2)

Requirement already satisfied, skipping upgrade: colorama<=0.3.9,>=0.2.5 in ./venv/1lib/
python3.7/site-packages (from awscli) (0.3.9)

Requirement already satisfied, skipping upgrade: PyYAML<=5.1,>=3.10; python_version !=

"2.6" in ./venv/lib/python3.7/site-packages (from awscli) (3.13)

Requirement already satisfied, skipping upgrade: s3transfer<0.3.0,>=0.2.0 in ./venv/lib/
python3.7/site-packages (from awscli) (0.2.0)

Requirement already satisfied, skipping upgrade: jmespath<1.0.0,>=0.7.1 in ./venv/lib/
python3.7/site-packages (from botocore==1.12.188->awscli) (0.9.4)

Requirement already satisfied, skipping upgrade: urllib3<1.26,>=1.20; python_version >=

"3.4" in ./venv/lib/python3.7/site-packages (from botocore==1.12.188->awscli) (1.24.3)
Requirement already satisfied, skipping upgrade: python-dateutil<3.0.0,>=2.1;

python_version >= "2.7" in ./venv/lib/python3.7/site-packages (from botocore==1.12.188-
>awscli) (2.8.0)
Requirement already satisfied, skipping upgrade: pyasnl>=0.1.3 in ./venv/lib/python3.7/
site-packages (from rsa<=3.5.0,>=3.1.2->awscli) (0.4.5)
Requirement already satisfied, skipping upgrade: six>=1.5 in ./venv/lib/python3.7/site-
packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore==1.12.188-
>awscli) (1.12.0)
Installing collected packages: botocore, awscli
Found existing installation: botocore 1.12.160
Uninstalling botocore-1.12.160:
Successfully uninstalled botocore-1.12.160
Found existing installation: awscli 1.16.170
Uninstalling awscli-1.16.170:
Successfully uninstalled awscli-1.16.170
Successfully installed awscli-1.16.198 botocore-1.12.188

Installing the AWS CLI in a Virtual Environment

If you encounter issues when you attempt to install the AWS CLI with pip3, you can install the AWS CLI
in a virtual environment (p. 25) to isolate the tool and its dependencies. Or you can use a different
version of Python than you normally do.

Steps to Take after Installation

« Setting the Path to Include the AWS CLI (p. 13)

» Configure the AWS CLI with Your Credentials (p. 14)

« Upgrading to the Latest Version of the AWS CLI (p. 14)
 Uninstalling the AWS CLI (p. 14)

Setting the Path to Include the AWS CLI

After you install the AWS CLI, you might need to add the path to the executable file to your PATH
variable. For platform-specific instructions, see the following topics:

« Linux — Add the AWS CLI version 1 Executable to Your Command Line Path (p. 17)

« Windows — Add the AWS CLI version 1 Executable to Your Command Line Path (p. 24)

« macOS - Add the AWS CLI version 1 Executable to Your macOS Command Line Path (p. 21)

13

AWS Command Line Interface User Guide
Detailed Instructions for Each Environment

Verify that the AWS CLI installed correctly by running aws --version.

$ aws --version
aws-cli/1.16.273 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13.0

Configure the AWS CLI with Your Credentials

Before you can run a CLI command, you must configure the AWS CLI with your credentials.

You store credential information locally by defining profiles (p. 46) in the AWS CLI configuration
files (p. 36), which are stored by default in your user's home directory. For more information, see
Configuring the AWS CLI (p. 33).

Note

If you are running in an Amazon EC2 instance, credentials can be automatically retrieved
from the instance metadata. For more information, see Getting Credentials from EC2 Instance
Metadata (p. 58).

Upgrading to the Latest Version of the AWS CLI

The AWS CLI is updated regularly to add support for new services and commands. To update to the latest
version of the AWS CLI, run the installation command again. For details about the latest version of the
AWS CLI, see the AWS CLI release notes.

$ pip3 install awscli --upgrade --user

Uninstalling the AWS CLI

If you need to uninstall the AWS CLI, use pip uninstall.

$ pip3 uninstall awscli

If you don't have Python and pip, use the procedure for your environment.

Detailed Instructions for Each Environment

o Install the AWS CLI version 1 on Linux (p. 14)

« Install the AWS CLI version 1 on macOS (p. 20)

o Install the AWS CLI version 1 on Windows (p. 22)

« Install the AWS CLI version 1 in a Virtual Environment (p. 25)

« Install the AWS CLI version 1 Using the Bundled Installer (Linux or macOS) (p. 27)
« Using the AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29)

Install the AWS CLI version 1 on Linux

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

You can install version 1 of the AWS Command Line Interface (AWS CLI) and its dependencies on most
Linux distributions by using pip, a package manager for Python.

14

https://github.com/aws/aws-cli/blob/develop/CHANGELOG.rst
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/

AWS Command Line Interface User Guide
Linux

Although the awscli package is available in repositories for other package managers such as apt and
yum, these are not produced or managed by AWS and are therefore not official and not supported by
AWS. We recommend that you install the AWS CLI from only the official AWS distribution points, as
documented in this guide.

If you already have pip, follow the instructions in the main installation topic (p. 4). Run pip --
version to see if your version of Linux already includes Python and pip. We recommend that if you
have Python version 3+ installed, you use the pip3 command.

$ pip3 --version

If you don't already have pip installed, check which version of Python is installed.

$ python --version

or

$ python3 --version

If you don't already have Python 2 version 2.7+ or Python 3 version 3.4+, you must first install
Python (p. 18). If you do have Python installed, proceed to installing pip and the AWS CLI.

Sections
o Install pip (p. 15)
« Install the AWS CLI version 1 with pip (p. 16)
« Upgrading to the Latest Version of the AWS CLI version 1 (p. 16)
« Add the AWS CLI version 1 Executable to Your Command Line Path (p. 17)
« Installing Python on Linux (p. 18)
« Install the AWS CLI version 1 on Amazon Linux (p. 19)

Install pip

If you don't already have pip installed, you can install it by using the script that the Python Packaging
Authority provides.

To install pip

1. Use the curl command to download the installation script. The following command uses the -0
(uppercase "O") parameter to specify that the downloaded file is to be stored in the current folder
using the same name it has on the remote host.

$ curl -0 https://bootstrap.pypa.io/get-pip.py

2. Run the script with Python to download and install the latest version of pip and other required
support packages.

$ python get-pip.py --user

Or use the following.

$ python3 get-pip.py --user

When you include the --user switch, the script installs pip to the path ~/.local/bin.

15

AWS Command Line Interface User Guide
Linux

3. Ensure the folder that contains pip is part of your PATH variable.

a. Find your shell's profile script in your user folder. If you're not sure which shell you have, run echo
$SHELL.

$ 1s -a ~
.bash_logout .bash profile .bashrc Desktop Documents Downloads

e Bash- .bash profile, .profile, or .bash_login
e Zsh- .zshrc
e Tcsh- .tecshre, .cshrcor .login
b. Add an export command at the end of your profile script that's similar to the following example.

export PATH=~/.local/bin:$PATH

This command inserts the path, ~/.local/bin in this example, at the front of the existing PATH
variable.

c. Reload the profile into your current session to put those changes into effect.

$ source ~/.bash_profile

4. Now you can test to verify that pip is installed correctly.

$ pip3 --version
pip 19.2.3 from ~/.local/lib/python3.7/site-packages (python 3.7)

Install the AWS CLI version 1 with pip

Use pip to install the AWS CLI.

$ pip3 install awscli --upgrade --user

When you use the --user switch, pip installs the AWS CLIto ~/.local/bin.

Verify that the AWS CLI installed correctly.

$ aws --version
aws-cli/1.16.273 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13.0

If you get an error, see Troubleshooting AWS CLI Errors (p. 140).

Upgrading to the Latest Version of the AWS CLI version 1

We recommend that you regularly check to see if there is a new version of the AWS CLI and upgrade to it
when you can.

Use the pip list -o command to check which packages are "outdated".

$ aws --version
aws-cli/1.16.170 Python/3.7.3 Linux/4.14.123-111.109.amzn2.x86_64 botocore/1.12.160

$ pip3 list -o
Package Version Latest Type

16

AWS Command Line Interface User Guide
Linux

awscli 1.16.170 1.16.198 wheel
botocore 1.12.160 1.12.188 wheel

Because the previous command shows that there is a newer version of the AWS CLI version 1 available,
you can run pip install --upgrade to get the latest version.

$ pip3 install --upgrade --user awscli
Collecting awscli

Downloading https://files.pythonhosted.org/packages/dc/70/
b32e9534c32fe9331801449elf7eacbabal992c2e4af9c82ac9116661d3b/awscli-1.16.198-py2.py3-none-
any.whl (1.7MB)

| ## A #4 EHBHBHBHRH AR AR AR AR A####| 1.7TMB 1.6MB/s
Collecting botocore==1.12.188 (from awscli)

Using cached https://files.pythonhosted.org/packages/10/
cb/8dcfb3e035a419f228df7d3a0eea5d52b528bde7cal62£62£3096a930472/botocore-1.12.188-py2.py3-
none-any.whl
Requirement already satisfied, skipping upgrade: docutils>=0.10 in ./venv/lib/python3.7/
site-packages (from awscli) (0.14)

Requirement already satisfied, skipping upgrade: rsa<=3.5.0,>=3.1.2 in ./venv/lib/
python3.7/site-packages (from awscli) (3.4.2)

Requirement already satisfied, skipping upgrade: colorama<=0.3.9,>=0.2.5 in ./venv/1lib/
python3.7/site-packages (from awscli) (0.3.9)

Requirement already satisfied, skipping upgrade: PyYAML<=5.1,>=3.10; python_version !=

"2.6" in ./venv/lib/python3.7/site-packages (from awscli) (3.13)

Requirement already satisfied, skipping upgrade: s3transfer<0.3.0,>=0.2.0 in ./venv/lib/
python3.7/site-packages (from awscli) (0.2.0)

Requirement already satisfied, skipping upgrade: jmespath<1.0.0,>=0.7.1 in ./venv/lib/
python3.7/site-packages (from botocore==1.12.188->awscli) (0.9.4)

Requirement already satisfied, skipping upgrade: urllib3<1.26,>=1.20; python_version >=

"3.4" in ./venv/lib/python3.7/site-packages (from botocore==1.12.188->awscli) (1.24.3)
Requirement already satisfied, skipping upgrade: python-dateutil<3.0.0,>=2.1;

python_version >= "2.7" in ./venv/lib/python3.7/site-packages (from botocore==1.12.188-
>awscli) (2.8.0)
Requirement already satisfied, skipping upgrade: pyasnl>=0.1.3 in ./venv/lib/python3.7/
site-packages (from rsa<=3.5.0,>=3.1.2->awscli) (0.4.5)
Requirement already satisfied, skipping upgrade: six>=1.5 in ./venv/lib/python3.7/site-
packages (from python-dateutil<3.0.0,>=2.1; python_version >= "2.7"->botocore==1.12.188-
>awscli) (1.12.0)
Installing collected packages: botocore, awscli
Found existing installation: botocore 1.12.160
Uninstalling botocore-1.12.160:
Successfully uninstalled botocore-1.12.160
Found existing installation: awscli 1.16.170
Uninstalling awscli-1.16.170:
Successfully uninstalled awscli-1.16.170
Successfully installed awscli-1.16.198 botocore-1.12.188

Add the AWS CLI version 1 Executable to Your Command Line
Path

After installing with pip, you might need to add the aws executable to your operating system' PATH
environment variable.

You can verify which folder pip installed the AWS CLI in by running the following command.

$ which aws
/home/username/.local/bin/aws

You can reference this as ~/.local/bin/ because /home/username corresponds to ~ in Linux.

17

AWS Command Line Interface User Guide
Linux

If you omitted the —--user switch and so didn't install in user mode, the executable might be in the bin
folder of your Python installation. If you don't know where Python is installed, run this command.

$ which python
/usr/local/bin/python

The output might be the path to a symlink, not to the actual executable. Run 1s -al to see where it
points.

$ 1s -al /usr/local/bin/python
/usr/local/bin/python -> ~/.local/Python/3.6/bin/python3.6

If this is the same folder you added to the path in step 3 in Install pip (p. 15), you're done. Otherwise,
perform those same steps 3a-3c again, adding this folder to the path.

Installing Python on Linux

If your distribution didn't come with Python, or came with an earlier version, install Python before
installing pip and the AWS CLI.

To install Python 3 on Linux

1. Seeif Python is already installed.

$ python --version

Or use the following.

$ python3 --version

Note

If your Linux distribution came with Python, you might need to install the Python developer
package to get the headers and libraries required to compile extensions, and install the
AWS CLI. Use your package manager to install the developer package (typically named
python-dev or python-devel).

2. If Python 2 version 2.7+ or Python 3 version 3.4+ or later is not installed, install Python with your
distribution's package manager. The command and package name varies:

« On Debian derivatives such as Ubuntu, use apt. Check the apt repository for the versions of
Python available to you. Then, run a command similar to the following, substituting the correct
package name.

$ sudo apt-get install python3

« On Red Hat and derivatives, use yum. Check the yum repository for the versions of Python
available to you. Then, run a command similar to the following, substituting the correct package
name.

$ sudo yum install python3é

« On SUSE and derivatives, use zypper. Check the repository for the versions of Python available to
you. Then, run a command similar to the following, substituting the correct package name.

$ sudo zypper install python3

18

AWS Command Line Interface User Guide
Linux

See the documentation for your system's package manager and for Python for more information
about where it is installed and how to use it.

3. Open a command prompt or shell and run the following command to verify that Python installed
correctly.

$ python3 --version
Python 3.7.3

Install the AWS CLI version 1 on Amazon Linux

The AWS Command Line Interface version 1 (AWS CLI version 1) comes preinstalled on Amazon Linux
and Amazon Linux 2. Check the currently installed version by using the following command.

$ aws --version
aws-cli/1.16.273 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13.0

Important

Using sudo to complete a command grants the command full access to your system. We
recommend using that command only when no more secure option exists. For commands like
pip, we recommend that you avoid using sudo by using a Python virtual environment (venv) or
by specifying the —--user option to install in the user's folders instead of the system's folders.

If you use the yum package manager, you can install the AWS CLI with the command yum install
aws-cli. You can use the command yum update to get the latest version available in the yum
repository.

Note
The yum repository is not owned or maintained by Amazon and might not contain the latest
version. Instead, we recommend that you use pip to get the latest version.

Prerequisites

Verify that Python and pip are already installed. For more information, see Install the AWS CLI version 1
on Linux (p. 14).

To install or upgrade the AWS CLI version 1 on Amazon Linux (user)

1. Usepip3 install to install the latest version of the AWS CLI version 1. We recommend that if you
have Python version 3+ installed that you use pip3. If you run the command from within a Python
virtual environment (venv), then you don't need to use the --user option.

$ pip3 install --upgrade --user awscli

2. Add the install location to the beginning of your PATH variable.

$ export PATH=/home/ec2-user/.local/bin:$PATH

Add this command to the end of your profile's startup script (for example, ~/ .bashrc) to persist the
change between command line sessions.

3. Verify that you're running new version with aws --version.

$ aws --version
aws-cli/1.16.273 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13.0

19

https://www.python.org/doc/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

AWS Command Line Interface User Guide
macOS

Install the AWS CLI version 1 on macOS

The recommended way to install version 1 of the AWS Command Line Interface (AWS CLI) on macOS is
to use the bundled installer. The bundled installer includes all dependencies and you can use it offline.

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

Important
The bundled installer doesn't support installing to paths that contain spaces.

Sections
« Prerequisites (p. 20)
o Install the AWS CLI version 1 Using the Bundled Installer (p. 20)
« Install the AWS CLI version 1 on macOS Using pip (p. 21)
o Add the AWS CLI version 1 Executable to Your macOS Command Line Path (p. 21)

Prerequisites

« Python 2 version 2.7+ or Python 3 version 3.4+

Check your Python installation.

$ python --version

If your computer doesn't already have Python installed, or if you want to install a different version of
Python, follow the procedure in Install the AWS CLI version 1 on Linux (p. 14).

Install the AWS CLI version 1 Using the Bundled Installer

Follow these steps from the command line to install the AWS CLI version 1 using the bundled installer.
To install the AWS CLI version 1 using the bundled installer

1. Here are the steps described below in one easy to copy-and-paste group. See the descriptions of
each line in the steps that follow.

curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o "awscli-bundle.zip"
unzip awscli-bundle.zip
sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/local/bin/aws

Note
If you don't have unzip, use your favorite package manager or an equivalent to install it.

2. Run the install program. This command installs the AWS CLI to /usr/local/aws and creates the
symlink aws in the /usr/local/bin directory. Using the -b option to create a symlink eliminates
the need to specify the install directory in the user's $PATH variable. This should enable all users to
call the AWS CLI by typing aws from any directory.

$ sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/local/bin/aws

20

https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/

AWS Command Line Interface User Guide
macOS

Note

By default, the install script runs under the system's default version of Python. If you have
installed an alternative version of Python and want to use that to install the AWS CLI, run
the install script and specify that version by including the absolute path to the Python
application, as shown in the following example.

$ sudo /usr/local/bin/python3.7 awscli-bundle/install -i /usr/local/aws -b /usr/
local/bin/aws

To see an explanation of the -i and -b options, use the -h option.

$./awscli-bundle/install -h

Install the AWS CLI version 1 on macOS Using pip

You can also use pip directly to install the AWS CLI. If you don't have pip, follow the instructions in the
main installation topic (p. 4). Run pip3 --version to see if your version of macOS already includes
Python and pip3.

$ pip3 --version

To install the AWS CLI on macOS

1. Download and install the latest version of Python from the downloads page of Python.org.
2. Download and run the pip3 installation script provided by the Python Packaging Authority.

$ curl -0 https://bootstrap.pypa.io/get-pip.py
$ python3 get-pip.py --user

3. Use your newly installed pip3 to install the AWS CLI. We recommend that if you use Python version
3+, that you use the pip3 command.

$ pip3 install awscli --upgrade --user

4. Verify that the AWS CLlI is installed correctly.

$ aws --version
AWS CLI 1.16.273 (Python 3.7.3)

If the program isn't found, add it to your command line path (p. 21).

To upgrade to the latest version, run the installation command again.

$ pip3 install awscli --upgrade --user

Add the AWS CLI version 1 Executable to Your macOS Command
Line Path

After installing with pip, you might need to add the aws program to your operating system's PATH
environment variable. The location of the program depends on where Python is installed.

21

https://www.python.org/downloads/mac-osx/
https://www.python.org

AWS Command Line Interface User Guide
Windows

Example AWS CLI install location - macOS with Python 3.6 and pip (user mode)

~/Library/Python/3.7/bin

Substitute the version of Python that you have for the version in the example above.

If you don't know where Python is installed, run which python.

$ which python
/usr/local/bin/python

The output might be the path to a symlink, not the actual program. Run 1s -al to see where it points.

$ 1s -al /usr/local/bin/python
~/Library/Python/3.7/bin/python3.6

pip installs programs in the same folder that contains the Python application. Add this folder to your
PATH variable.

To modify your PATH variable (Linux or macOS)

1. Find your shell's profile script in your user folder. If you're not sure which shell you have, run echo
$SHELL.

$ 1s -a ~
.bash_logout .bash_profile .bashrc Desktop Documents Downloads

e Bash - .bash_profile, .profile, or .bash_login
e Zsh - .zshrc
e Tcsh - .teshre, .cshre, or .1login

2. Add an export command to your profile script.

export PATH=~/.local/bin:$PATH

This command adds a path, ~/.1local/bin in this example, to the current PATH variable.
3. Load the updated profile into your current session.

$ source ~/.bash_profile

Install the AWS CLI version 1 on Windows

You can install version 1 of the AWS Command Line Interface (AWS CLI) on Windows by using a
standalone installer or pip, which is a package manager for Python. If you already have pip, follow the
instructions in the main installation topic (p. 4).

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

Sections

22

https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/

AWS Command Line Interface User Guide
Windows

o Install the AWS CLI version 1 Using the MSI Installer (p. 23)
o Install the AWS CLI version 1 Using Python and pip on Windows (p. 24)
o Add the AWS CLI version 1 Executable to Your Command Line Path (p. 24)

Install the AWS CLI version 1 Using the MSI Installer

The AWS CLI version 1 is supported on Windows XP or later. For Windows users, the MSI installation
package offers a familiar and convenient way to install the AWS CLI version 1 without installing any
other prerequisites.

When updates are released, you must repeat the installation process to get the latest version of the AWS
CLI version 1.

To install the AWS CLI version 1 using the MSI installer
1. Download the appropriate MSI installer.

« Download the AWS CLI MSl installer for Windows (64-bit)
« Download the AWS CLI MSl installer for Windows (32-bit)

« Download the AWS CLI setup file (includes both the 32-bit and 64-bit MSI installers and will
automatically install the correct version)

Note
The MSI installer for the AWS CLI version 1 doesn't work with Windows Server 2008 (version
6.0.6002). Use pip (p. 24) to install with this version of Windows Server.

2. Run the downloaded MSI installer or the setup file.
3. Follow the onscreen instructions.

By default, the AWS CLI version 1 installs to C: \Program Files\Amazon\AWSCLI (64-bit version)
or C:\Program Files (x86)\Amazon\AWSCLI (32-bit version). To confirm the installation, use the
aws --version command at a command prompt (open the Start menu and search for cmd to start a
command prompt).

C:\> aws --version
aws-cli/1.16.273 Python/3.7.3 Windows/10 botocore/1.13.0

Don't include the prompt symbol (C:\>, shown above) when you type a command. These are included in
program listings to differentiate commands that you type from output returned by the CLI. The rest of
this guide uses the generic prompt symbol, $, except in cases where a command is Windows-specific.

If Windows is unable to find the program, you might need to close and reopen the command prompt to
refresh the path, or add the installation directory to your PATH (p. 24) environment variable manually.

Updating an MSI Installation

The AWS CLI version 1 is updated regularly. Check the Releases page on GitHub to see when the latest
version was released. To update to the latest version, download and run the MSl installer again, as
described previously.

Uninstalling the AWS CLI version 1

To uninstall the AWS CLI version 1, open the Control Panel, and then choose Programs and Features.
Select the entry named AWS Command Line Interface, and then choose Uninstall to launch the
uninstaller. Confirm that you want to uninstall the AWS CLI when you're prompted.

23

https://s3.amazonaws.com/aws-cli/AWSCLI64PY3.msi
https://s3.amazonaws.com/aws-cli/AWSCLI32PY3.msi
https://s3.amazonaws.com/aws-cli/AWSCLISetup.exe
https://github.com/aws/aws-cli/releases

AWS Command Line Interface User Guide
Windows

You can also launch the Programs and Features program from the command line with the following
command.

C:\> appwiz.cpl

Install the AWS CLI version 1 Using Python and pip on Windows
The Python Software Foundation provides installers for Windows that include pip.
To install Python and pip (Windows)

Download the Python Windows x86-64 installer from the downloads page of Python.org.
Run the installer.

Choose Add Python 3 to PATH.

Choose Install Now.

AwnN =

The installer installs Python in your user folder and adds its program folders to your user path.
To install the AWS CLI version 1 with pip3 (Windows)
If you use Python version 3+, we recommend that you use the pip3 command.

1. Open the Command Prompt from the Start menu.
2. Use the following commands to verify that Python and pip are both installed correctly.

C:\> python --version

Python 3.7.1

C:\> pip3 --version

pip 19.2.3 from c:\program files\python37\lib\site-packages\pip (python 3.7)

3. Install the AWS CLI version 1 using pip.

C:\> pip3 install awscli

4. Verify that the AWS CLI version 1 is installed correctly.

C:\> aws --version
aws-cli/1.16.273 Python/3.7.3 Windows/10 botocore/1.13.0

To upgrade to the latest version, run the installation command again.

C:\> pip3 install --user --upgrade awscli

Add the AWS CLI version 1 Executable to Your Command Line
Path

After installing the AWS CLI version 1 with pip, add the aws program to your operating system's PATH
environment variable. With an MSI installation, this should happen automatically, but you might need to
set it manually if the aws command doesn't run after you install it.

If this command returns a response, then you should be ready to run the tool. The where command, by
default, shows where in the system PATH it found the specified program.

C:\> where aws

24

https://www.python.org/downloads/windows/
https://www.python.org

AWS Command Line Interface User Guide
Virtualenv

C:\Program Files\Amazon\AWSCLI\bin\aws.exe

You can find where the aws program is installed by running the following command.

C:\> where c:\ aws
C:\Program Files\Python37\Scripts\aws

If the where command returns the following error, it's not in the system PATH and you can't run it by
simply typing its name.

C:\> where c:\ aws
INFO: Could not find files for the given pattern(s).

In that case, run the where command with the /R path parameter to tell it to search all folders, and
then add the path manually. Use the command line or File Explorer to discover where it is installed on
your computer.

:\> where /R c:\ aws

:\Program Files\Amazon\AWSCLI\bin\aws.exe

:\Program Files\Amazon\AWSCLI\bincompat\aws.cmd
:\Program Files\Amazon\AWSCLI\runtime\Scripts\aws
:\Program Files\Amazon\AWSCLI\runtime\Scripts\aws.cmd

Qo ao0aan

The paths that show up depend on your platform and which method you used to install the AWS CLI.
Typical paths include:

« Python 3 and pip3 - C:\Program Files\Python37\Scripts\

« Python 3 and pip3 --user option on earlier versions of Windows — ¥USERPROFILE%\AppData
\Local\Programs\Python\Python37\Scripts

« Python 3 and pip3 --user option on Windows 10 — ¥USERPROFILE%\AppData\Roaming\Python
\Python37\Scripts

o MSl installer (64-bit) — C:\Program Files\Amazon\AWSCLI\bin
o MSI installer (32-bit) - C:\Program Files (x86)\Amazon\AWSCLI\bin

Note
Folder names that include version numbers can vary. The examples above reflect the use of
Python version 3.7. Replace as needed with the version number you are using.

To modify your PATH variable (Windows)

Press the Windows key and enter environment variables.
Choose Edit environment variables for your account.

Choose PATH, and then choose Edit.

Add the path to the Variable value field. For example: ¢: \new\path
Choose OK twice to apply the new settings.

oA nNDN =

Close any running command prompts and reopen the command prompt window.

Install the AWS CLI version 1 in a Virtual Environment

You can avoid requirement version conflicts with other pip packages by installing version 1 of the AWS
Command Line Interface (AWS CLI) in a virtual environment.

25

AWS Command Line Interface User Guide
Virtualenv

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

To install the AWS CLI version 1 in a virtual environment

1. Install virtualenv using pip.

$ pip install --user virtualenv

2. Create a virtual environment and name it.

$ virtualenv ~/cli-ve

Alternatively, you can use the -p option to specify a version of Python other than the default.

$ virtualenv -p /usr/bin/python37 ~/cli-ve

3. Activate your new virtual environment.

Linux or macOS

$ source ~/cli-ve/bin/activate

Windows

$ %USERPROFILE%\cli-ve\Scripts\activate

The prompt changes to show that your virtual environment is active.

(cli-ve)~$

4. Install the AWS CLI version 1 into your virtual environment.

(cli-ve)~$ pip install --upgrade awscli

5. Verify that the AWS CLI version 1 is installed correctly.

$ aws --version
aws-cli/1.16.273 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13.0

You can use the deactivate command to exit the virtual environment. Whenever you start a new
session, you must reactivate the environment.

To upgrade to the latest version, run the installation command again.

(cli-ve)~$ pip install --upgrade awscli

26

https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/

AWS Command Line Interface User Guide
Bundled Installer

Install the AWS CLI version 1 Using the Bundled
Installer (Linux or macOS)

On Linux or macOS, you can use the bundled installer to install version 1 of the AWS Command Line
Interface (AWS CLI). The bundled installer includes all dependencies and can be used offline.

The bundled installer doesn't support installing to paths that contain spaces.

Important
On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6
or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.
Sections

« Prerequisites (p. 27)

o Install the AWS CLI version 1 Using the Bundled Installer (p. 27)

« Install the AWS CLI version 1 without Sudo (Linux or macOS) (p. 28)

« Uninstall the AWS CLI version 1 (p. 29)

Prerequisites

¢ Linux or macOS

« Python 2 version 2.7+ or Python 3 version 3.4+

Check your Python installation.

$ python --version

If your computer doesn't already have Python installed, or you would like to install a different version of
Python, follow the procedure in Install the AWS CLI version 1 on Linux (p. 14).

Install the AWS CLI version 1 Using the Bundled Installer

The following steps enable you to install the AWS CLI version 1 from the command line on any build of
Linux or macOS.

To download it directly (without using curl), use this link:

« https://s3.amazonaws.com/aws-cli/awscli-bundle.zip

The following is a summary of the installation commands explained below that you can cut and paste to
run as a single set of commands.

curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o "awscli-bundle.zip"
unzip awscli-bundle.zip
sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/local/bin/aws

Follow these steps from the command line to install the AWS CLI version 1 using the bundled installer.

27

https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://s3.amazonaws.com/aws-cli/awscli-bundle.zip

AWS Command Line Interface User Guide
Bundled Installer

To install the AWS CLI version 1 using the bundled installer

1. Download the AWS CLI version 1 bundled installer using the following command.

$ curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o "awscli-bundle.zip"

2. Extract the files from the package.

$ unzip awscli-bundle.zip

Note
If you don't have unzip, use your Linux distribution's built-in package manager to install it.

3. Run the install program.

$ sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/local/bin/aws

Note

By default, the install script runs under the system default version of Python. If you have

installed an alternative version of Python and want to use that to install the AWS CLI, run
the install script with that version by absolute path to the Python executable, as follows.

$ sudo /usr/local/bin/python3.7 awscli-bundle/install -i /usr/local/aws -b /usr/
local/bin/aws

The installer installs the AWS CLI at /usr/local/aws and creates the symlink aws at the /usr/local/
bin directory. Using the -b option to create a symlink eliminates the need to specify the install directory
in the user's $PATH variable. This should enable all users to call the AWS CLI by typing aws from any
directory.

To see an explanation of the -1 and -b options, use the -h option.

$./awscli-bundle/install -h

Install the AWS CLI version 1 without Sudo (Linux or macQS)

If you don't have sudo permissions or want to install the AWS CLI only for the current user, you can use
a modified version of the previous commands. The first two commands are the same. The last command
uses the -b parameter to specify the folder where the installer places the aws symlink file. You must
have write permissions to the specified folder.

$ curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o "awscli-bundle.zip"
$ unzip awscli-bundle.zip
$./awscli-bundle/install -b ~/bin/aws

This installs the AWS CLI to the default location (~/.1local/1ib/aws) and creates a symbolic link
(symlink) at ~/bin/aws. Make sure that ~/bin is in your PATH environment variable for the symlink to
work.

$ echo $PATH | grep ~/bin // See if $PATH contains ~/bin (output will be empty if it
doesn't)
$ export PATH=~/bin:$PATH // Add ~/bin to $PATH if necessary

28

AWS Command Line Interface User Guide
Using the AWS CLI version 1 with Python 2.6 or Python 3.3

Tip
To ensure that your $PATH settings are retained between sessions, add the export line to your
shell profile (~/ .profile, ~/.bash_profile, and so on).

Uninstall the AWS CLI version 1

The bundled installer doesn't put anything outside of the installation directory except the optional
symlink, so uninstalling is as simple as deleting those two items.

$ sudo rm -rf /usr/local/aws
$ sudo rm /usr/local/bin/aws

Using the AWS CLI version 1 with Python 2.6 or
Python 3.3

Important

On January 10th, 2020, AWS CLI version 1.17 and later will no longer support Python 2.6

or Python 3.3. After this date, the installer for the AWS CLI will require Python 2.7, Python
3.4, or a later version to successfully install the AWS CLI. For more information, see Using the
AWS CLI version 1 with Python 2.6 or Python 3.3 (p. 29) in this guide, and the deprecation
announcement in this blog post.

AWS CLI version 1 requires that you have a version of Python installed. This Python installation can be
any supported version of Python. Because Python 2.6 and Python 3.3 are no longer supported and are
no longer receiving security updates, we are deprecating support for Python 2.6 and Python 3.3 with the
AWS CLI version 1. We strongly recommend that you upgrade to a later version of Python.

Starting on January 10th, 2020, AWS CLI releases version 1.17 and later will work only with later
versions of Python.

To continue using Python 2.6 or Python 3.3 with the AWS CLI version 1, you must "pin" your current
installation to an older version of the AWS CLI version 1, as described in the following sections. Pinning
your current version prevents it from being updated to a later version.

Note

Using an earlier version of the AWS CLI version 1 prevents you from accessing new services or
features that were added to the AWS CLI after the date that your earlier version was initially
released. We recommend that whenever possible, you upgrade your Python version to a
supported version, and use a later version of the AWS CLI version 1.

Pip

You can force pip to download an AWS CLI version 1 version that is compatible with Python 2.6 or
Python 3.3 by using a command that specifies awscli<1.17, similar to the following example.

$ pip3 install --upgrade --user awscli<1.17

If you install the AWS CLI version 1 using a pip Requirements file, include a line similar to the following.

awscli<1.17

Bundled installer on Linux or macOS

You can pin your installation to a specific earlier version with the bundled installer. To do this, download
and save a copy of the bundled installer that includes a version of the AWS CLI version 1 that is

29

https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://aws.amazon.com/blogs/developer/deprecation-of-python-2-6-and-python-3-3-in-botocore-boto3-and-the-aws-cli/
https://pip.pypa.io/en/stable/user_guide/#requirements-files

AWS Command Line Interface User Guide
Migrating from V1 to V2

compatible with the version of Python that you want to use. You can use the following URL format
to download the file, replacing { VERSION} with the version number that you want to use, as shown.
Version numbers less than 1.17 support the earlier Python releases.

https://s3.amazonaws.com/aws-cli/awscli-bundle-{VERSION}.zip

For example, the following command downloads the AWS CLI version 1.16.188.

$ curl https://s3.amazonaws.com/aws-cli/awscli-bundle-1.16.188.zip -o awscli-bundle.zip

From here, you can continue to follow the installation instructions in Install the AWS CLI version 1 Using
the Bundled Installer (Linux or macOS) (p. 27), starting with step 2.

MSI installer on Windows

The MSI installer version of the AWS CLI version 1 for Windows is not affected by this deprecation.

This version of the AWS CLI version 1 installation includes and uses its own embedded copy of Python,
independent of any other Python version you might have installed. If you're using an MSI installer-based
AWS CLI, no changes are required.

Migrating from AWS CLI version 1 to version 2

This topic describes the changes in behavior between AWS CLI version 1 and AWS CLI version 2 that
might require you to make changes to scripts or commands to get the same behavior in version 2 as you
did in version 1.

AWS CLI version 2 no longer automatically retrieves
http:// or https:// URLs for parameters

The AWS CLI version 2 no longer performs a GET operation when a parameter value begins with
http:// or https://, and then using the returned content as the value of the parameter. If you need
to retrieve a URL and pass the contents read from that URL as the value of a parameter, we recommend
that you use curl or a similar tool to download the contents of the URL to a local file. Then use the
file:// syntax to read the contents of that file and use it as the parameter's value.

For example, the following command no longer tries to retrieve the contents of the page found at
http://www.google.com and pass those contents as the parameter. Instead, it passes the literal text
string https://google.com as the parameter.

$ aws2 ssm put-parameter --value http://www.google.com --name prod.microservicel.db.secret
--type String 2

If you really do want to retrieve and use the contents of a web URL as a parameter, you can do the
following in version 2.

$ curl https://my.example.com/mypolicyfile.json -o mypolicyfile.json
$ aws iam put-role-policy --policy-document file://./mypolicyfile.json --role-name MyRole
--policy-name MyReadOnlyPolicy

In the previous example, the -o parameter tells curl to save the file in the current folder with the same
name as the source file. The second command retrieves the content of that downloaded file and passes
the content as the value of --policy-document.

30

https://s3.amazonaws.com/aws-cli/awscli-bundle-1.16.188.zip

AWS Command Line Interface User Guide
All date/time values in ISO 8601 format

AWS CLI version 2 now returns all timestamp output
values in ISO 8601 format

By default, AWS CLI version 2 returns all timestamp response values in the ISO 8601 format. In AWS
CLI version 1, commands returned timestamp values in whatever format was returned by the HTTP API
response, which could vary from service to service.

ISO 8601 formatted timestamps look like the following examples. The first example shows the time in
Coordinated Universal Time (UTC) by including a Z after the time. The date and the time are separated
by aT.

2019-10-31T22:21:417%

To specify a different time zone, instead of the z, specify a + or - and the number of hours the desired
time zone is ahead of or behind UTC, as a two-digit value. The following example shows the same time
as the previous example but adjusted to Pacific Standard time, which is eight hours behind UTC.

2019-10-31T14:21:41-08

To see timestamps in the format returned by the HTTP API response, add the following line to your
.aws/config profile.

cli_timestamp_format = wire

AWS CLI version 2 no longer supports "hidden"
aliases

AWS CLI version 2 no longer supports the following hidden aliases that were supported in version 1.

In the following table, the first column displays the service, command, and parameter that work in all
versions, including AWS CLI version 2. The second column displays the alias that no longer works in AWS
CLI version 2

Working Service, Command, and Parameter Obsolete Alias
cognito-identity create-identity-pool open-id-connect-provider- open-id-connect-provider-ar-ns
arns

storagegateway describe-tapes tape-arns tape-ar-ns
storagegateway.describe-tape-archives.tape-arns tape-ar-ns
storagegateway.describe-vtl-devices.vtl-device-arns vtl-device-ar-ns
storagegateway.describe-cached-iscsi-volumes.volume-arns volume-ar-ns
storagegateway.describe-stored-iscsi-volumes.volume-arns volume-ar-ns
route53domains.view-billing.start-time start
deploy.create-deployment-group.ec2-tag-set ec-2-tag-set
deploy.list-application-revisions.s3-bucket s-3-bucket

31

https://wikipedia.org/wiki/ISO_8601
https://wikipedia.org/wiki/Coordinated_Universal_Time

AWS Command Line Interface User Guide
Consistent Amazon S3 keys and paths

Working Service, Command, and Parameter Obsolete Alias
deploy.list-application-revisions.s3-key-prefix s-3-key-prefix
deploy.update-deployment-group.ec2-tag-set ec-2-tag-set
iam.enable-mfa-device.authentication-code1 authentication-code-1
iam.enable-mfa-device.authentication-code2 authentication-code-2
iam.resync-mfa-device.authentication-code1 authentication-code-1
iam.resync-mfa-device.authentication-code2 authentication-code-2
importexport.get-shipping-label.street street-1
importexport.get-shipping-label.street2 street-2
importexport.get-shipping-label.street3 street-3
lambda.publish-version.code-sha256 code-sha-256
lightsail.import-key-pair.public-key-base64 public-key-base-64
opsworks.register-volume.ec2-volume-id ec-2-volume-id

AWS CLI version 2 uses Amazon S3 keys more
consistently

For the Amazon S3 customization commands in the s3 namespace, we improved the consistency of how
paths are shown. In the AWS CLI version 2, paths are always displayed relative to the relevant key. The
AWS CLI version 1 sometimes showed paths in absolute form and sometimes in relative form.

AWS CLI version 2 currently does not support the
[plugins J[plugins] section in the AWS config file

AWS CLI version 2 does not support the [plugins] section of the ~/.aws/config file. Version 1
plugins do not work in version 2, and can cause failures. We recommend that you either remove the
section or rename it.

32

AWS Command Line Interface User Guide
Quickly Configuring the AWS CLI

Configuring the AWS CLI

This section explains how to configure the settings that the AWS Command Line Interface (AWS CLI) uses
to interact with AWS. These include your security credentials, the default output format, and the default
AWS Region.

Note

AWS requires that all incoming requests are cryptographically signed. The AWS CLI does this

for you. The "signature" includes a date/time stamp. Therefore, you must ensure that your
computer's date and time are set correctly. If you don't, and the date/time in the signature is too
far off of the date/time recognized by the AWS service, AWS rejects the request.

Sections
+ Quickly Configuring the AWS CLI (p. 33)
« Creating Multiple Profiles (p. 35)
» Configuration Settings and Precedence (p. 35)
« Configuration and Credential File Settings (p. 36)
« Named Profiles (p. 46)
« Configuring the AWS CLI to use AWS Single Sign-On (p. 47)
» Environment Variables To Configure the AWS CLI (p. 52)
« Command Line Options (p. 54)
» Sourcing Credentials with an External Process (p. 56)
« Getting Credentials from EC2 Instance Metadata (p. 58)
» Using an HTTP Proxy (p. 58)
« Using an IAM Role in the AWS CLI (p. 60)
o Command Completion (p. 65)

Quickly Configuring the AWS CLI

For general use, the aws configure command is the fastest way to set up your AWS CLI installation.
The following example shows sample values. Replace them with your own values as described in the
following sections.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2

Default output format [None]: json

When you enter this command, the AWS CLI prompts you for four pieces of information (access key,
secret access key, AWS Region, and output format). These are described in the following sections. The
AWS CLI stores this information in a profile (a collection of settings) named default. The information
in the default profile is used any time you run an AWS CLI command that doesn't explicitly specify a
profile to use.

Access Key and Secret Access Key

The AWS Access Key IDand AWS Secret Access Key are your AWS credentials. They are
associated with an AWS Identity and Access Management (IAM) user or role that determines what
permissions you have. For a tutorial on how to create a user with the IAM service, see Creating Your First
IAM Admin User and Group in the IAM User Guide.

33

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

AWS Command Line Interface User Guide
Region

Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them from the AWS
Management Console. As a best practice, do not use the AWS account root user access keys for any task
where it's not required. Instead, create a new administrator IAM user with access keys for yourself.

The only time that you can view or download the secret access key is when you create the keys. You
cannot recover them later. However, you can create new access keys at any time. You must also have
permissions to perform the required IAM actions. For more information, see Permissions Required to
Access IAM Resources in the IAM User Guide.

To create access keys for an 1AM user

1. Signin to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to create, and then choose the Security
credentials tab.

4. In the Access keys section, choose Create access key.

5. To view the new access key pair, choose Show. You will not have access to the secret access key again
after this dialog box closes. Your credentials will look something like this:

o Access key ID: AKIAIOSFODNN7EXAMPLE
« Secret access key: wlalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

6. To download the key pair, choose Download .csv file. Store the keys in a secure location. You will
not have access to the secret access key again after this dialog box closes.

Keep the keys confidential in order to protect your AWS account and never email them. Do not share
them outside your organization, even if an inquiry appears to come from AWS or Amazon.com. No
one who legitimately represents Amazon will ever ask you for your secret key.

7. After you download the . csv file, choose Close. When you create an access key, the key pair is active
by default, and you can use the pair right away.

Related topics

« What Is IAM? in the IAM User Guide
« AWS Security Credentials in AWS General Reference

Region

The Default region name identifies the AWS Region whose servers you want to send your requests
to by default. This is typically the Region closest to you, but it can be any Region. For example, you can
type us-west-2 to use US West (Oregon). This is the Region that all later requests are sent to, unless
you specify otherwise in an individual command.

Note

You must specify an AWS Region when using the AWS CLI, either explicitly or by setting a
default Region. For a list of the available Regions, see Regions and Endpoints. The Region
designators used by the AWS CLI are the same names that you see in AWS Management Console
URLs and service endpoints.

Output Format

The Default output format specifies how the results are formatted. The value can be any of the
values in the following list. If you don't specify an output format, json is used as the default.

34

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Command Line Interface User Guide
Creating Multiple Profiles

e json (p. 89) — The output is formatted as a JSON string.
o yaml (p. 89) — The output is formatted as a YAML string. (Available in the AWS CLI version 2 only.)

o text (p. 90) — The output is formatted as multiple lines of tab-separated string values. This can be
useful to pass the output to a text processor, like grep, sed, or awk.

o table (p. 92) — The output is formatted as a table using the characters +|- to form the cell borders.
It typically presents the information in a "human-friendly" format that is much easier to read than the
others, but not as programmatically useful.

Creating Multiple Profiles

If you use the command shown in the previous section, the result is a single profile named default.
You can create additional configurations that you can refer to with a name by specifying the --profile
option and assigning a name. The following example creates a profile named produser. You can specify
credentials from a completely different account and Region than the other profiles.

$ aws configure --profile produser

AWS Access Key ID [None]: AKIAI440H8DHBEXAMPLE

AWS Secret Access Key [None]: je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
Default region name [None]: us-east-1

Default output format [None]: text

Then, when you run a command, you can omit the --profile option and use the credentials and
settings stored in the default profile.

$ aws s3 1s

Or you can specify a --profile profilename and use the credentials and settings stored under that
name.

$ aws s3 l1ls --profile produser

To update any of your settings, simply run aws configure again (with or without the --profile
parameter, depending on which profile you want to update) and enter new values as appropriate. The
next sections contain more information about the files that aws configure creates, additional settings,
and named profiles.

Configuration Settings and Precedence

The AWS CLI uses a set of credential providers to look for AWS credentials. Each credential provider
looks for credentials in a different place, such as the system or user environment variables, local AWS
configuration files, or explicitly declared on the command line as a parameter. The AWS CLI looks for
credentials and configuration settings by invoking the providers in the following order, stopping when it
finds a set of credentials to use:

1. Command line options (p. 54) — You can specify --region, --output, and --profile as
parameters on the command line.

2. Environment variables (p. 52) - You can store values in the environment variables:
AWS_ACCESS_KEY_ID, AWS_SECRET ACCESS_KEY, and AWS_SESSION_TOKEN. If they are present,
they are used.

3. CLI credentials file (p. 36) — This is one of the files that is updated when you run the command
aws configure. The file is located at ~/.aws/credentials on Linux or macOS, or at C:\Users

35

https://json.org/
https://yaml.org/

AWS Command Line Interface User Guide
Configuration and Credential File Settings

\USERNAME\ .aws\credentials on Windows. This file can contain the credential details for the
default profile and any named profiles.

4, CLI configuration file (p. 36) — This is another file that is updated when you run the command
aws configure. The file is located at ~/.aws/config on Linux or macOS, or at C:\Users
\USERNAME\ .aws\config on Windows. This file contains the configuration settings for the default
profile and any named profiles.

5. Container credentials — You can associate an IAM role with each of your Amazon Elastic Container
Service (Amazon ECS) task definitions. Temporary credentials for that role are then available to that
task's containers. For more information, see IAM Roles for Tasks in the Amazon Elastic Container
Service Developer Guide.

6. Instance profile credentials — You can associate an IAM role with each of your Amazon Elastic
Compute Cloud (Amazon EC2) instances. Temporary credentials for that role are then available to
code running in the instance. The credentials are delivered through the Amazon EC2 metadata service.
For more information, see IAM Roles for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances
and Using Instance Profiles in the IAM User Guide.

Configuration and Credential File Settings

You can save your frequently used configuration settings and credentials in files that are maintained

by the AWS CLI. The files are divided into sections that can be referenced by name. These are called
"profiles". Unless you specify otherwise, the CLI uses the settings found in the profile named default.
To use alternate settings, you can create and reference additional profiles. You can also override an
individual setting by either setting one of the supported environment variables, or by using a command
line parameter.

« Where Are Configuration Settings Stored? (p. 36)

» Global Settings (p. 38)
« S3 Custom Command Settings (p. 43)

Where Are Configuration Settings Stored?

The AWS CLI stores the credentials that you specify with aws configure in a local file named
credentials, in a folder named . aws in your home directory. The other configuration options that you
specify with aws configure are stored in a local file named config, also stored in the . aws folder in
your home directory. Where you find your home directory location varies based on the operating system,
but is referred to using the environment variables ¥UserProfile% in Windows and $HOME or ~ (tilde) in
Unix-based systems.

For example, the following commands list the contents of the . aws folder.

Linux or macOS

$ 1s ~/.aws

Windows

C:\> dir "%UserProfile%\.aws"

The AWS CLI uses two files to store the sensitive credential information (in ~/.aws/credentials)
separated from the less sensitive configuration options (in ~/.aws/config).

36

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

AWS Command Line Interface User Guide
Supported config File Settings

You can specify a non-default location for the config file by setting the AWS_CONFIG_FILE
environment variable to another local path. See Environment Variables To Configure the AWS
CLI (p. 52) for details.

Storing Credentials in the Config File

The AWS CLI can also read credentials from the config file. You can keep all of your profile
settings in a single file. If there are ever credentials in both locations for a profile (say you used
aws configure to update the profile's keys), the keys in the credentials file take precedence.
These files are also used by the various language software development kits (SDKs). If you use
one of the SDKs in addition to the AWS CLI, you might receive additional warnings if credentials
aren't stored in their own file.

The files generated by the CLI for the profile configured in the previous section look like this.

~/.aws/credentials

[default]
aws_access_key_ id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

~/.aws/config

[default]
region=us-west-2
output=json

Note
The preceding examples show the files with a single, default profile. For examples of the files
with multiple named profiles, see Named Profiles (p. 46).

When you use a shared profile that specifies an IAM role, the AWS CLI calls the AWS STS AssumeRole
operation to retrieve temporary credentials. These credentials are then stored (in ~/.aws/cli/cache).
Subsequent AWS CLI commands use the cached temporary credentials until they expire, and at that
point the AWS CLI automatically refreshes the credentials.

Supported config File Settings

Topics
 Global Settings (p. 38)
o S3 Custom Command Settings (p. 43)

The following settings are supported in the config file. The values listed in the specified (or default)
profile are used unless they are overridden by the presence of an environment variable with the same
name, or a command line option with the same name.

You can configure these settings by editing the config file directly with a text editor, or by using the aws
configure set command. Specify the profile that you want to modify with the --profile setting.
For example, the following command sets the region setting in the profile named integ.

aws configure set region us-west-2 --profile integ

You can also retrieve the value for any setting by using the get subcommand.

$ aws configure get region --profile default
us-west-2

37

AWS Command Line Interface User Guide
Supported config File Settings

If the output is empty, the setting is not explicitly set and uses the default value.

Global Settings

api_versions

Some AWS services maintain multiple API versions to support backward compatibility. By default,
CLI commands use the latest available API version. You can specify an API version to use for a profile
by including the api_versions setting in the config file.

This is a "nested" setting that is followed by one or more indented lines that each identify one AWS
service and the API version to use. See the documentation for each service to understand which API
versions are available.

The following example shows how to specify an API version for two AWS services. These API versions
are used only for commands that run under the profile that contains these settings.

api_versions =
ec2 = 2015-03-01
cloudfront = 2015-09-017

This setting does not have an environment variable or command line parameter equivalent.

aws_access_key_id (p. 33)

Specifies the AWS access key used as part of the credentials to authenticate the command
request. Although this can be stored in the config file, we recommend that you store this in the
credentials file.

Can be overridden by the AWS_ACCESS_KEY_ 1D environment variable. You can't specify the access
key ID as a command line option.

aws_access_key_id = 123456789012

aws_secret_access_key (p. 33)

Specifies the AWS secret key used as part of the credentials to authenticate the command
request. Although this can be stored in the config file, we recommend that you store this in the
credentials file.

Can be overridden by the AWS_SECRET ACCESS_KEY environment variable. You can't specify the
secret access key as a command line option.

aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRf1CYEXAMPLEKEY

aws_session_token

Specifies an AWS session token. A session token is required only if you manually specify temporary
security credentials. Although this can be stored in the config file, we recommend that you store
this in the credentials file.

Can be overridden by the AWS_SESSION_TOKEN environment variable. You can't specify the session
token as a command line option.

aws_session_token = AQOEXAMPLEH400AHOgQNCAPyJxz4BlCFFXWNE1OPTgKk5TthT
+FvwgnKwRcOIfrRh3c/LTo6UDdyJwOOVEVPVLXCrrrUtdnniCEXAMPLE/
IvU1dYUg2RVAJBanLi1Hb4IgRmpRV3zrkuWJOgQs8IZZaIv2BXIa2R401gk

38

AWS Command Line Interface User Guide
Supported config File Settings

ca_bundle

Specifies a CA certificate bundle (a file with the . pem extension) that is used to verify SSL
certificates.

Can be overridden by the AWS_CA_BUNDLE environment variable or the --ca-bundle command
line option.

ca_bundle = dev/apps/ca-certs/cabundle-2019mar05.pem

cli_follow_urlparam

This feature is available only with version 1 of the AWS CLI.
The following feature is available only if you use version 1 of the AWS CLI. It isn't available if
you run version 2.

Specifies whether the CLI attempts to follow URL links in command line parameters that begin with
http:// orhttps://. When enabled, the retrieved content is used as the parameter value instead
of the URL.

« true: This is the default value. If specified, any string parameters that begin with http: // or
https:// are fetched and any downloaded content is used as the parameter value for the
command.

« false: If specified, the CLI does not treat parameter string values that begin with http:// or
https:// differently from other strings.

This entry does not have an equivalent environment variable or command line option.

cli_follow_urlparam = false

cli_timestamp_format

Specifies the format of timestamp values included in the output. You can specify either of the

following values:

» is08601 - The default value for the AWS CLI version 2. If specified, the AWS CLI reformats all
timestamps according to ISO 8601.

« wire — The default value for the AWS CLI version 1. If specified, the AWS CLI displays all timestamp
values exactly as received in the HTTP query response.

This entry does not have an equivalent environment variable or command line option.

cli_timestamp_format = iso8601

credential_process (p. 56)

Specifies an external command that the CLI runs to generate or retrieve authentication credentials
to use for this command. The command must return the credentials in a specific format. For

more information about how to use this setting, see Sourcing Credentials with an External

Process (p. 56).

This entry does not have an equivalent environment variable or command line option.

credential process = Jopt/bin/awscreds-retriever --username susan

credential_source (p. 60)

Used within Amazon EC2 instances or EC2 containers to specify where the AWS CLI can find
credentials to use to assume the role you specified with the role_arn parameter. You cannot
specify both source_profile and credential_source in the same profile.

39

https://www.iso.org/iso-8601-date-and-time-format.html

AWS Command Line Interface User Guide
Supported config File Settings

This parameter can have one of three values:

« Environment - Specifies that the AWS CLI is to retrieve source credentials from environment
variables.

« Ec2InstanceMetadata — Specifies that the AWS CLlI is to use the IAM role attached to the EC2
instance profile to get source credentials.

« EcsContainer - Specifies that the AWS CLI is to use the IAM role attached to the ECS container as
source credentials.

credential_source = Ec2InstanceMetadata

duration_seconds

Specifies the maximum duration of the role session, in seconds. The value can range from 900
seconds (15 minutes) up to the maximum session duration setting for the role (which can be a
maximum of 43200). This is an optional parameter and by default, the value is set to 3600 seconds.

external_id (p. 63)

Specifies a unique identifier that is used by third parties to assume a role in their customers'
accounts. This maps to the ExternalId parameter in the AssumeRole operation. This parameter is
needed only if the trust policy for the role specifies a value for ExternalId. For more information,
see How to use an External Gateway When Granting Access to Your AWS Resources to a Third Party
in the IAM User Guide.

mfa_serial (p. 62)

The identification number of an MFA device to use when assuming a role. This is mandatory
only if the trust policy of the role being assumed includes a condition that requires MFA
authentication. The value can be either a serial number for a hardware device (such as
GAHT12345678) or an Amazon Resource Name (ARN) for a virtual MFA device (such as
arn:aws:iam::123456789012:mfa/user).

output (p. 34)

Specifies the default output format for commands requested using this profile. You can specify any
of the following values:

e json (p. 89) — The output is formatted as a JSON string.

o yaml (p. 89) — The output is formatted as a YAML string. (Available in the AWS CLI version 2
only.)

« text (p. 90) — The output is formatted as multiple lines of tab-separated string values. This can
be useful to pass the output to a text processor, like grep, sed, or awk.

o table (p. 92) — The output is formatted as a table using the characters +|- to form the cell
borders. It typically presents the information in a "human-friendly" format that is much easier to
read than the others, but not as programmatically useful.

Can be overridden by the AWS_DEFAULT OUTPUT environment variable or the --output command
line option.

output = table

parameter_validation

Specifies whether the AWS CLI client attempts to validate parameters before sending them to the
AWS service endpoint.

« true - This is the default value. If specified, the CLI performs local validation of command line
parameters.

40

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://json.org/
https://yaml.org/

AWS Command Line Interface User Guide
Supported config File Settings

« false - If specified, the CLI does not validate command line parameters before sending them to
the AWS service endpoint.

This entry does not have an equivalent environment variable or command line option.

parameter_validation = false

region (p. 34)

Specifies the default AWS Region to send requests to for commands requested using this profile. You
can specify any of the Region codes available for the chosen service as listed in AWS Regions and
Endpoints in the Amazon Web Services General Reference.

Can be overridden by the AWS_DEFAULT REGION environment variable or the --region command
line option.

region = us-west-2

role_arn (p. 60)

Specifies the Amazon Resource Name (ARN) of an IAM role that you want to use to run the AWS CLI
commands. You must also specify one of the following parameters to identify the credentials that
have permission to assume this role:

« source_profile
« credential_source

role_arn = arn:aws:iam::123456789012:role/role-name

role_session_name (p. 63)

Specifies the name to attach to the role session. This value is provided to the

RoleSessionName parameter when the AWS CLI calls the AssumeRole operation, and

becomes part of the assumed role user ARN: arn:aws:sts::123456789012:assumed-
role/role_name/role_session_name. This is an optional parameter. If you do not provide this
value, a session name is generated automatically. This name appears in AWS CloudTrail logs for
entries associated with this session.

role_session_name = maria_garcia_role

source_profile (p. 60)

Specifies a named profile with long-term credentials that the AWS CLI can use to assume a role
that you specified with the role_arn parameter. You cannot specify both source_profile and
credential_source in the same profile.

source_profile = production-profile

sso_account_id (p. 47)

Specifies the AWS account ID that contains the IAM role with the permission that you want to grant
to the associated AWS SSO user.

This setting does not have an environment variable or command line option.

sso_account_id = 123456789012

41

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Command Line Interface User Guide
Supported config File Settings

This feature is available only with version 2 of the AWS CLI.

The following feature is available only if you use version 2 of the AWS CLI. It isn't available if you
run version 1. For information about how to install the preview of version 2, see Installing the
AWS CLI version 2 (p. 4).

sso_region (p. 47)

Specifies the AWS Region that contains the AWS SSO portal host. This is separate from, and can be a
different Region than the default CLI region parameter.

This setting does not have an environment variable or command line option.

aws_sso_region = us_west-2

This feature is available only with version 2 of the AWS CLI.

The following feature is available only if you use version 2 of the AWS CLI. It isn't available if you
run version 1. For information about how to install the preview of version 2, see Installing the
AWS CLI version 2 (p. 4).

sso_role_name (p. 47)

Specifies the friendly name of the IAM role that defines the user's permissions when using this
profile.

This setting does not have an environment variable or command line option.

sso_role_name = ReadAccess

This feature is available only with version 2 of the AWS CLI.

The following feature is available only if you use version 2 of the AWS CLI. It isn't available if you
run version 1. For information about how to install the preview of version 2, see Installing the
AWS CLI version 2 (p. 4).

sso_start_url (p. 47)

Specifies the URL that points to the organization's AWS SSO user portal. The AWS CLI uses this URL
to establish a session with the AWS SSO service to authenticate its users.

This setting does not have an environment variable or command line option.

sso_start_url = https://my-sso-portal.awsapps.com/start

This feature is available only with version 2 of the AWS CLI.

The following feature is available only if you use version 2 of the AWS CLI. It isn't available if you
run version 1. For information about how to install the preview of version 2, see Installing the
AWS CLI version 2 (p. 4).

sts_regional_endpoints

Specifies the AWS service endpoint that the AWS CLI client uses to talk to the AWS Security Token
Service (AWS STS). You can specify one of two values:

« regional - The AWS CLI uses the AWS STS endpoint that corresponds to the configured Region.
For example, if the client is configured to use us-west-2, all calls to AWS STS are made to the
regional endpoint sts.us-west-2.amazonaws .com instead of the global sts.amazonaws.com
endpoint.

42

AWS Command Line Interface User Guide
Supported config File Settings

« legacy - Uses the global STS endpoint, sts.amazonaws . com, for the following Regions:
ap-northeast-1, ap-south-1, ap-southeast-1, ap-southeast-2, aws-global, ca-
central-1, eu-central-1, eu—north-1, eu-west-1, eu-west-2, eu-west-3, sa-east-1,
us-east-1, us-east-2, us-west-1, and us-west-2. All other Regions use their respective
regional endpoint.

web_identity_token_file (p. 64)

Specifies the path to a file that contains an OAuth 2.0 access token or OpenID Connect ID token that
is provided by an identity provider. The AWS CLI loads the contents of this file and passes it as the
WebIdentityToken argument to the AssumeRoleWithWebIdentity operation.

tcp_keepalive
Specifies whether the AWS CLI client uses TCP keep-alive packets.

This entry does not have an equivalent environment variable or command line option.

tcp_keepalive = false

S3 Custom Command Settings

Amazon S3 supports several settings that configure how the AWS CLI performs Amazon S3 operations.
Some apply to all S3 commands in both the s3api and s3 namespaces. Others are specifically for the
S3 "custom" commands that abstract common operations and do more than a one-to-one mapping to
an APl operation. The aws s3 transfer commands cp, sync, mv, and rm have additional settings you can
use to control S3 transfers.

All of these options can be configured by specifying the s3 nested setting in your config file. Each
setting is then indented on its own line.

Note

These settings are entirely optional. You should be able to successfully use the aws s3 transfer
commands without configuring any of these settings. These settings are provided to enable you
to tune for performance or to account for the specific environment where you are running these
aws s3 commands.

The following settings apply to any S3 command in the s3 or s3api namespaces.

addressing_style

Specifies which addressing style to use. This controls whether the bucket name is in the hostname or
is part of the URL. Valid values are: path, virtual, and auto. The default value is auto.

There are two styles of constructing an S3 endpoint. The first is called virtual and includes the
bucket name as part of the hostname. For example: https://bucketname.s3.amazonaws .com.
Alternatively, with the path style, you treat the bucket name as if it is a path in the URI; for example,
https://s3.amazonaws.com/bucketname. The default value in the CLI is to use auto, which
attempts to use the virtual style where it can, but will fall back to path style when required.

For example, if your bucket name is not DNS compatible, the bucket name cannot be part of the
hostname and must be in the path. With auto, the CLI will detect this condition and automatically
switch to path style for you. If you set the addressing style to path, you must then ensure that the
AWS Region you configured in the AWS CLI matches the Region of your bucket.

payload_signing_enabled

Specifies whether to SHA256 sign sigv4 payloads. By default, this is disabled for streaming uploads
(UploadPart and PutObject) when using HTTPS. By default, this is set to false for streaming
uploads (UploadPart and PutObject), but only if a ContentMD5 is present (it is generated by
default) and the endpoint uses HTTPS.

43

AWS Command Line Interface User Guide
Supported config File Settings

If set to true, S3 requests receive additional content validation in the form of a SHA256 checksum
which is calculated for you and included in the request signature. If set to false, the checksum
isn't calculated. Disabling this can be useful to reduce the performance overhead created by the
checksum calculation.

use_dualstack_endpoint

Use the Amazon S3 dual IPv4 / IPv6 endpoint for all s3 and s3api commands. The default value is
false. This is mutually exclusive with the use_accelerate_endpoint setting.

If set to true, the AWS CLI directs all Amazon S3 requests to the dual IPv4 / IPv6 endpoint for the
configured Region.

use_accelerate_endpoint

Use the Amazon S3 Accelerate endpoint for all s3 and s3api commands. The default value is false.
This is mutually exclusive with the use_dualstack_endpoint setting.

If set to true, the AWS CLI directs all Amazon S3 requests to the S3 Accelerate endpoint at
s3-accelerate.amazonaws.com. To use this endpoint, you must enable your bucket to use s3
Accelerate. All requests are sent using the virtual style of bucket addressing: my-bucket.s3-
accelerate.amazonaws.com. Any ListBuckets, CreateBucket, and DeleteBucket

requests aren't sent to the S3 Accelerate endpoint as that endpoint doesn't support those
operations. This behavior can also be set if the --endpoint-url parameteris set to https://s3-
accelerate.amazonaws.comor http://s3-accelerate.amazonaws.comfor any s3 or s3api
command.

The following settings apply only to commands in the s3 namespace command set.
max_bandwidth

Specifies the maximum bandwidth that can be consumed for uploading and downloading data to
and from Amazon S3. The default is no limit.

This limits the maximum bandwidth that the S3 commands can use to transfer data to and from
Amazon S3. This value applies to only uploads and downloads; it doesn't apply to copies or deletes.
The value is expressed as bytes per second. The value can be specified as:

« An integer. For example, 1048576 sets the maximum bandwidth usage to 1 megabyte per second.

« Aninteger followed by a rate suffix. You can specify rate suffixes using: KB/s, MB/s, or GB/s. For
example, 300KB/s, 10MB/s.

In general, we recommend that you first try to lower bandwidth consumption by lowering
max_concurrent_requests. If that doesn't adequately limit bandwidth consumption to the
desired rate, you can use the max_bandwidth setting to further limit bandwidth consumption. This
is because max_concurrent_requests controls how many threads are currently running. If you
instead first lower max_bandwidth but leave a high max_concurrent_requests setting, it can
result in threads having to wait unnecessarily. This can lead to excess resource consumption and
connection timeouts.

max_concurrent_requests
Specifies the maximum number of concurrent requests. The default value is 10.

The aws s3 transfer commands are multithreaded. At any given time, multiple Amazon S3 requests
can be running. For example, when you use the command aws s3 cp localdir s3://bucket/
--recursive to upload files to an S3 bucket, the AWS CLI can upload the files localdir/filel,
localdir/file2, and localdir/£file3 in parallel. The setting max_concurrent_requests
specifies the maximum number of transfer operations that can run at the same time.

You might need to change this value for a few reasons:

44

AWS Command Line Interface User Guide
Supported config File Settings

« Decreasing this value — On some environments, the default of 10 concurrent requests can
overwhelm a system. This can cause connection timeouts or slow the responsiveness of the
system. Lowering this value makes the S3 transfer commands less resource intensive. The tradeoff
is that S3 transfers can take longer to complete. Lowering this value might be necessary if you use
a tool to limit bandwidth.

« Increasing this value — In some scenarios, you might want the S3 transfers to complete as quickly
as possible, using as much network bandwidth as necessary. In this scenario, the default number
of concurrent requests might not be sufficient to use all of the available network bandwidth.
Increasing this value can improve the time it takes to complete an S3 transfer.

max_queue_size
Specifies the maximum number of tasks in the task queue. The default value is 1000.

The AWS CLI internally uses a model where it queues up Amazon S3 tasks that are then executed by
consumers whose numbers are limited by max_concurrent_requests. A task generally maps to

a single S3 operation. For example, a task could be a PutObjectTask, or a GetObjectTask, or an
UploadPartTask. The rate at which tasks are added to the queue can be much faster than the rate
at which consumers finish the tasks. To avoid unbounded growth, the task queue size is capped to a
specific size. This setting changes the value of that maximum number.

You generally don't need to change this setting. This setting also corresponds to the number of
tasks that the CLI is aware of that need to be run. This means that by default the CLI can only see
1000 tasks ahead. Increasing this value means that the CLI can more quickly know the total number
of tasks needed, assuming that the queuing rate is quicker than the rate of task completion. The
tradeoff is that a larger max_queue_size requires more memory.

multipart_chunksize

Specifies the chunk size that the AWS CLI uses for multipart transfers of individual files. The default
value is 8 MB, with a minimum of 5 MB.

When a file transfer exceeds the multipart_threshold, the CLI divides the file into chunks of this
size. This value can be specified using the same syntax asmultipart_threshold, either as the
number of bytes as an integer, or by using a size and a suffix.

multipart_threshold

Specifies the size threshold the AWS CLI uses for multipart transfers of individual files. The default
value is 8 MB.

When uploading, downloading, or copying a file, the S3 commands switch to multipart operations if
the file exceeds this size. You can specify this value in one of two ways:

« The file size in bytes. For example, 1048576.

« The file size with a size suffix. You can use KB, MB, GB, or TB. For example: 10MB, 1GB.

Note

S3 can impose constraints on valid values that can be used for multipart operations. For
more information, see the S3 Multipart Upload documentation in the Amazon Simple
Storage Service Developer Guide.

These settings are all set under a top-level s3 key in the config file, as shown in the following example
for the development profile.

[profile development]

s3 =
max_concurrent_requests = 20
max_queue_size = 10000
multipart_threshold = 64MB
multipart_chunksize = 16MB

45

https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html

AWS Command Line Interface User Guide
Named Profiles

max_bandwidth = 50MB/s
use_accelerate_endpoint = true
addressing_style = path

Named Profiles

The AWS CLI supports using any of multiple named profiles that are stored in the config and
credentials files. You can configure additional profiles by using aws configure with the --profile
option, or by adding entries to the config and credentials files.

The following example shows a credentials file with two profiles. The first is used when you run a CLI
command with no profile. The second is used when you run a CLI command with the --profile userl
parameter.

~/.aws/credentials (Linux & Mac) or ¥USERPROFILE%\ .aws\credentials (Windows)

[default]
aws_access_key_ id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRf1CYEXAMPLEKEY

[userl]
aws_access_key_ id=AKIAI44QH8DHBEXAMPLE
aws_secret_access_key=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

Each profile can specify different credentials—perhaps from different IAM users—and can also specify
different AWS Regions and output formats.

~/.aws/config (Linux & Mac) or ¥USERPROFILE%\ . aws \config (Windows)

[default]
region=us-west-2
output=json

[profile userl]
region=us-east-1
output=text

Important

The credentials file uses a different naming format than the CLI config file for named
profiles. Include the prefix word "profile" only when configuring a named profile in the
config file. Do not use the word profile when creating an entry in the credentials file.

Using Profiles with the AWS CLI

To use a named profile, add the --profile profile-name option to your command. The following
example lists all of your Amazon EC2 instances using the credentials and settings defined in the user1
profile from the previous example files.

$ aws ec2 describe-instances --profile useril

To use a named profile for multiple commands, you can avoid specifying the profile in every command
by setting the AWS_PROFILE environment variable at the command line.

Linux or macOS

46

AWS Command Line Interface User Guide
Configuring the AWS CLI to use AWS Single Sign-On

$ export AWS_PROFILE=userl

Setting the environment variable changes the default profile until the end of your shell session, or until
you set the variable to a different value. You can make environment variables persistent across future
sessions by putting them in your shell's startup script. For more information, see Environment Variables
To Configure the AWS CLI (p. 52).

Windows

C:\> setx AWS_PROFILE userl

Using set to set an environment variable changes the value used until the end of the current command
prompt session, or until you set the variable to a different value.

Using setx to set an environment variable changes the value in all command shells that you create after
running the command. It does not affect any command shell that is already running at the time you run
the command. Close and restart the command shell to see the effects of the change.

Configuring the AWS CLI to use AWS Single Sign-

On

This feature is available only with version 2 of the AWS CLI.

The following feature is available only if you use version 2 of the AWS CLI. It isn't available if you
run version 1. For information about how to install the preview of version 2, see Installing the
AWS CLI version 2 (p. 4).

If your organization uses AWS Single Sign-On (AWS SSO), your users can sign in to Active Directory, a
built-in AWS SSO directory, or another iDP connected to AWS SSO and get mapped to an AWS Identity
and Access Management (IAM) role that enables you to run AWS CLI commands. Regardless of which iDP
you use, AWS SSO abstracts those distinctions away, and they all work with the AWS CLI as described
below. For example, you can connect Microsoft Azure AD as described in the blog article The Next
Evolution in AWS Single Sign-On

For more information about AWS SSO, see the AWS Single Sign-On User Guide.

This topic describes how to configure the AWS CLI to authenticate the user with AWS SSO to get short-
term credentials to run AWS CLI commands. It includes the following sections:

« Configuring a Named Profile to Use AWS SSO (p. 47) - How to create and configure profiles that
use AWS SSO for authentication and mapping to an IAM role for AWS permissions.

« Using an AWS SSO Enabled Named Profile (p. 50) - how to login to AWS SSO from the CLI and use
the provided AWS temporary credentials to run AWS CLI commands.

Configuring a Named Profile to Use AWS SSO

You can configure one or more of your AWS CLI named profiles (p. 46) to use a role from AWS SSO
You can create and configure multiple profiles and configure each one to use a a different AWS SSO user
portal or SSO-defined role.

You can configure the profile in the following ways:

o Automatically (p. 48), using the command aws2 configure sso

47

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-idp.html
http://aws.amazon.com/blogs/aws/the-next-evolution-in-aws-single-sign-on/
http://aws.amazon.com/blogs/aws/the-next-evolution-in-aws-single-sign-on/
https://docs.aws.amazon.com/singlesignon/latest/userguide/

AWS Command Line Interface User Guide
Configuring a Named Profile to Use AWS SSO

« Manually (p. 49), by editing the .aws/config file that stores the named profiles.

Automatic Configuration

You can add an AWS SSO enabled profile to your AWS CLI by running the following command, providing
your AWS SSO start URL and the AWS Region that hosts the AWS SSO directory.

$ aws2 configure sso
SSO start URL [None]: [None]: https://my-sso-portal.awsapps.com/start
SSO region [None]:us-east-1

The AWS CLI attempts to open your default browser and begin the login process for your AWS SSO
account.

SSO authorization page has automatically been opened in your default browser.
Follow the instructions in the browser to complete this authorization request.

If the AWS CLI cannot open the browser, the following message appears with instructions on how to
manually start the login process.

Using a browser, open the following URL:
https://my-sso-portal.awsapps.com/verify

and enter the following code:
QCFK-N451

AWS SSO uses the code to associate the AWS SSO session with your current AWS CLI session. The AWS
SSO browser page prompts you to sign in with your AWS SSO account credentials. This enables the AWS
CLI (through the permissions associated with your AWS SSO account) to retrieve and display the AWS
accounts and roles that you are authorized to use with AWS SSO.

Next, the AWS CLI displays the AWS accounts available for you to use. If you are authorized to use only
one account, the AWS CLI selects that account for you automatically and skips the prompt. The AWS
accounts that are available for you to use are determined by your user configuration in AWS SSO.

There are 2 AWS accounts available to you.
> DeveloperAccount, developer-account-admin@example.com (123456789011)
ProductionAccount, production-account-admineexample.com (123456789022)

Use the arrow keys to select the account you want to use with this profile. The ">" character on the left
points to the current choice. Press ENTER to make your selection.

Next, the AWS CLI confirms your account choice, and displays the IAM roles that are available to you in
the selected account. If the selected account lists only one role, the AWS CLI selects that role for you
automatically and skips the prompt. The roles that are available for you to use are determined by your
user configuration in AWS SSO.

Using the account ID 123456789011
There are 2 roles available to you.
> ReadOnly

FullAccess

As before, use the arrow keys to select the IAM role you want to use with this profile. The ">" character
on the left points to the current choice. Press <ENTER> to make your selection.

48

AWS Command Line Interface User Guide
Configuring a Named Profile to Use AWS SSO

The AWS CLI confirms your role selection.

Using the role name "ReadOnly"

Now you can finish the configuration of your profile, by specifying the default output format (p. 40),
the default AWS Region (p. 41) to send commands to, and providing a name for the profile (p. 35)

so you can reference this profile from among all those defined on the local computer. In the following
example, the user enters a default Region, default output format, and the name of the profile. You can
alternatively press <ENTER> to select any default values that are shown between the square brackets.
The suggested profile name is the account ID number followed by an underscore followed by the role
name.

CLI default client Region [None]: us-west-2<ENTER>
CLI default output format [None]: json<ENTER>
CLI profile name [123456789011_ReadOnly]: my-dev-profile<ENTER>

Note
If you specify default as the profile name, this profile becomes the one used whenever you run
an AWS CLI command and do not specify a profile name.

A final message describes the completed profile configuration.

To use this profile, specify the profile name using --profile, as shown:

aws2 s3 1ls --profile my-dev-profile

The previous example entries would result in a named profile in ~/ . aws /config that looks like the
following example.

[profile my-dev-profile]

sso_start_url = https://my-sso-portal.awsapps.com/start
sso_region = us-east-1

sso_account_id = 123456789011

sso_role_name = readOnly

region = us-west-2

output = json

At this point, you have a profile that you can use to request temporary credentials. You must use the
aws sso login command to actually request and retrieve the temporary credentials needed to run
commands. For instructions, see Using an AWS SSO Enabled Named Profile (p. 50).

Note

You can also run an AWS CLI command using the specified profile. If you are not currently
logged in to the AWS SSO portal, it starts the login process for you automatically, just as if you
had manually ran the command aws sso login command.

Manual Configuration

To manually add AWS SSO support to a named profile, you must add the following keys and values to
the profile definition in the file ~/.aws /config (Linux or macOS) or ¥USERPROFILE%/ .aws/config
(Windows).

sso_start_url

The URL that points to the organization's AWS SSO user portal.

sso_start_url = https://my-sso-portal.awsapps.com/start

49

AWS Command Line Interface User Guide
Using an AWS SSO Enabled Named Profile

sso_region

The AWS Region that contains the AWS SSO portal host. This is separate from, and can be a different
region than the default CLI region parameter.

sso_region = us_west-2

sso_account_id

The AWS account ID that contains the IAM role that you want to use with this profile.

sso_account_id = 123456789011

sso_role_name

The name of the IAM role that defines the user's permissions when using this profile.

sso_role_name = ReadAccess

The presence of these keys identify this profile as one that uses AWS SSO to authenticate the user.

You can also include any other keys and values that are valid in the . aws/config file, such as region,
output, or s3. However, you can't include any credential related values, such as role_arn (p. 41) or
aws_secret_access_key (p. 38). If you do, the AWS CLI produces an error.

So a typical AWS SSO profile in . aws/config might look similar to the following example.

[profile my-dev-profile]

sso_start_url = https://my-sso-portal.awsapps.com/start
sso_region = us-east-1

sso_account_id = 123456789011

sso_role_name = readOnly

region = us-west-2

output json

At this point, you have a profile that you can use to request temporary credentials. However, you can't
yet run an AWS CLI service command. You must first use the aws sso login command to actually
request and retrieve the temporary credentials needed to run commands. For instructions, see the next
section, Using an AWS SSO Enabled Named Profile (p. 50).

Using an AWS SSO Enabled Named Profile

This section describes how to use the AWS SSO profile you created in the previous section.

Signing In and Getting Temporary Credentials

After you configure a named profile automatically or manually, you can invoke it to request temporary
credentials from AWS. Before you can run an AWS CLI service command, you must retrieve and cache a
set of temporary credentials. To get these temporary credentials, run the following command.

$ aws2 sso login --profile my-dev-profile

The AWS CLI opens your default browser and verifies your AWS SSO log in.

SSO authorization page has automatically been opened in your default browser.
Follow the instructions in the browser to complete this authorization request.

50

AWS Command Line Interface User Guide
Using an AWS SSO Enabled Named Profile

Successully logged into Start URL: https://my-sso-portal.awsapps.com/start

If you are not currently signed in to your AWS SSO account, you must provide your AWS SSO user name
and password.

If the AWS CLI can't open your browser, it prompts you to open it yourself and enter the specified code.

$ aws2 sso login --profile my-dev-profile
Using a browser, open the following URL:

https://my-sso-portal.awsapps.com/verify

and enter the following code:
QOCFK-N451

The AWS CLI opens your default browser (or you manually open the browser of your choice) to the
specified page, and enter the provided code. The webpage then prompts you for your AWS SSO
credentials.

Your AWS SSO session credentials are cached and include an expiration timestamp. When the credentials
expire, the AWS CLI requests you to sign in to AWS SSO again.

If your AWS SSO credentials are valid, the AWS CLI uses them to securely retrieve AWS temporary
credentials for the IAM role specified in the profile.

Welcome, you have successfully signed-in to the AWS-CLI.

Running a Command with Your AWS SSO Enabled Profile

You can use these temporary credentials to invoke an AWS CLI command with the associated named
profile. The following example shows that the command was run under an assumed role that is part of
the specified account.

$ aws2 sts get-caller-identity --profile my-dev-profile

{

"UserId": "AROA12345678901234567:test-user@example.com",

"Account": "123456789011",

"Arn": "arn:aws:sts::123456789011:assumed-role/AWSPeregrine_readOnly_1232labc454d123/
test-user@example.com"
¥

As long as you signed in to AWS SSO and those cached credentials are not expired, the AWS CLI
automatically renews expired AWS temporary credentials when needed. However, if your AWS SSO
credentials expire, you must explicitly renew them by logging in to your AWS SSO account again.

$ aws2 s3 1ls --profile my-sso-profile

Your short-term credentials have expired. Please sign-in to renew your credentials
SSO authorization page has automatically been opened in your default browser.
Follow the instructions in the browser to complete this authorization request.

You can create multiple AWS SSO enabled named profiles that each point to a different AWS account
or role. You can also use the aws sso login command on more than one profile at a time. If any of them
share the same AWS SSO user account, you must log in to that AWS SSO user account only once and
then they all share a single set of AWS SSO cached credentials.

The following command retrieves temporary credentials for the AWS account and role
specified in one named profile. If you are not yet signed in to AWS SSO or your
cached credentials have expired, it opens your browser and prompts you for your

51

AWS Command Line Interface User Guide
Environment Variables

AWS SSO user name and password. It then retrieves AWS temporary credentials for
the IAM role associated with this profile.

$ aws2 sso login --profile my-first-sso-profile

The next command retrieves a different set of temporary credentials for the AWS
account and role specified in the second named profile. It does not overwrite or
in any way compromise the first profile's credentials. If this profile specifies the
same AWS SSO portal, then it uses the SSO credentials that you retrieved in the
previoius command. The AWS CLI then retrieves AWS temporary credentials for the
IAM role associated with the second profile. You don't have to sign in to

AWS SSO again.

$ aws2 sso login --profile my-second-sso-profile

The following command lists the Amazon EC2 instances accessible to the role

identified in the first profile.

$ aws2 ec2 describe-instances --profile my-first-sso-profile

The following command lists the Amazon EC2 instances accessible to the role

identified in the second profile.

$ aws2 ec2 describe-instances --profile my-second-sso-profile

Signing Out of Your AWS SSO Sessions

When you are done using your AWS SSO enabled profiles, you can choose to do nothing and let the

AWS temporary credentials and your AWS SSO credentials expire. However, you can also choose to

run the following command to immediately delete all cached credentials in the SSO credential cache
folder and all AWS temporary credentials that were based on the AWS SSO credentials. This makes those
credentials unavailable to be used for any future command.

$ aws2 sso logout
Successfully signed out of all SSO profiles.

If you later want to run commands with one of your AWS SSO enabled profiles, you must again run the
aws sso login command (see the previous section) and specify the profile to use.

Environment Variables To Configure the AWS CLI

Environment variables provide another way to specify configuration options and credentials, and can be
useful for scripting or temporarily setting a named profile as the default.

Precedence of options

« If you specify an option by using one of the environment variables described in this topic, it overrides
any value loaded from a profile in the configuration file.

« If you specify an option by using a parameter on the CLI command line, it overrides any value from
either the corresponding environment variable or a profile in the configuration file.
Supported environment variables
The AWS CLI supports the following environment variables.
AWS_ACCESS_KEY_ID
Specifies an AWS access key associated with an IAM user or role.

If defined, this environment variable overrides the value for the profile setting
aws_access_key_id. You can't specify the access key ID by using a command line option.

52

AWS Command Line Interface User Guide
Environment Variables

AWS_CA_BUNDLE
Specifies the path to a certificate bundle to use for HTTPS certificate validation.

If defined, this environment variable overrides the value for the profile setting ca_bundle. You can
override this environment variable by using the --ca-bundle command line parameter.

AWS_CONFIG_FILE

Specifies the location of the file that the AWS CLI uses to store configuration profiles. The default
pathis ~/.aws/config).

You can't specify this value in a named profile setting or by using a command line parameter.
AWS_DEFAULT_OUTPUT (p. 34)

Specifies the output format (p. 88) to use.

If defined, this environment variable overrides the value for the profile setting output. You can
override this environment variable by using the --output command line parameter.

AWS_DEFAULT_REGION (p. 34)
Specifies the AWS Region to send the request to.

If defined, this environment variable overrides the value for the profile setting region. You can
override this environment variable by using the --region command line parameter.

AWS_PROFILE (p. 46)

Specifies the name of the CLI profile with the credentials and options to use. This can be the name
of a profile stored in a credentials or config file, or the value default to use the default
profile.

If defined, this environment variable overrides the behavior of using the profile named [default]
in the configuration file. You can override this environment variable by using the --profile
command line parameter.

AWS_ROLE_SESSION_NAME (p. 63)

Specifies a name to associate with the role session. This value appears in CloudTrail logs for
commands performed by the user of this profile.

If defined, this environment variable overrides the value for the profile setting
role_session_name. You can't specify a role session name as a command line parameter.

AWS_SECRET_ACCESS_KEY

Specifies the secret key associated with the access key. This is essentially the "password" for the
access key.

If defined, this environment variable overrides the value for the profile setting
aws_secret_access_key. You can't specify the access key ID as a command line option.

AWS_SESSION_TOKEN

Specifies the session token value that is required if you are using temporary security credentials that
you retrieved directly from AWS STS operations. For more information, see the Output section of the
assume-role command in the AWS CLI Command Reference.

If defined, this environment variable overrides the value for the profile setting
aws_session_token. You can't specify the session token as a command line option.

AWS_SHARED_CREDENTIALS_FILE

Specifies the location of the file that the AWS CLI uses to store access keys. The default path is
~/.aws/credentials).

53

https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html#output
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html#output

AWS Command Line Interface User Guide
Command Line Options

You can't specify this value in a named profile setting or by using a command line parameter.

Note

You can't specify AWS Single Sign-On (AWS SSO) authentication by using environment variables.
Instead, you must use a named profile in the shared configuration file . aws/config. For more
information, see Configuring the AWS CLI to use AWS Single Sign-On (p. 47).

The following example shows how you could configure environment variables for the default user. These
values would override any values found in a named profile, or instance metadata. Once set, you can
override these values by specifying a parameter on the CLI command line, or by changing or removing
the environment variable. For more information about precedence and how the AWS CLI determines
which credentials to use, see Configuration Settings and Precedence (p. 35).

Linux or macOS

$ export AWS_ACCESS_KEY ID=AKIAIOSFODNN7EXAMPLE
$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ export AWS_DEFAULT REGION=us-west-2

Setting the environment variable changes the value used until the end of your shell session, or until
you set the variable to a different value. You can make the variables persistent across future sessions by
setting them in your shell's startup script.

Windows Command Prompt

C:\> setx AWS_ACCESS_KEY_ ID AKIAIOSFODNN7EXAMPLE
C:\> setx AWS_SECRET ACCESS_KEY wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
C:\> setx AWS_DEFAULT_REGION us-west-2

Using set to set an environment variable changes the value used until the end of the current command
prompt session, or until you set the variable to a different value. Using setx to set an environment
variable changes the value used in both the current command prompt session and all command prompt
sessions that you create after running the command. It does not affect other command shells that are
already running at the time you run the command.

PowerShell

PS C:\> $Env:AWS_ACCESS_KEY_ ID="AKIAIOSFODNN7EXAMPLE"
PS C:\> $Env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRf1CYEXAMPLEKEY"
PS C:\> $Env:AWS_DEFAULT REGION="us-west-2"

If you set an environment variable at the PowerShell prompt as shown in the previous examples, it

saves the value for only the duration of the current session. To make the environment variable setting
persistent across all PowerShell and Command Prompt sessions, store it by using the System application
in Control Panel. Alternatively, you can set the variable for all future PowerShell sessions by adding

it to your PowerShell profile. See the PowerShell documentation for more information about storing
environment variables or persisting them across sessions.

Command Line Options

You can use the following command line options to override the default configuration settings for a
single command. You can't use command line options to directly specify credentials, although you can
specify which profile to use.

54

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_environment_variables

AWS Command Line Interface User Guide
Command Line Options

--profile <string>

Specifies the named profile (p. 46) to use for this command. To set up additional named profiles,
you can use the aws configure command with the --profile option.

$ aws configure --profile <profilename>

--region <string>

Specifies which AWS Region to send this command's AWS request to. For a list of all of the Regions
that you can specify, see AWS Regions and Endpoints in the Amazon Web Services General Reference.

--output <string>

Specifies the output format to use for this command. You can specify any of the following values:
e json (p. 89) — The output is formatted as a JSON string.

o yaml (p. 89) — The output is formatted as a YAML string. (Available in the AWS CLI version 2
only.)

« text (p. 90) — The output is formatted as multiple lines of tab-separated string values. This can
be useful to pass the output to a text processor, like grep, sed, or awk.

o table (p. 92) - The output is formatted as a table using the characters +|- to form the cell
borders. It typically presents the information in a "human-friendly" format that is much easier to
read than the others, but not as programmatically useful.

--endpoint-url <string>

Specifies the URL to send the request to. For most commands, the AWS CLI automatically
determines the URL based on the selected service and the specified AWS Region. However, some
commands require that you specify an account-specific URL. You can also configure some AWS
services to host an endpoint directly within your private VPC, which might then need to be specified.

For a list of the standard service endpoints available in each Region, see AWS Regions and Endpoints
in the Amazon Web Services General Reference.

--debug

A Boolean switch that enables debug logging. This includes additional diagnostic information about
the operation of the command that can be useful when troubleshooting why a command provides
unexpected results.

--no-paginate

A Boolean switch that disables automatic pagination of the output.

--query <string>
Specifies a JMESPath query to use in filtering the response data. For more information, see How to
Filter the Output with the --query Option (p. 93).

--version

A Boolean switch that displays the current version of the AWS CLI program that is running.
--color <string>

Specifies support for color output. Valid values are on, of £, and auto. The default value is auto.
--no-sign-request

A Boolean switch that disables signing the HTTP requests to the AWS service endpoint. This prevents
credentials from being loaded.

55

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://json.org/
https://yaml.org/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html#what-is-privatelink
https://docs.aws.amazon.com/general/latest/gr/rande.html
http://jmespath.org/

AWS Command Line Interface User Guide
Sourcing Credentials with an External Process

--ca-bundle <string>

Specifies the certificate authority (CA) certificate bundle to use when verifying SSL certificates.
--cli-read-timeout <integer>

Specifies the maximum socket read time in seconds. If the value is set to zero (0) the socket read
waits indefinitely (is blocking) and doesn't timeout.

--cli-connect-timeout <integer>

Specifies the maximum socket connect time in seconds. If the value is set to zero (0), the socket
connect waits indefinitely (is blocking) and doesn't timeout.

When you provide one or more of these options as command line parameters, they override the
default configuration, any corresponding profile setting, or environment variable setting for that single
command.

Each option that takes an argument requires a space or equals sign (=) separating the argument from
the option name. If the argument value is a string that contains a space, you must use quotation marks
around the argument.

Common uses for command line options include checking your resources in multiple AWS Regions, and
changing the output format for legibility or ease of use when scripting. For example, if you're not sure
which Region your instance is running in, you can run the describe-instances command against each
Region until you find it, as follows.

$ aws ec2 describe-instances --output table --region us-east-1

| DescribelInstances

e +
| Reservations Il
| 4= e +|
|| OwnerId | 012345678901 |
|| ReservationId | r-abcdefgh |
|4 e +|
| 1] Instances 1]
| [#mm o e +| |
||| AmiLaunchIndex | o 111
||| Architecture | x86_64 ||

The argument types (for example, string, Boolean) for each command line option are described in detail
in Specifying Parameter Values (p. 73).

Sourcing Credentials with an External Process

Warning

This topic discusses sourcing credentials from an external process. This could be a security risk
if the command to generate the credentials becomes accessible by non-approved processes
or users. We recommend that you use the supported, secure alternatives provided by the AWS

56

AWS Command Line Interface User Guide
Sourcing Credentials with an External Process

CLI and AWS to reduce the risk of compromising your credentials. Ensure that you secure the
config file and any supporting files and tools to prevent disclosure.

Ensure that your custom credential tool does not write any secret information to StdErr
because the SDKs and CLI can capture and log such information, potentially exposing it to
unauthorized users.

If you have a method to generate or look up credentials that isn't directly supported by the AWS CLI, you
can configure the CLI to use it by configuring the credential_process setting in the config file.

For example, you might include an entry similar to the following in the config file.

[profile developer]
credential_process = /opt/bin/awscreds-custom --username helen

Syntax
To create this string in a way that is compatible with any operating system, follow these rules:

« If the path or file name contains a space, surround the complete path and file name with double-
quotation marks (" "). The path and file name can consist of only the characters: A-Z a-z 0-9 - _ . space

« If a parameter name or a parameter value contains a space, surround that element with double-
quotation marks (" "). Surround only the name or value, not the pair.

« Do not include any environment variables in the strings. For example, you can't include $HOME or
%USERPROFILE%.

« Do not specify the home folder as ~. You must specify the full path.

Example for Windows

credential_process = "C:\Path\To\credentials.cmd" parameterWithoutSpaces "parameter with
spaces"

Example for Linux or macOS

credential_ process = "/Users/Dave/path/to/credentials.sh" parameterWithoutSpaces "parameter
with spaces"

Expected output from the Credentials program

The AWS CLI runs the command as specified in the profile and then reads data from STDOUT. The
command you specify must generate JSON output on STDOUT that matches the following syntax.

{
"Version": 1,
"AccessKeyId": "an AWS access key",
"SecretAccessKey": "your AWS secret access key",
"SessionToken": "the AWS session token for temporary credentials",
"Expiration": "IS08601 timestamp when the credentials expire"
}
Note

As of this writing, the Version key must be set to 1. This might increment over time as the
structure evolves.

The Expiration key is an ISO8601 formatted timestamp. If the Expiration key is not present in

the tool's output, the CLI assumes that the credentials are long-term credentials that do not refresh.
Otherwise the credentials are considered temporary credentials and are refreshed automatically by

rerunning the credential_ process command before they expire.

57

https://wikipedia.org/wiki/ISO_8601

AWS Command Line Interface User Guide
Getting Credentials from EC2 Instance Metadata

Note
The AWS CLI does not cache external process credentials the way it does assume-role
credentials. If caching is required, you must implement it in the external process.

The external process can return a non-zero return code to indicate that an error occurred while retrieving
the credentials.

Getting Credentials from EC2 Instance Metadata

When you run the AWS CLI from within an Amazon Elastic Compute Cloud (Amazon EC2) instance, you
can simplify providing credentials to your commands. Each Amazon EC2 instance contains metadata
that the AWS CLI can directly query for temporary credentials. To provide these, create an AWS Identity
and Access Management (IAM) role that has access to the resources needed, and attach that role to the
Amazon EC2 instance when you launch it.

Launch the instance and check to see if the AWS CLlI is already installed (it comes preinstalled on Amazon
Linux). If necessary, install the AWS CLI. You must still configure a default AWS Region to avoid having to
specify it in every command.

In a named profile, to specify that you want to use the credentials available in the hosting Amazon EC2
instance profile, use the following line in the configuration file.

credential_source = Ec2InstanceMetadata

The following example shows how to assume the marketingadminrole role by referencing it in an
Amazon EC2 instance profile.

[profile marketingadmin]
role_arn = arn:aws:iam::123456789012:role/marketingadminrole
credential_source = Ec2InstanceMetadata

To set the Region and default output format by running aws configure without specifying credentials,
press Enter twice to skip the first two prompts.

$ aws configure

AWS Access Key ID [None]: ENTER

AWS Secret Access Key [None]: ENTER
Default region name [None]: us-west-2
Default output format [None]: json

When an IAM role is attached to the instance, the AWS CLI automatically and securely retrieves the
credentials from the instance metadata. For more information, see Granting Applications That Run on
Amazon EC2 Instances Access to AWS Resources in the IAM User Guide.

Using an HTTP Proxy

To access AWS through proxy servers, you can configure the HTTP_PROXY and HTTPS_PROXY
environment variables with either the DNS domain names or IP addresses and port numbers that your
proxy servers use.

Note
The following examples show the environment variable name in all uppercase letters. However,
if you specify a variable twice—once with uppercase letters and once with lowercase letters—

58

https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

AWS Command Line Interface User Guide
Authenticating to a Proxy

the one with lowercase letters wins. We recommend that you define each variable only once to
avoid confusion and unexpected behavior.

The following examples show how you can use either the explicit IP address of your proxy or a DNS name
that resolves to the IP address of your proxy. Either can be followed by a colon and the port number to
which queries should be sent.

Linux or macOS

export HTTP_PROXY=http://10.15.20.25:1234
export HTTP_PROXY=http://proxy.example.com:1234
export HTTPS_PROXY=http://10.15.20.25:5678
export HTTPS_PROXY=http://proxy.example.com:5678

® w W W

Windows

:\> setx HTTP_PROXY http://10.15.20.25:1234
:\> setx HTTP_PROXY http://proxy.example.com:1234
:\> setx HTTPS_PROXY http://10.15.20.25:5678
:\> setx HTTPS_PROXY http://proxy.example.com:5678

oo e N®]

Authenticating to a Proxy

The AWS CLI supports HTTP Basic authentication. Specify the user name and password in the proxy URL,
as follows.

Linux or macOS

$ export HTTP_PROXY=http://username:password@eproxy.example.com:1234
$ export HTTPS_PROXY=http://username:password@eproxy.example.com:5678

Windows

C:\> setx HTTP_PROXY http://username:password@eproxy.example.com:1234
C:\> setx HTTPS_PROXY http://username:passwordeproxy.example.com:5678

Note
The AWS CLI doesn't support NTLM proxies. If you use an NTLM or Kerberos protocol proxy, you
might be able to connect through an authentication proxy like Cntlm.

Using a Proxy on Amazon EC2 Instances

If you configure a proxy on an Amazon EC2 instance launched with an attached IAM role, ensure that you
exempt the address used to access the instance metadata. To do this, set the NO_PROXY environment
variable to the IP address of the instance metadata service, 169.254.169.254. This address does not vary.

Linux or macOS

$ export NO_PROXY=169.254.169.254

Windows

C:\> setx NO_PROXY 169.254.169.254

59

http://cntlm.sourceforge.net
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

AWS Command Line Interface User Guide
Using an IAM Role in the AWS CLI

Using an IAM Role in the AWS CLI

An AWS ldentity and Access Management (IAM) role is an authorization tool that lets an IAM user gain
additional (or different) permissions, or get permissions to perform actions in a different AWS account.

You can configure the AWS Command Line Interface (AWS CLI) to use an IAM role by defining a profile
for the role in the ~/.aws/credentials file.

The following example shows a role profile named marketingadmin. If you run commands with --
profile marketingadmin (or specify it with the AWS_PROFILE environment variable (p. 52)), the

CLI uses the credentials defined in the profile user1 to assume the role with the Amazon Resource Name
(ARN) arn:aws:iam::123456789012:role/marketingadminrole. You can run any operations that
are allowed by the permissions assigned to that role.

[marketingadmin]
role_arn = arn:aws:iam::123456789012:role/marketingadminrole
source_profile = userl

You can then specify a source_profile that points to a separate named profile that contains IAM user
credentials with permission to use the role. In the previous example, the marketingadmin profile uses
the credentials in the user1 profile. When you specify that an AWS CLI command is to use the profile
marketingadmin, the CLI automatically looks up the credentials for the linked user1 profile and

uses them to request temporary credentials for the specified IAM role. The CLI uses the sts:AssumeRole
operation in the background to accomplish this. Those temporary credentials are then used to run the
requested CLI command. The specified role must have attached IAM permission policies that allow the
requested CLI command to run.

To run a CLI command from within an Amazon Elastic Compute Cloud (Amazon EC2) instance or an
Amazon Elastic Container Service (Amazon ECS) container, you can use an IAM role attached to the
instance profile or the container. If you specify no profile or set no environment variables, that role
is used directly. This enables you to avoid storing long-lived access keys on your instances. You can
also use those instance or container roles only to get credentials for another role. To do this, you

use credential_ source (instead of source_profile) to specify how to find the credentials. The
credential_source attribute supports the following values:

« Environment — Retrieves the source credentials from environment variables.
e Ec2InstanceMetadata — Uses the IAM role attached to the Amazon EC2 instance profile.
e EcsContainer — Uses the IAM role attached to the Amazon ECS container.

The following example shows the same marketingadminrole role used by referencing an Amazon EC2
instance profile.

[profile marketingadmin]
role_arn = arn:aws:iam::123456789012:role/marketingadminrole
credential_source = Ec2InstanceMetadata

When you invoke a role, you have additional options that you can require, such as the use of multi-factor
authentication and an External ID (used by third-party companies to access their clients' resources). You
can also specify unique role session names that can be more easily audited in AWS CloudTrail logs.

Sections
« Configuring and Using a Role (p. 61)
« Using Multi-Factor Authentication (p. 62)
e Cross-Account Roles and External ID (p. 63)

60

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Command Line Interface User Guide
Configuring and Using a Role

« Specifying a Role Session Name for Easier Auditing (p. 63)
« Assume Role with Web Identity (p. 64)
 Clearing Cached Credentials (p. 65)

Configuring and Using a Role

When you run commands using a profile that specifies an IAM role, the AWS CLI uses the source profile's
credentials to call AWS Security Token Service (AWS STS) and request temporary credentials for the
specified role. The user in the source profile must have permission to call sts:assume-role for the role
in the specified profile. The role must have a trust relationship that allows the user in the source profile
to use the role. The process of retrieving and then using temporary credentials for a role is often referred
to as assuming the role.

You can create a role in IAM with the permissions that you want users to assume by following the
procedure under Creating a Role to Delegate Permissions to an IAM User in the AWS Identity and Access
Management User Guide. If the role and the source profile's IAM user are in the same account, you can
enter your own account ID when configuring the role's trust relationship.

After creating the role, modify the trust relationship to allow the IAM user (or the users in the AWS
account) to assume it.

The following example shows a trust policy that you could attach to a role. This policy allows the role to
be assumed by any IAM user in the account 123456789012, if the administrator of that account explicitly
grants the sts:assumerole permission to the user.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"
T
"Action": "sts:AssumeRole"
}
]
}

The trust policy doesn't actually grant permissions. The administrator of the account must delegate the
permission to assume the role to individual users by attaching a policy with the appropriate permissions.
The following example shows a policy that you can attach to an IAM user that allows the user to assume
only the marketingadminrole role. For more information about granting a user access to assume a
role, see Granting a User Permission to Switch Roles in the IAM User Guide.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "arn:aws:iam::123456789012:role/marketingadminrole"
}
1
}

The IAM user doesn't need to have additional permissions to run the CLI commands using the role
profile. Instead, the permissions to run the command come from those attached to the role. You attach

61

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_permissions-to-switch.html

AWS Command Line Interface User Guide
Using MFA

permission policies to the role to specify which actions can be performed against which AWS resources.
For more information about attaching permissions to a role (which works identically to an IAM user), see
Changing Permissions for an IAM User in the IAM User Guide.

Now that you have the role profile, role permissions, role trust relationship, and user permissions
correctly configured, you can use the role at the command line by invoking the --profile option.
For example, the following calls the Amazon S3 1s command using the permissions attached to the
marketingadmin role as defined by the example at the beginning of this topic.

$ aws s3 ls --profile marketingadmin

To use the role for several calls, you can set the AWS_DEFAULT_ PROFILE environment variable for the
current session from the command line. While that environment variable is defined, you don't have to
specify the --profile option on each command.

Linux or macOS

$ export AWS_PROFILE=marketingadmin

Windows

C:\> setx AWS_PROFILE marketingadmin

For more information about configuring IAM users and roles, see Users and Groups and Roles in the IAM
User Guide.

Using Multi-Factor Authentication

For additional security, you can require that users provide a one-time key generated from a multi-factor
authentication (MFA) device, a U2F device, or mobile app when they attempt to make a call using the
role profile.

First, you can choose to modify the trust relationship on the IAM role to require MFA. This prevents
anyone from using the role without first authenticating by using MFA. For an example, see the
Condition line in the following example. This policy allows the IAM user named anika to assume the
role the policy is attached to, but only if they authenticate by using MFA.

{
"Version": "2012-10-17",
"Statement": [
{
"sidq": ",
"Effect": "Allow",
"Principal": { "AWS": "arn:aws:iam::123456789012:user/anika" },
"Action": "sts:AssumeRole",
"Condition": { "Bool": { "aws:multifactorAuthPresent": true } }
}
]
}

Next, add a line to the role profile that specifies the ARN of the user's MFA device. The following sample
config file entries show two role profiles that both use the access keys for the IAM user anika to
request temporary credentials for the role c1i-role. The user anika has permissions to assume the
role, granted by the role's trust policy.

[profile role-without-mfa]

62

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_WorkingWithGroupsAndUsers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html

AWS Command Line Interface User Guide
Cross-Account Roles and External ID

region = us-west-2
role_arn= arn:aws:iam::128716708097:role/cli-role
source_profile=cli-user

[profile role-with-mfa]

region = us-west-2

role_arn= arn:aws:iam::128716708097:role/cli-role
source_profile = cli-user

mfa_serial = arn:aws:iam::128716708097:mfa/cli-user

[profile anika]
region = us-west-2
output = json

Themfa_serial setting can take an ARN, as shown, or the serial number of a hardware MFA token.

The first profile, role-without-mfa, doesn't require MFA. However, because the previous example trust
policy attached to the role requires MFA, any attempt to run a command with this profile fails.

$ aws iam list-users --profile role-without-mfa

An error occurred (AccessDenied) when calling the AssumeRole operation: Access denied

The second profile entry, role-with-mfa, identifies an MFA device to use. When the user attempts to
run a CLI command with this profile, the CLI prompts the user to enter the one-time password (OTP)
that the MFA device provides. If the MFA authentication succeeds, the command performs the requested
operation. The OTP is not displayed on the screen.

$ aws iam list-users --profile role-with-mfa
Enter MFA code for arn:aws:iam::123456789012:mfa/cli-user:
{

"Users": [

{

Cross-Account Roles and External ID

You can enable IAM users to use roles that belong to different accounts by configuring the role as

a cross-account role. During role creation, set the role type to Another AWS account, as described

in Creating a Role to Delegate Permissions to an IAM user. Optionally, select Require MFA. Require
MFA configures the appropriate condition in the trust relationship, as described in Using Multi-Factor
Authentication (p. 62).

If you use an external ID to provide additional control over who can use a role across accounts, you must
also add the external_id parameter to the role profile. You typically use this only when the other
account is controlled by someone outside your company or organization.

[profile crossaccountrole]

role_arn = arn:aws:iam::234567890123:role/SomeRole
source_profile = default

mfa_serial = arn:aws:iam::123456789012:mfa/saanvi
external_id = 123456

Specifying a Role Session Name for Easier Auditing

When many individuals share a role, auditing becomes more of a challenge. You want to associate each
operation invoked with the individual who invoked the action. However, when the individual uses a role,

63

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

AWS Command Line Interface User Guide
Assume Role with Web Identity

the assumption of the role by the individual is a separate action from the invoking of an operation, and
you must manually correlate the two.

You can simplify this by specifying unique role session names when users assume a role. You do this by
adding a role_session_name parameter to each named profile in the config file that specifies a role.
The role_session_name value is passed to the AssumeRole operation and becomes part of the ARN
for the role session. It is also included in the AWS CloudTrail logs for all logged operations.

For example, you could create a role-based profile as follows.

[profile namedsessionrole]

role_arn = arn:aws:iam::234567890123:role/SomeRole
source_profile = default

role_session_name = Session_Maria_Garcia

This results in the role session having the following ARN.

arn:aws:iam::234567890123:assumed-role/SomeRole/Session_Maria_Garcia

Also, all AWS CloudTrail logs include the role session name in the information captured for each
operation.

Assume Role with Web Identity

You can configure a profile to indicate that the AWS CLI should assume a role using web identity
federation and Open ID Connect (OIDC). When you specify this in a profile, the AWS CLI automatically
makes the corresponding AWS STS AssumeRoleWithWebIdentity call for you.

Note

When you specify a profile that uses an IAM role, the AWS CLI makes the appropriate calls

to retrieve temporary credentials. These credentials are stored in ~/.aws/cli/cache.
Subsequent AWS CLI commands that specify the same profile use the cached temporary
credentials until they expire. At that point, the AWS CLI automatically refreshes the credentials.

To retrieve and use temporary credentials using web identity federation, you can specify the following
configuration values in a shared profile.

role_arn (p. 60)

Specifies the ARN of the role to assume.
web_identity_token_file

Specifies the path to a file which contains an OAuth 2.0 access token or OpenID Connect ID token
that is provided by the identity provider. The AWS CLI loads this file and passes its content as the
WebIdentityToken argument of the AssumeRoleWithWebIdentity operation.

role_session_name (p. 63)

Specifies an optional name applied to this assume-role session.

The following is an example of the minimal amount of configuration needed to configure an assume role
with web identity profile.

In ~/.aws/config

[profile web-identity]
role_arn=arn:aws:iam:123456789012:role/RoleNameToAssume

64

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html

AWS Command Line Interface User Guide
Clearing Cached Credentials

web_identity_token_ file=/path/to/a/token

You can also provide this configuration by using environment variables (p. 52).
AWS_ROLE_ARN

The ARN of the role to assume.
AWS_WEB_IDENTITY_TOKEN_FILE

The path to the web identity token file.
AWS_ROLE_SESSION_NAME

The name applied to this assume-role session.
Note

These environment variables currently apply only to the assume role with web identity provider.
They don't apply to the general assume role provider configuration.

Clearing Cached Credentials

When you use a role, the AWS CLI caches the temporary credentials locally until they expire. The next
time you try to use them, the AWS CLI attempts to renew them on your behalf.

If your role's temporary credentials are revoked, they are not renewed automatically, and attempts to use
them fail. However, you can delete the cache to force the AWS CLI to retrieve new credentials.

Linux or macOS

$ rm -r ~/.aws/cli/cache

Windows

C:\> del /s /q %UserProfile%\.aws\cli\cache

Command Completion

On Unix-like systems, the AWS CLI includes a command-completion feature that enables you to use
the Tab key to complete a partially typed command. On most systems, this feature isn't automatically
installed, so you need to configure it manually.

To configure command completion, you must have two pieces of information: the name of the shell
you're using and the location of the aws_completer script.

Amazon Linux
Command completion is automatically configured and enabled by default on Amazon EC2
instances that run Amazon Linux.

Sections
« Identify Your Shell (p. 66)
« Locate the AWS Completer (p. 66)
o Add the Completer's Folder to Your Path (p. 67)
« Enable Command Completion (p. 67)

65

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html

AWS Command Line Interface User Guide
Identify Your Shell

o Test Command Completion (p. 68)

Identify Your Shell

If you're not sure which shell you're using, you can use one of the following commands to identify it.

echo $SHELL - Show the shell's program file name. This usually matches the name of the in-use shell,
unless you launched a different shell after logging in.

$ echo $SHELL
/bin/bash

ps — Show the processes running for the current user. One of them is the shell.

$ ps

PID TTY TIME CMD
2148 pts/1 00:00:00 bash
8756 pts/1 00:00:00 ps

Locate the AWS Completer

The location of the AWS completer can vary depending on the installation method used.

Package Manager — Programs such as pip, yum, brew, and apt-get typically install the AWS completer
(or a symlink to it) to a standard path location. In this case, the which command can locate the
completer for you.

If you used pip without the --user command, you might see the following path.

$ which aws_completer
/usr/local/aws/bin/aws_completer

If you used the --user parameter on the pip install command, you can typically find the completer in
the local/bin folder under your $HOME folder.

$ which aws_completer
/home/username/.local/bin/aws_completer

Bundled Installer - If you used the bundled installer per the instructions in the previous section, the
AWS completer is located in the bin subfolder of the installation directory.

$ 1ls /usr/local/aws/bin
activate

activate.csh
activate.fish
activate_this.py

aws

aws .cmd

aws_completer

If all else fails, you can use £ind to search your entire file system for the AWS completer.

$ find / -name aws_completer

66

AWS Command Line Interface User Guide
Add the Completer's Folder to Your Path

‘/usr/local/aws/bin/aws_completer

Add the Completer's Folder to Your Path

For the AWS completer to work successfully, you must first add it to your computer's path.

1.

Find your shell's profile script in your user folder. If you're not sure which shell you have, run echo
$SHELL.

$ 1s -a ~
.bash_logout .bash_profile .bashrc Desktop Documents Downloads

o Bash- .bash_profile, .profile, or .bash_login
o Zsh- .zshrc
o Tcsh- .teshre, .cshre, or .1login

. Add an export command at the end of your profile script that's similar to the following example.
Replace /usr/local/aws/bin with the folder that you discovered in the previous section.

export PATH=/usr/local/aws/bin:$PATH

. Reload the profile into the current session to put those changes into effect. Replace . bash_profile
with the name of the shell script you discovered in the first section.

$ source ~/.bash_profile

Enable Command Completion

Run a command to enable command completion. The command that you use depends on the shell that
you're using. You can add the command to your shell's RC file to run it each time you open a new shell.
In each command, replace the path /usr/local/aws/bin with the one found on your system in the
previous section.

bash - Use the built-in command complete.

‘$ complete -C '/usr/local/aws/bin/aws_completer' aws

Add the command to ~/.bashrc to run it each time you open a new shell. Your ~/.bash_profile
should source ~/ .bashrc to ensure that the command is also run in login shells.

tesh — Complete for tcsh takes a word type and pattern to define the completion behavior.

> complete aws 'p/*/"aws_completer”/'

Add the command to ~/ . tschre to run it each time you open a new shell.
zsh —source bin/aws_zsh_completer.sh.

% source /usr/local/aws/bin/aws_zsh_completer.sh

The AWS CLI uses bash compatibility autocompletion (bashcompinit) for zsh support. For more
details, see the top of aws_zsh_completer.sh.

Add the command to ~/ . zshrec to run it each time you open a new shell.

67

AWS Command Line Interface User Guide
Test Command Completion

Test Command Completion

After enabling command completion, enter a partial command and press Tab to see the available
commands.

$ aws STAB
s3 ses sgs sts swf
s3api sns storagegateway support

68

AWS Command Line Interface User Guide
Getting Help

Using the AWS CLI

This section introduces you to many of the common features and options available in the AWS Command
Line Interface (AWS CLI).

Note
By default, the AWS CLI sends requests to AWS services by using HTTPS on TCP port 443. To use
the AWS CLI successfully, you must be able to make outbound connections on TCP port 443.

Topics
« Getting Help with the AWS CLI (p. 69)
o Command Structure in the AWS CLI (p. 73)
» Specifying Parameter Values for the AWS CLI (p. 73)
o Generating AWS CLI Skeleton and Input Parameters from a JSON or YAML Input File (p. 80)
» Controlling Command Output from the AWS CLI (p. 88)
» Using Shorthand Syntax with the AWS CLI (p. 98)
« Using AWS CLI Pagination Options (p. 100)
« Understanding Return Codes from the AWS CLI (p. 101)

Getting Help with the AWS CLI

You can get help with any command when using the AWS Command Line Interface (AWS CLI). To do so,
simply type help at the end of a command name.

For example, the following command displays help for the general AWS CLI options and the available
top-level commands.

$ aws help

The following command displays the available Amazon Elastic Compute Cloud (Amazon EC2) specific
commands.

$ aws ec2 help

The following example displays detailed help for the Amazon EC2 DescribeInstances operation. The
help includes descriptions of its input parameters, available filters, and what is included as output. It also
includes examples showing how to type common variations of the command.

$ aws ec2 describe-instances help

The help for each command is divided into six sections:
Name

The name of the command.

NAME
describe-instances -

69

AWS Command Line Interface User Guide
Getting Help

Description

A description of the APl operation that the command invokes.

DESCRIPTION
Describes one or more of your instances.

If you specify one or more instance IDs, Amazon EC2 returns information
for those instances. If you do not specify instance IDs, Amazon EC2
returns information for all relevant instances. If you specify an
instance ID that is not valid, an error is returned. If you specify an
instance that you do not own, it 1is not included in the returned
results.

Synopsis

The basic syntax for using the command and its options. If an option is shown in square brackets, it's
optional, has a default value, or has an alternative option that you can use.

SYNOPSIS

describe-instances
[--dry-run | --no-dry-run]
[--instance-ids <value>]
[--filters <value>]
[--cli-input-json <value>]
[--starting-token <value>]
[--page-size <value>]
[--max-items <value>]
[--generate-cli-skeleton]

For example, describe-instances has a default behavior that describes all instances in the
current account and AWS Region. You can optionally specify a list of instance-ids to describe one
or more instances; dry-run is an optional Boolean flag that doesn't take a value. To use a Boolean
flag, specify either shown value, in this case -—dry-run or --no-dry-run. Likewise, --generate-
cli-skeleton doesn't take a value. If there are conditions on an option's use, they are described in
the OPTIONS section, or shown in the examples.

Options

A description of each of the options shown in the synopsis.

OPTIONS

--dry-run | --no-dry-run (boolean)
Checks whether you have the required permissions for the action,
without actually making the request, and provides an error response.
If you have the required permissions, the error response is DryRun-
Operation . Otherwise, it is UnauthorizedOperation

--instance-ids (1list)
One or more instance IDs.
Default: Describes all your instances.

Examples

Examples showing the usage of the command and its options. If no example is available for a
command or use case that you need, request one using the feedback link on this page, or in the AWS
CLI command reference on the help page for the command.

70

AWS Command Line Interface User Guide
Getting Help

EXAMPLES
To describe an Amazon EC2 instance

Command :

aws ec2 describe-instances --instance-ids i1-5203422c

To describe all instances with the instance type ml.small

Command :

aws ec2 describe-instances --filters "Name=instance-type,Values=ml.small"
To describe all instances with an Owner tag

Command :

aws ec2 describe-instances --filters "Name=tag-key,Values=Owner"

Output
Descriptions of each of the fields and data types included in the response from AWS.

For describe-instances, the output is a list of reservation objects, each of which contains several
fields and objects that contain information about the instances associated with it. This information
comes from the APl documentation for the reservation data type used by Amazon EC2.

OUTPUT
Reservations -> (list)
One or more reservations.

(structure)
Describes a reservation.

ReservationId -> (string)
The ID of the reservation.

OwnerId -> (string)
The ID of the AWS account that owns the reservation.

RequesterId -> (string)
The ID of the requester that launched the instances on your
behalf (for example, AWS Management Console or Auto Scaling).

Groups -> (list)
One or more security groups.

(structure)
Describes a security group.

GroupName -> (string)
The name of the security group.

GroupId -> (string)
The ID of the security group.

Instances -> (list)
One or more instances.

(structure)
Describes an instance.

InstanceId -> (string)

71

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Reservation.html

AWS Command Line Interface User Guide
AWS CLI Documentation

The ID of the instance.

ImageId -> (string)
The ID of the AMI used to launch the instance.

State -> (structure)
The current state of the instance.

Code -> (integer)
The low byte represents the state. The high byte
is an opaque internal value and should be ignored.

When the AWS CLI renders the output into JSON, it becomes an array of reservation objects, similar
to the following example.

{
"Reservations": [
{
"OwnerId": "012345678901",
"ReservationId": "r-4c58f8a0",
"Groups": [],
"RequesterId": "012345678901",
"Instances": [
{
"Monitoring": {
"State": "disabled"
}
"PublicDnsName": "ec2-52-74-16-12.us-west-2.compute.amazonaws.com",
"State": {
"Code": 16,
"Name": "running"
}

Each reservation object contains fields describing the reservation and an array of instance objects,
each with its own fields (for example, PublicDnsName) and objects (for example, State) that
describe it.

Windows users

You can pipe (]) the output of the help command to the more command to view the help file
one page at a time. Press the space bar or PgDn to view more of the document, and g to
quit.

C:\> aws ec2 describe-instances help | more

AWS CLI Documentation

The AWS CLI Command Reference also contains the help content for all AWS CLI commands. The
descriptions are presented for easy navigation and viewing on mobile, tablet, or desktop screens.

Note
The help files contain links that cannot be viewed or navigated to from the command line. You
can view and interact with these links by using the online AWS CLI Command Reference.

APl Documentation

All commands in the AWS CLI correspond to requests made to an AWS service's public API. Each service
with a public API has an API reference that can be found on the service's home page on the AWS

72

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/
http://aws.amazon.com/documentation/

AWS Command Line Interface User Guide
Command Structure

Documentation website. The content for an API reference varies based on how the API is constructed and
which protocol is used. Typically, an API reference contains detailed information about the operations
supported by the API, the data sent to and from the service, and any error conditions that the service can
report.

APl Documentation Sections

Actions - Detailed information on each operation and its parameters (including constraints on length
or content, and default values). It lists the errors that can occur for this operation. Each operation
corresponds to a subcommand in the AWS CLI.

Data Types — Detailed information about structures that a command might require as a parameter, or
return in response to a request.

Common Parameters — Detailed information about the parameters that are shared by all of action for
the service.

Common Errors — Detailed information about errors that can be returned by any of the service's
operations.

The name and availability of each section can vary, depending on the service.

Service-specific CLIs

Some services have a separate CLI that dates from before a single AWS CLI was created to work
with all services. These service-specific CLIs have separate documentation that is linked from
the service's documentation page. Documentation for service-specific CLIs does not apply to the
AWS CLI.

Command Structure in the AWS CLI

The AWS Command Line Interface (AWS CLI) uses a multipart structure on the command line that must
be specified in this order:

A W N =

. The base call to the aws program.
. The top-level command, which typically corresponds to an AWS service supported by the AWS CLI.
. The subcommand that specifies which operation to perform.

. General CLI options or parameters required by the operation. You can specify these in any order as

long as they follow the first three parts. If an exclusive parameter is specified multiple times, only the
last value applies.

$

aws <command> <subcommand> [options and parameters]

Parameters can take various types of input values, such as numbers, strings, lists, maps, and JSON
structures. What is supported is dependent upon the command and subcommand you specify.

Specifying Parameter Values for the AWS CLI

Many parameters used in the AWS Command Line Interface (AWS CLI) are simple string or numeric
values, such as the key-pair name my-key-pair in the following example.

$

aws ec2 create-key-pair --key-name my-key-pair

73

http://aws.amazon.com/documentation/

AWS Command Line Interface User Guide
Common Parameter Types

You can surround strings without any space characters with quotation marks or not. However, you must
use quotation marks around strings that include one or more space characters. Use single quotation
marks (' ') in Linux, macOS, Unix, or PowerShell. Use double quotation marks (" ") in the Windows
command prompt, as shown in the following examples.

PowerShell, Linux or macOS

$ aws ec2 create-key-pair --key-name 'my key pair’

Windows command prompt

C:\> aws ec2 create-key-pair --key-name "my key pair"

Optionally, you can optionally separate the parameter name from the value with an equals sign (=)
instead of a space. This is typically necessary only if the value of the parameter starts with a hyphen.

$ aws ec2 delete-key-pair --key-name=-mykey

Topics
« Common Parameter Types (p. 74)
« Using JSON for Parameters (p. 75)
« Using Quotation Marks with Strings (p. 77)
o Loading Parameters from a File (p. 78)

Common Parameter Types

This section describes some of the common parameter types and the typical required format. If you are
having trouble formatting a parameter for a specific command, check the help by entering help after
the command name, as shown.

$ aws ec2 describe-spot-price-history help

The help for each subcommand describes its function, options, output, and examples. The options
section includes the name and description of each option with the option's parameter type in
parentheses.

String - String parameters can contain alphanumeric characters, symbols, and white space from the
ASCII character set. Strings that contain white space must be surrounded by quotation marks. We
recommend that you don't use symbols or white space other than the standard space character because
it can cause unexpected results.

Some string parameters can accept binary data from a file. See Binary Files (p. 79) for an example.

Timestamp — Timestamps are formatted according to the ISO 8601 standard. These are sometimes
referred to as "DateTime" or "Date" parameters.

$ aws ec2 describe-spot-price-history --start-time 2014-10-13T19:00:00Z

Acceptable formats include:

e YYYY-MM-DDThh:mmiss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z
e YYYY-MM-DDThh:mmiss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00

74

https://wikipedia.org/wiki/ASCII
https://www.iso.org/iso-8601-date-and-time-format.html

AWS Command Line Interface User Guide
Using JSON for Parameters

o YYYY-MM-DD, for example, 2014-10-01

« Unix time in seconds, for example, 1412195400. This is sometimes referred to as Unix Epoch time and
represents the number of seconds since midnight, January 1, 1970 UTC.

List — One or more strings separated by spaces. If any of the string items contain a space, you must put
quotation marks around that item.

$ aws ec2 describe-spot-price-history --instance-types mil.xlarge mil.medium

Boolean - Binary flag that turns an option on or off. For example, ec2 describe-spot-price-
history has a Boolean --dry-run parameter that, when specified, validates the query with the service
without actually running the query.

$ aws ec2 describe-spot-price-history --dry-run

The output indicates whether the command was well formed. This command also includes a --no-dry-
run version of the parameter that you can use to explicitly indicate that the command should be run
normally. Including it isn't necessary because this is the default behavior.

Integer - An unsigned, whole number.

$ aws ec2 describe-spot-price-history --max-items 5

Blob - "Binary large object". Blob parameters take a path to a local file that contains the binary data.
The path should not contain any protocol identifier, such as http:// or file://. The specified path is
interpreted as being relative to the current working directory.

For example, the --body parameter for aws s3api put-object isa blob.

$ aws s3api put-object --bucket my-bucket --key testimage.png --body /tmp/image.png

Map - A set of key-value pairs specified in JSON or by using the CLI's shorthand syntax (p. 98). The
following JSON example reads an item from an Amazon DynamoDB table named my-table with a map
parameter, --key. The parameter specifies the primary key named id with a number value of 7in a
nested JSON structure.

$ aws dynamodb get-item --table-name my-table --key '{"id": {"N":"1"}}'

{
"Item": {
"name": {
"s": "John"
}!
midv: {
"NT:omLt
}
}
}

Using JSON for Parameters

JavaScript Object Notation (JSON) is useful for specifying complex command line parameters. For
example, the following command uses shorthand notation to list all Amazon EC2 instances that have an
instance type of m1.small or m1.medium that are also in the us-west-2c Availability Zone.

75

https://wikipedia.org/wiki/Unix_time

AWS Command Line Interface User Guide
Using JSON for Parameters

$ aws ec2 describe-instances --filters "Name=instance-type,Values=t2.micro,ml.medium”
"Name=availability-zone,Values=us-west-2c"

Instead, you can also specify the equivalent list of filters as a JSON array. Square brackets are used to
create an array of JSON objects separated by commas. Each object is a comma-separated list of key-
value pairs (in this example, "Name" and "Values™" are both keys).

The value to the right of the "values™" key is itself an array. This is required, even if the array contains
only one value string.

{
"Name": "instance-type",
"Values": ["t2.micro", "ml.medium"]
Iy
{
"Name": "availability-zone",
"Values": ["us-west-2c¢"]
}

The outermost brackets, however, are required only if more than one filter is specified. A single filter
version of the previous command, formatted in JSON, looks like this.

$ aws ec2 describe-instances --filters '{"Name": "instance-type", "Values": ["t2.micro",
"m1.medium”]}"'

For some operations, you must format the data as JSON. For example, to pass parameters to the —-
block-device-mappings parameterin the ec2 run-instances command, you need to format the
block device information as JSON.

Because every value is surrounded by double-quotes, JSON might also be required when values that are
part of the parameter contain embedded or leading spaces.

This example shows the JSON to specify a single 20 GiB Amazon Elastic Block Store (Amazon EBS) device
to be mapped at /dev/sdb on the launching instance.

{
"DeviceName": "/dev/sdb",
"Ebs": {
"VolumeSize": 20,
"DeleteOnTermination": false,
"VolumeType": "standard"
}
}

To attach multiple devices, list the objects in an array, as shown in the next example.

{
"DeviceName": "/dev/sdb",
"Ebs": {
"VolumeSize": 20,
"DeleteOnTermination": false,
"VolumeType": "standard"
}
}r
{

76

AWS Command Line Interface User Guide
Using Quotation Marks with Strings

"DeviceName": "/dev/sdc",
"Ebs": {
"VolumeSize": 10,
"DeleteOnTermination": true,
"VolumeType": "standard"

}

You can enter the JSON directly on the command line (see Using Quotation Marks with
Strings (p. 77)), or save it to a file that is referenced from the command line (see Loading Parameters
from a File (p. 78)).

When passing in large blocks of data, you might find it easier to first save the JSON to a file and then
reference it from the command line. JSON data in a file is easier to read, edit, and share with others. This
technique is described in a later section.

For more information about JSON, see JSON.org, Wikipedia's JSON entry, and RFC4627 - The
application/json Media Type for JSON.

Using Quotation Marks with Strings

The way you enter JSON-formatted parameters on the command line differs depending on your
operating system.

Linux, macOS, or Unix

Use single quotation marks (' ') to enclose the JSON data structure, as in the following example.

$ aws ec2 run-instances --image-id ami-12345678 --
block-device-mappings '[{"DeviceName":"/dev/sdb", " "Ebs":
{"VolumeSize":20, "DeleteOnTermination":false, "VolumeType":"standard"}}]"'

PowerShell

PowerShell requires single quotation marks (' ') to enclose the JSON data structure, and a backslash
(\) to escape each double quotation mark (") within the JSON structure, as in the following example.

PS C:\> aws ec2 run-instances --image-id ami-12345678 --block-device-
mappings '[{\"DeviceName\":\"/dev/sdb\",\"Ebs\":{\"VolumeSize\":20,
\"DeleteOnTermination\": false, \"VolumeType\":\"standard\"}}]"'

Windows Command Prompt

The Windows command prompt requires double quotation marks (" ") to enclose the JSON data
structure. You must then escape (precede with a backslash [\] character) each double quotation
mark (") within the JSON data structure itself, as in the following example.

C:\> aws ec2 run-instances --image-id ami-12345678 --block-device-
mappings "[{\"DeviceName\":\"/dev/sdb\",\"Ebs\":{\"VolumeSize\":20,
\"DeleteOnTermination\": false, \"VolumeType\":\"standard\"}}]"

Only the outermost double quotation marks are not escaped.

If the value of a parameter is itself a JSON document, escape the quotation marks on the embedded
JSON document. For example, the attribute parameter for aws sqs create-queue can take a
RedrivePolicy key. The -—attributes parameter takes a JSON document, which in turn contains

77

https://json.org
https://wikipedia.org/wiki/JSON
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627

AWS Command Line Interface User Guide
Loading Parameters from a File

RedrivePolicy, which also takes a JSON document as its value. The inner JSON embedded in the outer
JSON must be escaped.

$ aws sgs create-queue --queue-name my-queue --
attributes '{ "RedrivePolicy":"{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
west-2:0123456789012:deadletter\"”, \"maxReceiveCount\":\"5\"}"}"'

Loading Parameters from a File

Some parameters expect file names as arguments, from which the AWS CLI loads the data. Other
parameters enable you to specify the parameter value as either text typed on the command line or read
from a file. Whether a file is required or optional, you must encode the file correctly so that the AWS CLI
can understand it. The file's encoding must match the reading system's default locale. You can determine
this by using the Python locale.getpreferredencoding() method.

Note

By default, Windows PowerShell outputs text as UTF-16, which conflicts with the UTF-8
encoding used by many Linux systems. We recommend that you use -Encoding ascii with
your PowerShell out-File commands to ensure the AWS CLI can read the resulting file.

Sometimes it's convenient to load a parameter value from a file instead of trying to type it all as a
command line parameter value, such as when the parameter is a complex JSON string. To specify a file
that contains the value, specify a file URL in the following format.

file://complete/path/to/file

The first two slash '/' characters are part of the specification. If the required path begins with a '/', the
result is three slash characters: file:///folder/file.

The URL provides the path to the file that contains the actual parameter content.

Note

This behavior is disabled automatically for parameters that already expect a URL, such as
parameter that identifies a AWS CloudFormation template URL.

You can also disable this behavior by adding the following line to your CLI configuration file.

cli_follow_urlparam = false

The file paths in the following examples are interpreted to be relative to the current working directory.

Linux or macOS

// Read from a file in the current directory
$ aws ec2 describe-instances --filters file://filter.json

// Read from a file in /tmp
$ aws ec2 describe-instances --filters file:///tmp/filter.json

Windows

// Read from a file in C:\temp
C:\> aws ec2 describe-instances --filters file://C:\temp\filter.json

The £file: // prefix option supports Unix-style expansions, including "~/", ". /", and ". . /". On Windows,
the "~ /" expression expands to your user directory, stored in the ¥USERPROFILE% environment variable.
For example, on Windows 10 you would typically have a user directory under C: \Users\User Name\.

78

AWS Command Line Interface User Guide
Loading Parameters from a File

You must still escape JSON documents that are embedded as the value of another JSON document.

$ aws sgs create-queue --queue-name my-queue --attributes file://attributes.json

attributes.json

{

"RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqgs:us-
west-2:0123456789012:deadletter\", \"maxReceiveCount\":\"5\"}"
}

Binary Files

For commands that take binary data as a parameter, specify that the data is binary content by using the
fileb: // prefix. Commands that accept binary data include:

e aws ec2 run-instances - --user-data parameter.
e aws s3api put-object - --sse-customer-key parameter.
e aws kms decrypt - --ciphertext-blob parameter.

The following example generates a binary 256-bit AES key using a Linux command line tool, and then
provides it to Amazon S3 to encrypt an uploaded file server-side.

$ dd if=/dev/urandom bs=1 count=32 > sse.key

32+0 records in

32+0 records out

32 bytes (32 B) copied, 0.000164441 s, 195 kB/s

$ aws s3api put-object --bucket my-bucket --key test.txt --body test.txt --sse-customer-key
fileb://sse.key --sse-customer-algorithm AES256

{
"SSECustomerKeyMD5": "iVg8oWa8sy714+FjtesrJdg==",
"SSECustomerAlgorithm": "AES256",
"ETag": "\"a6118e84b76cf98bf04bbel4b6045c6c\""

¥

Remote Files

The AWS CLI also supports loading parameters from a file hosted on the internet with an http:// or
https:// URL. The following example references a file stored in an Amazon S3 bucket. This allows you
to access parameter files from any computer, but it does require that the container is publicly accessible.

$ aws ec2 run-instances --image-id ami-12345678 --block-device-mappings http://my-
bucket.s3.amazonaws.com/filename. json

The preceding example assumes that the file filename. json contains the following JSON data.

[

{
"DeviceName": "/dev/sdb",
"Ebs": {
"VolumeSize": 20,
"DeleteOnTermination": false,
"VolumeType": "standard"
}
}

]

79

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

For another example referencing a file containing more complex JSON-formatted parameters, see
Attaching an IAM Managed Policy to an IAM User (p. 122).

Generating AWS CLI Skeleton and Input
Parameters from a JSON or YAML Input File

Important

You can create and consume YAML input skeleton templates only with version 2 of the
AWS CLI. If you use AWS CLI version 1, you can create and consume only JSON input skeleton
templates.

Most of the AWS Command Line Interface (AWS CLI) commands support the ability to accept all of the
parameter input from a file using the --cli-input-jsonand --cli-input-yaml parameters.

Those same commands helpfully provide the --generate-cli-skeleton parameter to generate a file
in either JSON or YAML format with all of the parameters that you can edit and fill in. Then you can run
the command with the relevant --cli-input-json or --cli-input-yaml parameter and point to
the filled-in file.

Important

Several AWS CLI commands don't map directly to individual AWS API operations, such as the
aws s3 commands. Such commands don't support either the --generate-cli-skeleton or
--cli-input-jsonand --cli-input-yaml parameters described in this topic. If you don't
know whether a specific command supports these parameters, run the following command,
replacing the service and command names with the ones you're interested in.

$ aws service command help

The output includes a Synopsis section that shows the parameters that the specified command
supports.

$ aws iam list-users help
SYNOPSIS
list-users
[--cli-input-json | --cli-input-yaml]

[--generate-cli-skeleton <value>]

The --generate-cli-skeleton parameter causes the command not to run, but instead to generate
and display a parameter template that you can customize and use as input on a later command. The
generated template includes all of the parameters that the command supports.

The --generate-cli-skeleton parameter accepts one of the following values:

« input - The generated template includes all input parameters formatted as JSON. This is the default
value.

o yaml-input — The generated template includes all input parameters formatted as YAML.

« output - The generated template includes all output parameters formatted as JSON. You can't
currently request the output parameters as YAML.

Because the AWS CLI is essentially a "wrapper" around the service's API, the skeleton file expects you
to reference all parameters by their underlying APl parameter names. This is likely different from the

80

https://docs.aws.amazon.com/cli/latest/reference/s3/index.html

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

AWS CLI parameter name. For example, an AWS CLI parameter named user-name might map to the
AWS service's APl parameter named UserName (notice the altered capitalization and missing dash). We
recommend that you use the --generate-cli-skeleton option to generate the template with the
"correct" parameter names to avoid errors. You can also reference the API Reference Guide for the service
to see the expected parameter names. You can delete any parameters from the template that are not
required and for which you don't want to supply a value.

For example, if you run the following command, it generates the parameter template for the Amazon
Elastic Compute Cloud (Amazon EC2) command run-instances.

JSON

The following example shows how to generate a template formatted in JSON by using the default
value (input) for the -—-generate-cli-skeleton parameter.

$ aws ec2 run-instances --generate-cli-skeleton

"DryRun": true,
"ImageId": "",
"MinCount": 0,
"MaxCount": 0,
"KeyName": "",
"SecurityGroups": [
1,
"SecurityGroupIds": [
1,
"UserData": "",
"InstanceType": "",
"Placement": {
"AvailabilityZone": "",
"GroupName": "",
"Tenancy": ""
I
"KernelId": "",
"RamdiskId": "",
"BlockDeviceMappings": [
{
"VirtualName": "",
"DeviceName": "",
"Ebs": {
"SnapshotId": "",
"VolumeSize": O,
"DeleteOnTermination": true,
"VolumeType": "",
"Iops": O,
"Encrypted": true
T
"NoDevice": ""
}
1,
"Monitoring": {
"Enabled": true
I
"SubnetId": "",
"DisableApiTermination": true,
"InstanceInitiatedShutdownBehavior": "",
"PrivateIpAddress": "",
"ClientToken": "",
"AdditionalInfo": "",
"NetworkInterfaces": [

81

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

"NetworkInterfaceId": "",
"DeviceIndex": 0,
"SubnetId": "",
"Description": "",
"PrivateIpAddress": "",
"Groups": [
1,
"DeleteOnTermination": true,
"PrivateIpAddresses": [
{
"PrivateIpAddress": "",
"Primary": true
b
1,
"SecondaryPrivateIpAddressCount": O,
"AssociatePublicIpAddress": true
}
1,
"IamInstanceProfile": {
"Arn": "",
"Name": ""
Iy
"EbsOptimized": true

YAML

The following example shows how to generate a template formatted in YAML by using the value
yaml-input for the -—-generate-cli-skeleton parameter.

$ aws ec2 run-instances --generate-cli-skeleton yaml-input

BlockDeviceMappings: # The block device mapping entries.
- DeviceName: '' # The device name (for example, /dev/sdh or xvdh).
VirtualName: '' # The virtual device name (ephemeralN).
Ebs: # Parameters used to automatically set up Amazon EBS volumes when the instance
is launched.
DeleteOnTermination: true # Indicates whether the EBS volume is deleted on
instance termination.
Iops: 0 # The number of I/O operations per second (IOPS) that the volume supports.
SnapshotId: '' # The ID of the snapshot.
VolumeSize: 0 # The size of the volume, in GiB.
VolumeType: stl # The volume type. Valid values are: standard, iol, gp2, scl, stl.
Encrypted: true # Indicates whether the encryption state of an EBS volume is
changed while being restored from a backing snapshot.

KmsKeyId: '' # Identifier (key ID, key alias, ID ARN, or alias ARN) for a customer
managed CMK under which the EBS volume is encrypted.
NoDevice: '' # Suppresses the specified device included in the block device mapping
of the AMI.
ImageId: '' # The ID of the AMI.

InstanceType: c4.4xlarge # The instance type. Valid values are: tl.micro, t2.nano,
t2.micro, t2.small, t2.medium, t2.large, t2.xlarge, t2.2xlarge, t3.nano, t3.micro,
t3.small, t3.medium, t3.large, t3.xlarge, t3.2xlarge, t3a.nano, t3a.micro, t3a.small,
t3a.medium, t3a.large, t3a.xlarge, t3a.2xlarge, ml.small, ml.medium, ml.large,
ml.xlarge, m3.medium, m3.large, m3.xlarge, m3.2xlarge, m4.large, m4.xlarge,
m4.2xlarge, m4.4xlarge, m4.l0xlarge, m4.1l6xlarge, m2.xlarge, m2.2xlarge, m2.4xlarge,
crl.8xlarge, r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, r4.large,
r4.xlarge, r4.2xlarge, r4.4xlarge, r4.8xlarge, r4.l6xlarge, r5.large, r5.xlarge,
r5.2xlarge, r5.4xlarge, r5.8xlarge, r5.12xlarge, r5.l16xlarge, r5.24xlarge, r5.metal,
r5a.large, rb5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.l2xlarge,
r5a.l6xlarge, rb5a.24xlarge, r5d.large, r5d.xlarge, r5d.2xlarge, r5d.4xlarge,
r5d.8xlarge, r5d.l2xlarge, r5d.léxlarge, r5d.24xlarge, r5d.metal, r5ad.large,

82

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

r5ad.xlarge, r5ad.2xlarge, r5ad.4xlarge, r5ad.8xlarge, r5ad.l2xlarge, r5ad.léxlarge,
r5ad.24xlarge, xl.1l6xlarge, x1l.32xlarge, xle.xlarge, xle.2xlarge, xle.4xlarge,
xle.8xlarge, xle.lé6xlarge, xle.32xlarge, i2.xlarge, i2.2xlarge, i2.4xlarge,
i2.8xlarge, i3.large, i3.xlarge, i3.2xlarge, i3.4xlarge, i3.8xlarge, i3.1lé6xlarge,
i3.metal, i3en.large, i3en.xlarge, i3en.2xlarge, i3en.3xlarge, i3en.é6xlarge,
i3en.12xlarge, i3en.24xlarge, i3en.metal, hil.4xlarge, hsl.8xlarge, cl.medium,
cl.xlarge, c3.large, c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge, c4.large,
c4.xlarge, c4.2xlarge, c4.4xlarge, c4.8xlarge, c5.large, c5.xlarge, c5.2xlarge,
c5.4xlarge, c5.9xlarge, c5.12xlarge, c5.18xlarge, c5.24xlarge, c5.metal, c5d.large,
c5d.xlarge, c5d.2xlarge, cb5d.4xlarge, c5d.9xlarge, c5d.18xlarge, cb5n.large,
c5n.xlarge, c5n.2xlarge, cbn.4xlarge, c5n.9xlarge, cbn.18xlarge, ccl.4xlarge,
cc2.8xlarge, g2.2xlarge, g2.8xlarge, g3.4xlarge, g3.8xlarge, g3.l6xlarge, g3s.xlarge,
g4dn.xlarge, g4dn.2xlarge, g4dn.4xlarge, g4dn.8xlarge, g4dn.l2xlarge, g4dn.lé6xlarge,
cgl.4xlarge, p2.xlarge, p2.8xlarge, p2.l6xlarge, p3.2xlarge, p3.8xlarge, p3.1l6xlarge,
p3dn.24xlarge, d2.xlarge, d2.2xlarge, d2.4xlarge, d2.8xlarge, fl.2xlarge, fl.4xlarge,
fl.1l6xlarge, m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, m5.8xlarge, m5.12xlarge,
m5.16xlarge, m5.24xlarge, m5.metal, m5a.large, mbSa.xlarge, mba.2xlarge, m5a.4xlarge,
m5a.8xlarge, m5a.l2xlarge, mbSa.l6xlarge, mb5a.24xlarge, m5d.large, m5d.xlarge,
m5d.2xlarge, m5d.4xlarge, m5d.8xlarge, m5d.12xlarge, m5d.l6xlarge, m5d.24xlarge,
m5d.metal, m5ad.large, m5ad.xlarge, m5ad.2xlarge, m5ad.4xlarge, m5ad.8xlarge,
m5ad.12xlarge, m5ad.lé6xlarge, m5ad.24xlarge, hl.2xlarge, hl.4xlarge, hl.8xlarge,
hl.1léxlarge, zld.large, zld.xlarge, zld.2xlarge, zld.3xlarge, zld.é6xlarge,
zld.1l2xlarge, zld.metal, u-6tbl.metal, u-9tbl.metal, u-12tbl.metal, u-18tbl.metal,
u-24tbl.metal, al.medium, al.large, al.xlarge, al.2xlarge, al.4xlarge, al.metal,
m5dn.large, m5dn.xlarge, m5dn.2xlarge, m5dn.4xlarge, m5dn.8xlarge, m5dn.l2xlarge,
m5dn.1l6xlarge, m5dn.24xlarge, m5n.large, mSn.xlarge, m5n.2xlarge, m5n.4xlarge,
m5n.8xlarge, m5n.l1l2xlarge, m5Sn.l6xlarge, m5n.24xlarge, r5dn.large, r5dn.xlarge,
r5dn.2xlarge, r5dn.4xlarge, r5dn.8xlarge, r5dn.l2xlarge, r5dn.lé6xlarge, r5dn.24xlarge,
r5n.large, r5n.xlarge, r5n.2xlarge, r5n.4xlarge, r5n.8xlarge, r5n.l2xlarge,
r5n.l6xlarge, rb5n.24xlarge.

Ipv6AddressCount: 0 # [EC2-VPC] The number of IPvé addresses to associate with the
primary network interface.

Ipvé6Addresses: # [EC2-VPC] The IPvé addresses from the range of the subnet to associate
with the primary network interface.

- Ipvé6Address: '' # The IPvé address.
KernelId: '' # The ID of the kernel.
KeyName: '' # The name of the key pair.

MaxCount: 0 # [REQUIRED] The maximum number of instances to launch.
MinCount: 0 # [REQUIRED] The minimum number of instances to launch.
Monitoring: # Specifies whether detailed monitoring is enabled for the instance.
Enabled: true # [REQUIRED] Indicates whether detailed monitoring is enabled.
Placement: # The placement for the instance.
AvailabilityZone: '' # The Availability Zone of the instance.
Affinity: '' # The affinity setting for the instance on the Dedicated Host.
GroupName: '' # The name of the placement group the instance is in.
PartitionNumber: 0 # The number of the partition the instance is in.
HostId: '' # The ID of the Dedicated Host on which the instance resides.
Tenancy: dedicated # The tenancy of the instance (if the instance is running in a
VPC). Valid values are: default, dedicated, host.
SpreadDomain: '' # Reserved for future use.
RamdiskId: '' # The ID of the RAM disk to select.
SecurityGroupIds: # The IDs of the security groups.

SecurityGroups: # [EC2-Classic, default VPC] The names of the security groups.

SubnetId: '' # [EC2-VPC] The ID of the subnet to launch the instance into.
UserData: '' # The user data to make available to the instance.
AdditionalInfo: '' # Reserved.

ClientToken: '' # Unique, case-sensitive identifier you provide to ensure the

idempotency of the request.

DisableApiTermination: true # If you set this parameter to true, you can't terminate
the instance using the Amazon EC2 console, CLI, or API; otherwise, you can.

DryRun: true # Checks whether you have the required permissions for the action, without
actually making the request, and provides an error response.

EbsOptimized: true # Indicates whether the instance is optimized for Amazon EBS I/O.
IamInstanceProfile: # The IAM instance profile.

83

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

Arn: '' # The Amazon Resource Name (ARN) of the instance profile.
Name: '' # The name of the instance profile.

InstanceInitiatedShutdownBehavior: stop # Indicates whether an instance stops or
terminates when you initiate shutdown from the instance (using the operating system
command for system shutdown). Valid values are: stop, terminate.

NetworkInterfaces: # The network interfaces to associate with the instance.

- AssociatePublicIpAddress: true # Indicates whether to assign a public IPv4 address
to an instance you launch in a VPC.

DeleteOnTermination: true # If set to true, the interface is deleted when the
instance is terminated.

Description: '' # The description of the network interface.

DeviceIndex: 0 # The position of the network interface in the attachment order.
Groups: # The IDs of the security groups for the network interface.
Ipv6AddressCount: O # A number of IPvé addresses to assign to the network interface.
Ipv6Addresses: # One or more IPv6 addresses to assign to the network interface.

- Ipv6Address: '' # The IPvé address.
NetworkInterfaceId: '' # The ID of the network interface.
PrivateIpAddress: '' # The private IPv4 address of the network interface.

PrivateIpAddresses: # One or more private IPv4 addresses to assign to the network
interface.
- Primary: true # Indicates whether the private IPv4 address is the primary private
IPv4 address.

PrivateIpAddress: '' # The private IPv4 addresses.
SecondaryPrivateIpAddressCount: 0 # The number of secondary private IPv4 addresses.
SubnetId: '' # The ID of the subnet associated with the network interface.
InterfaceType: '' # The type of network interface.

PrivateIpAddress: '' # [EC2-VPC] The primary IPv4 address.

ElasticGpuSpecification: # An elastic GPU to associate with the instance.

- Type: '' # [REQUIRED] The type of Elastic Graphics accelerator.

ElasticInferenceAccelerators: # An elastic inference accelerator to associate with the
instance.

- Type: '' # [REQUIRED] The type of elastic inference accelerator.

TagSpecifications: # The tags to apply to the resources during launch.

- ResourceType: network-interface # The type of resource to tag. Valid values are:
client-vpn-endpoint, customer-gateway, dedicated-host, dhcp-options, elastic-ip,
fleet, fpga-image, host-reservation, image, instance, internet-gateway, launch-

template, natgateway, network-acl, network-interface, reserved-instances, route-table,
security-group, snapshot, spot-instances-request, subnet, traffic-mirror-filter,
traffic-mirror-session, traffic-mirror-target, transit-gateway, transit-gateway-

attachment, transit-gateway-route-table, volume, vpc, vpc-peering-connection, vpn-
connection, vpn-gateway.
Tags: # The tags to apply to the resource.
- Key: '' # The key of the tag.
Value: '' # The value of the tag.
LaunchTemplate: # The launch template to use to launch the instances.
LaunchTemplateId: '' # The ID of the launch template.
LaunchTemplateName: '' # The name of the launch template.
Version: '' # The version number of the launch template.
InstanceMarketOptions: # The market (purchasing) option for the instances.
MarketType: spot # The market type. Valid values are: spot.
SpotOptions: # The options for Spot Instances.
MaxPrice: '' # The maximum hourly price you're willing to pay for the Spot
Instances.
SpotInstanceType: one-time # The Spot Instance request type. Valid values are: one-
time, persistent.
BlockDurationMinutes: 0 # The required duration for the Spot Instances (also known
as Spot blocks), in minutes.
ValidUntil: 1970-01-01 00:00:00 # The end date of the request.
InstanceInterruptionBehavior: terminate # The behavior when a Spot Instance is
interrupted. Valid values are: hibernate, stop, terminate.

CreditSpecification: # The credit option for CPU usage of the T2 or T3 instance.
CpuCredits: '' # [REQUIRED] The credit option for CPU usage of a T2 or T3 instance.

CpuOptions: # The CPU options for the instance.

CoreCount: 0 # The number of CPU cores for the instance.
ThreadsPerCore: 0 # The number of threads per CPU core.

84

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

CapacityReservationSpecification: # Information about the Capacity Reservation
targeting option.
CapacityReservationPreference: none # Indicates the instance's Capacity Reservation
preferences. Valid values are: open, none.
CapacityReservationTarget: # Information about the target Capacity Reservation.
CapacityReservationId: '' # The ID of the Capacity Reservation.
HibernationOptions: # Indicates whether an instance is enabled for hibernation.
Configured: true # If you set this parameter to true, your instance is enabled for
hibernation.
LicenseSpecifications: # The license configurations.
- LicenseConfigurationArn: '' # The Amazon Resource Name (ARN) of the license
configuration.

To generate and use a parameter skeleton file

1.

Run the command with the --generate-cli-skeleton parameter to produce either JSON or
YAML and direct the output to a file to save it.

JSON

$ aws ec2 run-instances --generate-cli-skeleton input> ec2runinst.json

YAML

$ aws ec2 run-instances --generate-cli-skeleton yaml-input> ec2runinst.yaml

Open the parameter skeleton file in your text editor and remove any of the parameters that you
don't need. For example, you might strip the template down to the following. Be sure that the file is
still valid JSON or YAML after you remove the elements you don't need.

JSON
{
"DryRun": true,
" ImageId" g onm
"KeyName": "",
"SecurityGroups": [
]I
"InstanceType": "",
"Monitoring": {
"Enabled": true
}
}
YAML

DryRun: true
ImageId: "'
KeyName: ''
SecurityGroups:

InstanceType:
Monitoring:
Enabled: true

In this example, we leave the DryRun parameter set to true to use the Amazon EC2 dry run feature.
This feature lets you safely test the command without actually creating or modifying any resources.

85

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

Fill in the remaining values with values appropriate for your scenario. In this example, we provide
the instance type, key name, security group, and identifier of the Amazon Machine Image (AMI) to
use. This example assumes the default AWS Region. The AMI ami-dfc39aef is a 64-bit Amazon
Linux image hosted in the us-west-2 Region. If you use a different Region, you must find the
correct AMI ID to use.

JSON
{
"DryRun": true,
"ImageId": "ami-dfc39aef",
"KeyName": "mykey",
"SecurityGroups": [
"my-sg"
]V
"InstanceType": "t2.micro",
"Monitoring": {
"Enabled": true
¥
}
YAML

DryRun: true
ImageId: 'ami-dfc39aef'
KeyName: 'mykey'
SecurityGroups:
- ’my_sgl
InstanceType: 't2.micro'
Monitoring:

Enabled: true

Run the command with the completed parameters by passing the completed template file to either
the --cli-input-json or --cli-input-yaml parameter by using the file:// prefix. The AWS
CLl interprets the path to be relative to your current working directory, so in the following example
that displays only the file name with no path, it looks for the file directly in the current working
directory.

JSON

$ aws ec2 run-instances --cli-input-json file://ec2runinst.json

A client error (DryRunOperation) occurred when calling the RunInstances operation:
Request would have succeeded, but DryRun flag is set.

YAML

$ aws ec2 run-instances --cli-input-yaml file://ec2runinst.yaml

A client error (DryRunOperation) occurred when calling the RunInstances operation:
Request would have succeeded, but DryRun flag is set.

The dry run error indicates that the JSON or YAML is formed correctly and that the parameter values
are valid. If other issues are reported in the output, fix them and repeat the previous step until the
"Request would have succeeded" message is displayed.

Now you can set the DryRun parameter to f£alse to disable dry run.

86

http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/amazon-linux-ami/

AWS Command Line Interface User Guide
Generating a CLI Skeleton Template

JSON
{
"DryRun": false,
"ImageId": "ami-dfc39aef",
"KeyName": "mykey",
"SecurityGroups": [
"my-sg"
1,
"InstanceType": "t2.micro",
"Monitoring": {
"Enabled": true
b
}
YAML

DryRun: false
ImageId: 'ami-dfc39aef'
KeyName: 'mykey'
SecurityGroups:
—_ lm-y-_sgl
InstanceType: 't2.micro'
Monitoring:

Enabled: true

Run the command, and run-instances actually launches an EC2 instance and displays the details
generated by the successful launch. The format of the output is controlled by the --output
parameter, separately from the format of your input parameter template.

JSON

$ aws ec2 run-instances --cli-input-json file://ec2runinst.json --output json

{
"OwnerId": "123456789012",
"ReservationId": "r-d94a2bl",
"Groups": [],
"Instances": [
YAML

$ aws ec2 run-instances --cli-input-yaml file://ec2runinst.yaml --output yaml

OwnerId: '123456789012'
ReservationId: 'r-d94a2bl’',
Groups":

Instances:

87

AWS Command Line Interface User Guide
Controlling Command Output

Controlling Command Output from the AWS CLI

This topic describes the different ways to control the output from the AWS Command Line Interface
(AWS CLI).

Topics

« How to Select the Output Format (p. 88)

« JSON Output Format (p. 89)

o YAML Output Format (p. 89)

o Text Output Format (p. 90)

o Table Output Format (p. 92)

« How to Filter the Output with the --query Option (p. 93)

How to Select the Output Format

The AWS CLI supports four output formats:

json (p. 89) — The output is formatted as a JSON string.
yaml (p. 89) — The output is formatted as a YAML string. (Available in the AWS CLI version 2 only.)

text (p. 90) — The output is formatted as multiple lines of tab-separated string values. This can be
useful to pass the output to a text processor, like grep, sed, or awk.

table (p. 92) — The output is formatted as a table using the characters +|- to form the cell borders.
It typically presents the information in a "human-friendly" format that is much easier to read than the
others, but not as programmatically useful.

As explained in the configuration (p. 33) topic, you can specify the output format in three ways:

Using the output option in a named profile in the config file — The following example sets the
default output format to text.

[default]
output=text

Using the AWS_DEFAULT_OUTPUT environment variable - The following output sets the format to
table for the commands in this command line session until the variable is changed or the session
ends. Using this environment variable overrides any value set in the config file.

‘$ export AWS_DEFAULT_OUTPUT="table"

Using the --output option on the command line - The following example sets the output of
only this one command to json. Using this option on the command overrides any currently set
environment variable or the value in the config file.

‘$ aws swf list-domains --registration-status REGISTERED --output json

You can customize and filter the results in any format by using the --query parameter. For more
information, see How to Filter the Output with the -—query Option (p. 93).

88

https://json.org/
https://yaml.org/

AWS Command Line Interface User Guide
JSON Output Format

JSON Output Format

JSON is the default output format of the AWS CLI. Most programming languages can easily decode JSON
strings using built-in functions or with publicly available libraries. You can combine JSON output with the
--query option (p. 93) in powerful ways to filter and format the AWS CLI JSON-formatted output.

For more advanced filtering that you might not be able to do with --query, you can consider
jag, a command line JSON processor. You can download it and find the official tutorial at http://
stedolan.github.io/jq/.

The following is an example of JSON output.

$ aws iam list-users --output json

"Users": [
{

"Path": "/",
"UserName": "Admin",
"UserId": "AIDA1111111111EXAMPLE",
"Arn": "arn:aws:iam::123456789012:user/Admin",
"CreateDate": "2014-10-16T16:03:09+00:00",
"PasswordLastUsed": "2016-06-03T18:37:29+00:00"

"Path": "/backup/",

"UserName": "backup-user",

"UserId": "AIDA2222222222EXAMPLE",

"Arn": "arn:aws:iam::123456789012:user/backup/backup-user",
"CreateDate": "2019-09-17T19:30:40+00:00"

"Path": "/",

"UserName": "cli-user",

"UserId": "AIDA3333333333EXAMPLE",

"Arn": "arn:aws:iam::123456789012:user/cli-user",
"CreateDate": "2019-09-17T19:11:39+00:00"

YAML Output Format

This feature is available only with version 2 of the AWS CLI.

The following feature is available only if you use version 2 of the AWS CLI. It isn't available if you
run version 1. For information about how to install the preview of version 2, see Installing the
AWS CLI version 2 (p. 4).

YAML is a good choice for handling the output programmatically with services and tools that emit or
consume YAML-formatted strings, such as AWS CloudFormation with its support for YAML-formatted
templates.

For more advanced filtering that you might not be able to do with --query, you can consider
vq, a command line YAML processor. You can download it and find documentation at http://
mikefarah.github.io/yq/.

The following is an example of YAML output.

$ aws iam list-users --output yaml

89

https://json.org
http://stedolan.github.io/jq/
http://stedolan.github.io/jq/
https://yaml.org
https://yaml.org
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-formats.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-formats.html
http://mikefarah.github.io/yq/
http://mikefarah.github.io/yq/

AWS Command Line Interface User Guide
Text Output Format

Users:

- Arn: arn:aws:iam::123456789012:user/Admin
CreateDate: '2014-10-16T16:03:09+00:00"'
PasswordLastUsed: '2016-06-03T18:37:29+00:00"'
Path: /

UserId: AIDA1111111111EXAMPLE
UserName: Admin

- Arn: arn:aws:iam::123456789012:user/backup/backup-user

CreateDate: '2019-09-17T19:30:40+00:00"

Path: /backup/

UserId: AIDA2222222222EXAMPLE

UserName: arg-45EFD6D1-CE56-459B-B39F-F9C1F78FBE19

- Arn: arn:aws:iam::123456789012:user/cli-user
CreateDate: '2019-09-17T19:30:40+00:00"

Path: /
UserId: AIDA3333333333EXAMPLE
UserName: cli-user

Text Output Format

The text format organizes the AWS CLI output into tab-delimited lines. It works well with traditional
Unix text tools such as grep, sed, and awk, and the text processing performed by PowerShell.

The text output format follows the basic structure shown below. The columns are sorted alphabetically
by the corresponding key names of the underlying JSON object.

IDENTIFIER sorted-columnl sorted-column2
IDENTIFIER2 sorted-columnl sorted-column2

The following is an example of text output. Each field is tab separated from the others, with an extra
tab where there is an empty field.

$ aws iam list-users --output text

USERS arn:aws:iam::123456789012:user/Admin 2014-10-16T16:03:09+00:00
2016-06-03T18:37:29+00:00 / AIDA1111111111EXAMPLE Admin
USERS arn:aws:iam::123456789012:user/backup/backup-user 2019-09-17T19:30:40+00:00
/backup/ AIDA2222222222EXAMPLE backup-user
USERS arn:aws:iam::123456789012:user/cli-user 2019-09-17T19:11:39+00:00
/ AIDA3333333333EXAMPLE cli-user

The fourth column is the PasswordLastUsed field, and is empty for the last two entries because those
users never sign in to the AWS Management Console.

Important

We strongly recommend that if you specify text output, you also always use the —-

query (p. 93) option to ensure consistent behavior.

This is because the text format alphabetically orders output columns by the key name of the
underlying JSON object returned by the AWS service, and similar resources might not have the
same key names. For example, the JSON representation of a Linux-based Amazon EC2 instance
might have elements that are not present in the JSON representation of a Windows-based
instance, or vice versa. Also, resources might have key-value elements added or removed in
future updates, altering the column ordering. This is where --query augments the functionality
of the text output to provide you with complete control over the output format.

In the following example, the command specifies which elements to display and defines the
ordering of the columns with the list notation [key1, key2, ...].This gives you full
confidence that the correct key values are always displayed in the expected column. Finally,
notice how the AWS CLI outputs None as the value for keys that don't exist.

90

AWS Command Line Interface User Guide
Text Output Format

$ aws iam list-users --output text --query 'Users[*].
[UserName,Arn,CreateDate,PasswordLastUsed,UserId]’

Admin arn:aws:iam::123456789012:user/Admin
2014-10-16T16:03:09+00:00 2016-06-03T18:37:29+00:00 AIDA1111111111EXAMPLE
backup-user arn:aws:iam::123456789012:user/backup-user

2019-09-17T19:30:40+00:00 None ATIDA2222222222EXAMPLE
cli-user arn:aws:iam::123456789012:user/cli-backup
2019-09-17T19:11:39+00:00 None AIDA3333333333EXAMPLE

The following example shows how you can use grep and awk with the text output from the aws ec2
describe-instances command. The first command displays the Availability Zone, current state, and
the instance ID of each instance in text output. The second command processes that output to display
only the instance IDs of all running instances in the us-west-2a Availability Zone.

$ aws ec2 describe-instances --query 'Reservations[*].Instances[*].

[Placement.AvailabilityZone, State.Name, InstanceId]' --output text
us-west-2a running i-4b41a37c
us-west-2a stopped i-a071c394
us-west-2b stopped i-97a217a0
us-west-2a running i-3045b007
us-west-2a running i-6£fc67758

$ aws ec2 describe-instances --query 'Reservations[*].Instances[*].
[Placement.AvailabilityZone, State.Name, InstanceId]' --output text | grep us-west-2a |
grep running | awk '{print $3}'

i-4b41a37c
i-3045b007
i-6fc67758

The following example goes a step further and shows not only how to filter the output, but how to use
that output to automate changing instance types for each stopped instance.

$ aws ec2 describe-instances --query 'Reservations[*].Instances[*].[State.Name,
InstanceId]' --output text |

> grep stopped |

> awk '{print $2}' |

> while read line;

> do aws ec2 modify-instance-attribute --instance-id $line --instance-type '{"Value":
"ml.medium"}"';

> done

The text output can also be useful in PowerShell. Because the columns in text output are tab
delimited, you can easily split the output into an array by using PowerShell's ~ t delimiter. The following
command displays the value of the third column (Instance1d) if the first column (AvailabilityZone)
matches the string us-west-2a.

PS C:\>aws ec2 describe-instances --query 'Reservations[*].Instances[*].
[Placement.AvailabilityZone, State.Name, InstanceId]' --output text |
%{if ($_.split(""t")[0] -match "us-west-2a") { $_.split(""t")[2]; } }

-4b41la37c
i-a071c394

91

AWS Command Line Interface User Guide
Table Output Format

1-3045b007
i-6£fc67758

Notice that although the previous example does show how to use the --query parameter to parse the
underlying JSON objects and pull out the desired column, PowerShell has its own ability to handle JSON,
if cross-platform compatibility isn't a concern. Instead of handling the output as text, as most command
shells require, PowerShell lets you use the ConvertFrom-JSON cmdlet to produce a hierarchically
structured object. You can then directly access the member you want from that object.

(aws ec2 describe-instances --output json | ConvertFrom-
Json) .Reservations.Instances.InstancelId

Tip

If you output text, and filter the output to a single field using the --query parameter, the
output is a single line of tab-separated values. To get each value onto a separate line, you can
put the output field in brackets, as shown in the following examples.

Tab separated, single-line output:

$ aws iam list-groups-for-user --user-name susan --output text --query
"Groups[] .GroupName"

HRDepartment Developers SpreadsheetUsers LocalAdmins

Each value on its own line by putting [GroupName] in brackets:

$ aws iam list-groups-for-user --user-name susan --output text --query
"Groups[].[GroupName "

HRDepartment
Developers
SpreadsheetUsers
LocalAdmins

Table Output Format

The table format produces human-readable representations of complex AWS CLI output in a tabular
form.

$ aws iam list-users --output table

ListUsers
S I
+
| Users

Il
|+— - o
o o —————— o o ———— +|
|| Arn CreateDate
PasswordLastUsed | Path | UserId | UserName |
|+— - o
o o —————— o o ——— +|
|| arn:aws:iam::123456789012:user/Admin | 2014-10-16T16:03:09+00:00 |
2016-06-03T18:37:29+00:00 | / | AIDA1111111111EXAMPLE | Admin |

92

AWS Command Line Interface User Guide
How to Filter the Output with the --query Option

|| arn:aws:iam::123456789012:user/backup/backup-user | 2019-09-17T19:30:40+00:00 |
| /backup/ | AIDA2222222222EXAMPLE | backup-user ||

|| arn:aws:iam::123456789012:user/cli-user | 2019-09-17T19:11:39+00:00 |
|/ | AIDA3333333333EXAMPLE | cli-user |l

You can combine the --query option with the table format to display a set of elements preselected
from the raw output. Notice the output differences between dictionary and list notations: in the first
example, column names are ordered alphabetically, and in the second example, unnamed columns are
ordered as defined by the user. For more information about the --query option, see How to Filter the
Output with the --query Option (p. 93).

$ aws ec2 describe-volumes --query 'Volumes[*].

{ID:VolumeId, InstanceId:Attachments[0].Instanceld,AZ:AvailabilityZone,Size:Size}' --output
table

| DescribeVolumes

Fommm - Fomm - Fommm e Fomm +

| AZ | ID | InstanceId | size

Fommm - Fomm - Fomm e Fomm +

| us-west-2a| vol-ella5288 | i-a071c394 | 30 |

| us-west-2a| vol-2e410a47 | i-4b4la37c | 8 |

Fommm - Fomm - Fommm e Fomm +

$ aws ec2 describe-volumes --query 'Volumes[*].
[VolumeId,Attachments[0].Instanceld,AvailabilityZone,Size]' --output table
| DescribeVolumes

Fomm e Fomm e Fomm e e +

| vol-ella5288| i-a071c394 | wus-west-2a | 30 |

| vol-2e410a47| i-4b4la37c | wus-west-2a | 8 |

Fomm e Fomm e Fomm e e +

How to Filter the Output with the -—query Option

The AWS CLI provides built-in JSON-based output filtering capabilities with the --query option. The --
query parameter accepts strings that are compliant with the JMESPath specification.

Important
The output type you specify (json, yaml, text, or table) impacts how the --query option
operates:

« If you specify —-—output text, the output is paginated before the —--query filter is
applied, and the AWS CLI runs the query once on each page of the output. This can result in
unexpected extra output, especially if your filter specifies an array element using something
like [0], because the output then includes the first matching element on each page. To work
around the extra output that --output text can produce, you can specify --no-paginate.
This causes the filter to apply only to the complete set of results. But it does remove any
pagination, so it might result in long output. You can also use other command line tools such
as head or tail to additionally filter the output to only the values you want.

« If you specify —-output json, the output is completely processed as a single, native JSON
structure before the —--query filter is applied. The AWS CLI runs the query only once against
the entire JSON structure, producing a filtered JSON result that is then output.

93

http://jmespath.org/

AWS Command Line Interface User Guide
How to Filter the Output with the --query Option

« If you specify -—output yaml, the output is completely processed as a single, native JSON
structure before the --query filter is applied. The AWS CLI runs the query only once against
the entire JSON structure, producing a filtered JSON result that is then converted to YAML
and output.

To demonstrate how --query works, we start with the following default JSON output. This describes
two Amazon Elastic Block Store (Amazon EBS) volumes attached to separate Amazon EC2 instances.

$ aws ec2 describe-volumes

"Volumes": [
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000Z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
b
]V
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-18T20:26:16.000Z",
"InstanceId": "i-4b41a37c",
"VolumeId": "vol-2e410a47",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
b
]V
"VolumeType": "standard",
"VolumeId": "vol-2e410a47",
"State": "in-use",
"SnapshotId": "snap-708e8348",
"CreateTime": "2013-09-18T20:26:15.000Z",
"Size": 8

You can choose to display only the first volume from the Volumes list by using the following command
that indexes the first volume in the array.

$ aws ec2 describe-volumes --query 'Volumes[O0]'

{

94

http://jmespath.org/specification.html#index-expressions

AWS Command Line Interface User Guide
How to Filter the Output with the --query Option

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000Z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30

The next example uses the wildcard notation [*] to iterate over all of the volumes in the

list, filtering out three elements from each volume: VolumeId, AvailabilityZone, and

Size. The dictionary notation requires that you provide an alias for each JSON key, like this:
{Alias1:JSONKeyl,Alias2:JSONKey2}. A dictionary is inherently unordered, so the ordering of the
keys/aliases within a structure might be inconsistent.

$ aws ec2 describe-volumes --query 'Volumes[*].{ID:VolumelId,AZ:AvailabilityZone,Size:Size}"

[
{
"AZ": "us-west-2a",
"ID": "vol-ella5288",
"Size": 30
I
{
"AZ": "us-west-2a",
"ID": "vol-2e410a47",
"Size": 8
}
]

Using dictionary notation, you can also chain keys together, like key1.key2[0].key3, to filter
elements deeply nested within the structure. The following example demonstrates this with the
Attachments[0].InstanceId key, aliased to simply InstanceId.

$ aws ec2 describe-volumes --query 'Volumes[*].
{ID:VolumeId, InstanceId:Attachments[0].InstanceId,AZ:AvailabilityZone,Size:Size}"

[

{
"InstanceId": "i-a071c394",
"AZ": "us-west-2a",
"ID": "vol-ella5288",
"Size": 30

I

{
"InstanceId": "i-4b41a37c",
"AZ": "us-west-2a",
"ID": "vol-2e410a47",
"Size": 8

}

95

http://jmespath.org/specification.html#wildcard-expressions

AWS Command Line Interface User Guide
How to Filter the Output with the --query Option

]

You can also filter multiple elements using list notation: [key1, key2]. This formats all filtered
attributes into a single ordered list per object, regardless of type.

$ aws ec2 describe-volumes --query 'Volumes[*].[VolumeId, Attachments[0].InstanceId,
AvailabilityZone, Size]'

"vol-ella5288",
"i-a071c394",
"us-west-2a",
30

"vol-2e410a47",
"i-4b41a37c",
"us-west-2a",

8

To filter results by the value of a specific field, use the JMESPath "?" operator. The following example
query outputs only volumes in the us-west-2a Availability Zone.

$ aws ec2 describe-volumes \
--query 'Volumes[?AvailabilityZone=="us-west-2a"]’'

Note
When specifying a literal value such as "us-west-2" above in a JMESPath query expression,
you must surround the value in backticks (* *) for it to be read properly.

Here are some additional examples that illustrate how you can get only the details you want from the
output of your commands.

The following example lists Amazon EC2 volumes. The service produces a list of all attached volumes
in the us-west-2a Availability Zone. The --query parameter further limits the output to only those
volumes with a Size value that is larger than 50, and shows only the specified fields with user-defined
names.

$ aws ec2 describe-volumes \
--filters "Name=availability-zone,Values=us-west-2a" "Name=status,Values=attached" \
--query 'Volumes[?Size > ~50°].{Id:VolumeId,Size:Size,Type:VolumeType}"'

{
"Id": "vol-0be9bb0bf12345678",
"Size": 80,
"Type": "gp2"

}

The following example retrieves a list of images that meet several criteria. It then uses the --query
parameter to sort the output by CreationDate, selecting only the most recent. Finally, it displays the
ImageId of that one image.

$ aws ec2 describe-images \

96

http://jmespath.org/specification.html#filter-expressions

AWS Command Line Interface User Guide
How to Filter the Output with the --query Option

--owners amazon \

--filters "Name=name,Values=amzn*gp2" "Name=virtualization-type,Values=hvm" "Name=root-
device-type,Values=ebs" \

--query "sort_by(Images, &CreationDate)[-1].ImageId" \

--output text

ami-00ced3122871a4921

The following example uses the —--query parameter to find a specific item in a list and then extracts
information from that item. The example lists all of the Availability Zones associated with the
specified service endpoint. It extracts the item from the ServiceDetails list that has the specified
ServiceName, then outputs the AvailabilityZones field from that selected item.

$ aws --region us-east-1 ec2 describe-vpc-endpoint-services \
--query 'ServiceDetails[?ServiceName=="com.amazonaws.us-east-1l.ecs”].AvailabilityZones'

"us-east-1la",
"us-east-1b",
"us-east-1lc",
"us-east-1d",
"us-east-le",
"us-east-1f"

The --query parameter also enables you to count items in the output. The following example displays
the number of available volumes that are more than 1000 IOPS by using length to count how many are
in a list.

$ aws ec2 describe-volumes \
--filters "Name=status,Values=available" \
--query 'length(Volumes[?Iops > ~1000°])'

The following example shows how to list all of your snapshots that were created after a specified date,
including only a few of the available fields in the output.

$ aws ec2 describe-snapshots --owner self \
--output json \
--query 'Snapshots[?StartTime>="2018-02-07"].
{Id:SnapshotId,VId:VolumelId,Size:VolumeSize}' \

{
"id": "snap-0Oeffb42b7alb2c3d4",
"vid": "vol-0be9bb0bf12345678",
"Size": 8

}

The following example lists the five most recent Amazon Machine Images (AMIls) that you created, sorted
from most recent to oldest.

97

AWS Command Line Interface User Guide
Shorthand Syntax

$ aws ec2 describe-images \
--owners self \
--query 'reverse(sort_by(Images,&CreationDate))[:5].{id:ImageId,date:CreationDate}’
[
{
"id": "ami-Oalb2c3d4e5f60001",
"date": "2018-11-28T17:16:38.000Z"
}l
{
"id": "ami-Oalb2c3d4e5f60002",
"date": "2018-09-15T13:51:22.000Z"
}l
{
"id": "ami-0alb2c3d4e5f60003",
"date": "2018-08-19T10:22:45.000Z"
}l
{
"id": "ami-0alb2c3d4e5f60004",
"date": "2018-05-03T12:04:02.000Z"
}l
{
"id": "ami-O0alb2c3d4e5f60005",
"date": "2017-12-13T17:16:38.000Z"
}
]

This following example shows only the InstanceId for any unhealthy instances in the specified Auto
Scaling group.

$ aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name My-AutoScaling-Group-Name \
--output text \
--query 'AutoScalingGroups[*].Instances[?HealthStatus=="Unhealthy"].InstanceId’'

Combined with the output formats that are explained in more detail previously in this topic, the —-
query option is a powerful tool you can use to customize the content and style of outputs.

For more examples and the full spec of JMESPath, the underlying JSSON-processing library, see http://
jmespath.org/specification.html.

Using Shorthand Syntax with the AWS CLI

The AWS Command Line Interface (AWS CLI) can accept many of its option parameters in JSON format.
However, it can be tedious to enter large JSON lists or structures on the command line. To make this
easier, the AWS CLI also supports a shorthand syntax that enables a simpler representation of your
option parameters than using the full JSON format.

Structure Parameters

The shorthand syntax in the AWS CLI makes it easier for users to input parameters that are flat (non-
nested structures). The format is a comma-separated list of key-value pairs.

Linux or macOS

98

http://jmespath.org/specification.html
http://jmespath.org/specification.html

AWS Command Line Interface User Guide
Shorthand Syntax

--option keyl=valuel,key2=value2, key3=value3

PowerShell

--option "keyl=valuel, key2=value2, key3=value3"

These are both equivalent to the following example, formatted in JSON.

--option '{"keyl":"valuel","key2":"value2", "key3":"value3"}'

There must be no white space between each comma-separated key-value pair. Here is an example of the
Amazon DynamoDB update-table command with the --provisioned-throughput option specified
in shorthand.

$ aws dynamodb update-table \
--provisioned-throughput ReadCapacityUnits=15,WriteCapacityUnits=10 \
--table-name MyDDBTable

This is equivalent to the following example formatted in JSON.

$ aws dynamodb update-table \
--provisioned-throughput '{"ReadCapacityUnits":15,"WriteCapacityUnits":10}" \
--table-name MyDDBTable

Using Shorthand Syntax with the AWS Command
Line Interface

You can specify Input parameters in a list form in two ways: JSON or shorthand. The AWS CLI shorthand
syntax is designed to make it easier to pass in lists with number, string, or non-nested structures.

The basic format is shown here, where values in the list are separated by a single space.

--option valuel value2 value3

This is equivalent to the following example, formatted in JSON.

--option '[valuel,value2,value3]’

As previously mentioned, you can specify a list of numbers, a list of strings, or a list of non-nested
structures in shorthand. The following is an example of the stop-instances command for Amazon
Elastic Compute Cloud (Amazon EC2), where the input parameter (list of strings) for the --instance-
ids option is specified in shorthand.

$ aws ec2 stop-instances \
--instance-ids 1-1486157a i1-1286157c i-ec3a7e87

This is equivalent to the following example formatted in JSON.

$ aws ec2 stop-instances \
--instance-ids '["i-1486157a","1-1286157c","i-ec3a7e87"]"

99

AWS Command Line Interface User Guide
Pagination

The following example shows the Amazon EC2 create-tags command, which takes a list of non-
nested structures for the --tags option. The --resources option specifies the ID of the instance to
tag.

$ aws ec2 create-tags \
--resources i-1286157c \
--tags Key=MylstTag,Value=Valuel Key=My2ndTag,Value=Value2 Key=My3rdTag,Value=Value3

This is equivalent to the following example, formatted in JSON. The JSON parameter is written over
multiple lines for readability.

$ aws ec2 create-tags \
--resources i-1286157c \

--tags '[
{"Key": "MylstTag", "Value": "Valuel"},
{"Key": "My2ndTag", "Value": "Value2"},
{"Key": "My3rdTag", "Value": "Value3"}

]r

Using AWS CLI Pagination Options

For commands that can return a large list of items, the AWS Command Line Interface (AWS CLI) has three
options to control the number of items included in the output when the AWS CLI calls a service's API to
populate the list.

By default, the AWS CLI uses a page size of 1000 and retrieves all available items. For example, if you run
aws s3api list-objects onan Amazon S3 bucket that contains 3,500 objects, the AWS CLI makes
four calls to Amazon S3, handling the service-specific pagination logic for you in the background and
returning all 3,500 objects in the final output.

If you see issues when running list commands on a large number of resources, the default page size of
1000 might be too high. This can cause calls to AWS services to exceed the maximum allowed time and
generate a "timed out" error. You can use the —--page-size option to specify that the AWS CLI request
a smaller number of items from each call to the AWS service. The CLI still retrieves the full list, but
performs a larger number of service API calls in the background and retrieves a smaller number of items
with each call. This gives the individual calls a better chance of succeeding without a timeout. Changing
the page size doesn't affect the output; it affects only the number of API calls that need to be made to
generate the output.

$ aws s3api list-objects \
--bucket my-bucket \
--page-size 100

"Contents": [

To include fewer items at a time in the AWS CLI output, use the --max-items option. The AWS CLI still
handles pagination with the service as described previously, but prints out only the number of items at a
time that you specify.

$ aws s3api list-objects \
--bucket my-bucket \
--max-items 100

"NextToken": "eyJNYXJrZXIiOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91lbnQiOiAxfQ==",

100

AWS Command Line Interface User Guide
Return Codes

"Contents": [

If the number of items output (--max-items) is fewer than the total number of items returned by the
underlying API calls, the output includes a NextToken that you can pass to a subsequent command to
retrieve the next set of items. The following example shows how to use the NextToken value returned
by the previous example, and enables you to retrieve the second 100 items.

Note

The parameter --starting-token cannot be null or empty. If the previous command does not
return a NextToken value, there are no more items to return and you do not need to call the
command again.

$ aws s3api list-objects \
--bucket my-bucket \
--max-items 100 \
--starting-token eyJNYXJrZXIiOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91bnQiOiAxfQ==

"Contents": [

The specified AWS service might not return items in the same order each time you call. If you specify
different values for --page-size and --max-items, you can get unexpected results with missing or
duplicated items. To prevent this, use the same number for --page-size and --max-items to sync
the AWS CLI pagination with the pagination of the underlying service. You can also retrieve the whole list
and perform any necessary paging operations locally.

Understanding Return Codes from the AWS CLI

To determine the return code of an AWS Command Line Interface (AWS CLI) command, run one of the
following commands immediately after running the CLI command.

Linux/Unix/Mac systems

$ echo $?

Windows PowerShell

PS> echo $lastexitcode

Windows Command Prompt

C:\> echo %errorlevel%

The following are the return code values that can be returned at the end of running an AWS Command
Line Interface (AWS CLI) command.

Ca Meaning

0 | The command completed successfully. There were no errors generated by either the AWS CLI or by
the AWS service to which the request was sent.

1 | One or more Amazon S3 transfer operations failed. Limited to S3 commands.

101

AWS Command Line Interface User Guide
Return Codes

Ca Meaning
2 | The meaning of this return code depends on the command:

« Applicable to all CLI commands — the command entered on the command line couldn't be parsed.
Parsing failures can be caused by, but aren't limited to, missing required subcommands or
arguments, or using unknown commands or arguments.

o Limited to S3 commands. — One or more files marked for transfer were skipped during the
transfer process. However, all other files marked for transfer were successfully transferred. Files
that are skipped during the transfer process include: files that don't exist; files that are character
special devices, block special device, FIFO queues, or sockets; and files that the user doesn't have

read permissions to.
130The command was interrupted by a SIGINT (Ctrl+C).

255The command failed. There were errors generated by the AWS CLI or by the AWS service to which
the request was sent.

For more details about a failure, run the command with the --debug switch. This produces a detailed
report of the steps the AWS CLI uses to process the command, and what the result of each step was.

102

AWS Command Line Interface User Guide
DynamoDB

Using the AWS CLI to Work with
AWS Services

This section provides examples that show how to use the AWS Command Line Interface (AWS CLI) to
access various AWS services.

For a complete reference of all the available commands for each service, see the AWS CLI Command
Reference, or use the built-in command line help. For more information, see Getting Help with the AWS
CLI (p. 69).
Topics

« Using Amazon DynamoDB with the AWS CLI (p. 103)

« Using Amazon EC2 with the AWS CLI (p. 105)

« Using Amazon S3 Glacier with the AWS CLI (p. 117)

« Using AWS Identity and Access Management from the AWS CLI (p. 120)

» Using Amazon S3 with the AWS CLI (p. 124)

« Using Amazon SNS with the AWS CLI (p. 130)

« Using Amazon SWF with the AWS CLI (p. 132)

Using Amazon DynamoDB with the AWS CLI

The AWS Command Line Interface (AWS CLI) provides support for all of the AWS database services,
including Amazon DynamoDB. You can use the AWS CLI for ad hoc operations, such as creating a table.
You can also use it to embed DynamoDB operations within utility scripts.

To list the AWS CLI commands for DynamoDB, use the following command.

$ aws dynamodb help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

The command line format consists of an DynamoDB command name, followed by the parameters for
that command. The AWS CLI supports the CLI shorthand syntax (p. 98) for the parameter values, and full
JSON.

For example, the following command creates a table named MusicCollection.

Note

For readability, long commands in this section are broken into separate lines. The backslash
(\) character is the line continuation character for the Linux command line, and lets you copy
and paste (or enter) multiple lines at a Linux prompt. If you're using a shell that doesn't use
the backslash for line continuation, replace the backslash with that shell's line continuation
character. Or remove the backslashes and put the entire command on a single line.

103

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/

AWS Command Line Interface User Guide
DynamoDB

$ aws dynamodb create-table \
--table-name MusicCollection \
--attribute-definitions AttributeName=Artist,AttributeType=S
AttributeName=SongTitle,AttributeType=S \
--key-schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

You can add new lines to the table with commands similar to those shown in the following example.
These examples use a combination of shorthand syntax and JSON.

$ aws dynamodb put-item \
--table-name MusicCollection \

--item '{
"Artist": {"S": "No One You Know"},
"SongTitle": {"S": "Call Me Today"} ,
"AlbumTitle": {"S": "Somewhat Famous"}
A
--return-consumed-capacity TOTAL
{
"ConsumedCapacity": {
"CapacityUnits": 1.0,
"TableName": "MusicCollection"
}
}

$ aws dynamodb put-item \
--table-name MusicCollection \

--item '{
"Artist": {"S": "Acme Band"},
"SongTitle": {"S": "Happy Day"} ,
"AlbumTitle": {"S": "Songs About Life"}
A
--return-consumed-capacity TOTAL
{

"ConsumedCapacity": {
"CapacityUnits": 1.0,
"TableName": "MusicCollection"

}

}

It can be difficult to compose valid JSON in a single-line command. To make this easier, the AWS CLI
can read JSON files. For example, consider the following JSON snippet, which is stored in a file named
expression-attributes. json.

":vl": {"S": "No One You Know"},
":v2": {"S": "Call Me Today"}

You can use that file to issue a query request using the AWS CLI. In the following example, the content
of the expression-attributes. json file is used as the value for the -—-expression-attribute-
values parameter.

$ aws dynamodb query --table-name MusicCollection \
--key-condition-expression "Artist = :vl AND SongTitle = :v2" \
--expression-attribute-values file://expression-attributes. json

"Count": 1,
"Items": [

104

AWS Command Line Interface User Guide

Amazon EC2
{
"AlbumTitle": {
"S": "Somewhat Famous"
Iy
"SongTitle": {
"S": "Call Me Today"
Iy
"Artist": {
"S": "No One You Know"
}
}
1,
"ScannedCount": 1,
"ConsumedCapacity": null
}

For more information about using the AWS CLI with DynamoDB, see DynamoDB in the AWS CLI
Command Reference.

In addition to DynamoDB, you can use the AWS CLI with DynamoDB Local. DynamoDB Local is a small
client-side database and server that mimics the DynamoDB service. DynamoDB Local enables you

to write applications that use the DynamoDB API, without manipulating any tables or data in the
DynamoDB web service. Instead, all of the API actions are rerouted to a local database. This lets you save
on provisioned throughput, data storage, and data transfer fees.

For more information about DynamoDB Local and how to use it with the AWS CLI, see the following
sections of the Amazon DynamoDB Developer Guide:

« DynamoDB Local
» Using the AWS CLI with DynamoDB Local

Using Amazon EC2 with the AWS CLI

You can access the features of Amazon Elastic Compute Cloud (Amazon EC2) using the AWS Command
Line Interface (AWS CLI). To list the AWS CLI commands for Amazon EC2, use the following command.

aws ec2 help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

This topic shows examples of AWS CLI commands that perform common tasks for Amazon EC2.

Topics
« Creating, Displaying, and Deleting Amazon EC2 Key Pairs (p. 105)
» Creating, Configuring, and Deleting Security Groups for Amazon EC2 (p. 107)
» Launching, Listing, and Terminating Amazon EC2 Instances (p. 111)

Creating, Displaying, and Deleting Amazon EC2 Key
Pairs

You can use the AWS Command Line Interface (AWS CLI) to create, display, and delete your key pairs for
Amazon Elastic Compute Cloud (Amazon EC2). You use key pairs to connect to an Amazon EC2 instance.

105

https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.CLI.html#UsingWithDDBLocal

AWS Command Line Interface User Guide
Amazon EC2 Key Pairs

You must provide the key pair to Amazon EC2 when you create the instance, and then use that key pair
to authenticate when you connect to the instance.

Note
The following examples assume that you have already configured your default
credentials (p. 105).

Topics
« Create a Key Pair (p. 106)
« Display Your Key Pair (p. 107)
« Delete Your Key Pair (p. 107)

Create a Key Pair

To create a key pair, use the create-key-pair command with the --query option, and the --output
text option to pipe your private key directly into a file.

$ aws ec2 create-key-pair --key-name MyKeyPair --query 'KeyMaterial' --output text
> MyKeyPair.pem

For PowerShell, the > file redirection defaults to UTF-8 encoding, which cannot be used with some
SSH clients. So, you must convert the output by piping it to the out-£ile command and explicitly set
the encoding to ascii.

PS C:\>aws ec2 create-key-pair --key-name MyKeyPair --query 'KeyMaterial' --output text |
out-file -encoding ascii -filepath MyKeyPair.pem

The resulting MyKeyPair . pemn file looks similar to the following.

EXAMPLEKEYKCAQEAYy7WZhaDsrA1W3mR10tvhwyORRX8gnxgDAfRt/gx42kWXsT4rXE/b5CpSgie/
vBoU7jLxx92pNHOFnByP+Dc21leyyz6CvjTmWAOIWEWiW5/akH7105dSrvC7dQkWw2duv5QuUdEOQW
Z/aNxMniGQE6XAgfwlnXVBwrerrQo+zZWQeqiUwwMkuEbLeJFLhMCVYURpUMSCloehm449i1x9X1F
G50TCFe0z£f18dqqCP6GzbPaljiUl19xX/azOR9V+tpUOZEL+wmXnZt3 /nHPQ5xvD20JH67km6SuPW
oPzev/D8V+x4+bHthfSjRIY7DVQF jfBVWHXigBdtZcU2/wei8D/HYWIDAQABAOIBAGZ1lkaEvnrqu
/uler7vgIn5m71N5LKw4hJLAIW6tUT/£2vtcHKOSKbQCOXur iHmQ2MQyJX/0kn2Nf jLV/ufGxbL1
mb5qwMGUNEpJazD6QSSs3kICLWWUYUiGfcOuiSbmJoap/GTLUOW5Mfcv36PaBUNy5p53V6G7hXb2
bahyWyJINf jLe4M86yd2YK3V2CmK+X/BOsShnJ36+hjrXPPWmV3N9zEmCdJjA+K15DYmhm/tJWSD9
810Gk9TopEp7CKIfatEATYyZiVqoRg6k64iuM9JkA30zdXzMOexXVJI1TLZVEHOE7bh1Y9d80102R
00Qs/FiZNAx2iijCWyv0lpjE73+kCgYEAIMZtyhkHkFDpwr SM1APaL80oNAbbjwEy7Z5Mgfql+1Ipl
YkriLODbLX1vRAH+yHPRit2hHOjtUNZh4Axv+cpg09gbUI3+43eEy24B7G/Uh+GTfbjsXs0x0x /X
p90otyVwc7hsQ5TA5PZb+mvkI50BEKZet 9XcKwONBYELGhnEPe7cCgYEAO6Vgov6YHleHui9kHuws
ayavOelc5zkxjFInfHFJRry21R1trw2Vdpn+9g481URrpzWVOEihvm+xTtmaZlSp//1kq75XDwnU
WA8gkn603QE3fq2yN98BURSAKAIJfI5RL1HVGQVTel0HLYYXpJnEKHV+Unl2ajLiviWUt5pbBrKbUC
gYBjbO+0Zk0sCcpZ29sbzjYjpIddErySIyRX5gV2uNQwAjLdp9P£N295yQ+BxMBXiIycWVQiwObH
oMo7yykABY70zd5wQewBQ4AdS1WSX4nGDtsiFxXWiI5sKuAAeOCbTosyls8w8£fxoJ5Tz1lsdoxNeGs
Arg6Wv/G1l6zQUAE9zZK9VVWKBgF+09VI/1wIBirsDGzO9WhVWEFPrTkINvIZzYt69gezxls jgFKshy
WBhd4xHZtmCqpBPlAymEjr/TOlbxyARmXMnIOWIANNXMGB4KGSyllmzSVAoQ+fgR+cJI3d0dyPl11j
jjbOEd/NY8fr1NDxXAVHE8BSkdsx2f6ELEyBKISRr9snRAOGAMr TwYneXzvTskF/S5Fyu0iOegLDa
NWUH38v/nDCgEpIXD5HN3gAECcjull jmbwlvtW+nY2jVhv7UGd8MjwUTNGItdb6nsYgM2asrnF3gsS
VRKAKKKYeGjkpUfVTrWOYF jXkfcrR/V+QFL50ndHAKIX jW7a4ejJLncTzmZSpYzZwApc=

Your private key isn't stored in AWS and can be retrieved only when it's created. You can't recover it later.
Instead, if you lose the private key, you must create a new key pair.

If you're connecting to your instance from a Linux computer, we recommend that you use the following
command to set the permissions of your private key file so that only you can read it.

106

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-key-pair.html

AWS Command Line Interface User Guide
Amazon EC2 Security Groups

$ chmod 400 MyKeyPair.pem

Display Your Key Pair

A "fingerprint" is generated from your key pair, and you can use it to verify that the private key that you
have on your local machine matches the public key that's stored in AWS.

The fingerprint is an SHA1 hash taken from a DER-encoded copy of the private key. This value is captured
when the key pair is created, and is stored in AWS with the public key. You can view the fingerprint in the
Amazon EC2 console or by running the AWS CLI command aws ec2 describe-key-pairs.

The following example displays the fingerprint for MyKeyPair.

$ aws ec2 describe-key-pairs --key-name MyKeyPair

{
"KeyPairs": [
{
"KeyName": "MyKeyPair",
"KeyFingerprint": "1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f"
}
]
}

For more information about keys and fingerprints, see Amazon EC2 Key Pairs in the Amazon EC2 User
Guide for Linux Instances.

Delete Your Key Pair

To delete a key pair, run the following command, substituting MyKeyPair with the name of the pair to
delete.

$ aws ec2 delete-key-pair --key-name MyKeyPair

Creating, Configuring, and Deleting Security Groups
for Amazon EC2

You can create a security group for your Amazon Elastic Compute Cloud (Amazon EC2) instances that
essentially operates as a firewall, with rules that determine what network traffic can enter and leave.

You can create security groups to use in a virtual private cloud (VPC), or in the EC2-Classic shared flat
network. For more information about the differences between EC2-Classic and EC2-VPC, see Supported
Platforms in the Amazon EC2 User Guide for Linux Instances.

Use the AWS Command Line Interface (AWS CLI) to create a security group, add rules to existing security
groups, and delete security groups.

Note
The following examples assume that you have already configured your default
credentials (p. 105).
Topics
» Create a Security Group (p. 108)
« Add Rules to Your Security Group (p. 109)

107

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS Command Line Interface User Guide
Amazon EC2 Security Groups

« Delete Your Security Group (p. 111)

Create a Security Group
You can create security groups associated with VPCs or for EC2-Classic.

EC2-VPC

The following example shows how to create a security group for a specified VPC.

$ aws ec2 create-security-group --group-name my-sg --description "My security group" --vpc-
id vpc-la2b3c4d
{

"GroupId": "sg-903004f8"
¥

To view the initial information for a security group, run the describe-security-groups command. You can
reference an EC2-VPC security group only by its vpc-id, not its name.

$ aws ec2 describe-security-groups --group-ids sg-903004f8
{
"SecurityGroups": [
{
"IpPermissionsEgress": [
{
"IpProtocol": "-1",
"IpRanges": [
{
"CidrIp": "0.0.0.0/0"
}
1,
"UserIdGroupPairs": []
¥

]I
"Description": "My security group"
"IpPermissions": [],
"GroupName": "my-sg",
"VpcId": "vpc-la2b3c4d",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"

EC2-Classic

The following example shows how to create a security group for EC2-Classic.

$ aws ec2 create-security-group --group-name my-sg --description "My security group"

{
"GroupId": "sg-903004f8"

}

To view the initial information for my-sg, run the describe-security-groups command. For an EC2-Classic
security group, you can reference it by its name.

$ aws ec2 describe-security-groups --group-names my-sg

108

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-security-groups.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-security-groups.html

AWS Command Line Interface User Guide
Amazon EC2 Security Groups

"SecurityGroups": [
{

"IpPermissionsEgress": [],
"Description": "My security group"
"IpPermissions": [],
"GroupName": "my-sg",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"

Add Rules to Your Security Group

When you run an Amazon EC2 instance, you must enable rules in the security group to allow incoming
network traffic for your means of connecting to the image.

For example, if you're launching a Windows instance, you typically add a rule to allow inbound traffic
on TCP port 3389 to support Remote Desktop Protocol (RDP). If you're launching a Linux instance, you
typically add a rule to allow inbound traffic on TCP port 22 to support SSH connections.

Use the authorize-security-group-ingress command to add a rule to your security group. A
required parameter of this command is the public IP address of your computer, or the network (in the
form of an address range) that your computer is attached to, in CIDR notation.

Note

We provide the following service, https://checkip.amazonaws.com/, to enable you to determine
your public IP address. To find other services that can help you identify your IP address, use
your browser to search for "what is my IP address". If you connect through an ISP or from behind
your firewall using a dynamic IP address (through a NAT gateway from a private network), your
address can change periodically. In that case, you must find out the range of IP addresses used
by client computers.

EC2-VPC

The following example shows how to add a rule for RDP (TCP port 3389) to an EC2-VPC security group
with the ID sg-903004£8. This example assumes the client computer has an address somewhere in the
CIDR range 203.0.113.0/24.

You can start by confirming that your public address shows as included in the CIDR range
203.0.113.0/24.

$ curl https://checkip.amazonaws.com
203.0.113.57

With that information confirmed, you can add the range to your security group by running the
authorize-security-group-ingress command.

$ aws ec2 authorize-security-group-ingress --group-id sg-903004f8 --protocol tcp --port
3389 --cidr 203.0.113.0/24

The following command adds another rule to enable SSH to instances in the same security group.

$ aws ec2 authorize-security-group-ingress --group-id sg-903004f8 --protocol tcp --port 22
--cidr 203.0.113.0/24

109

https://docs.aws.amazon.com/cli/latest/reference/ec2/authorize-security-group-ingress.html
https://wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://checkip.amazonaws.com/
https://docs.aws.amazon.com/cli/latest/reference/ec2/authorize-security-group-ingress.html

AWS Command Line Interface User Guide
Amazon EC2 Security Groups

To view the changes to the security group, run the describe-security-groups command.

$ aws ec2 describe-security-groups --group-ids sg-903004f8

{
"SecurityGroups": [
{
"IpPermissionsEgress": [
{
"IpProtocol": "-1",
"IpRanges": [
{
"CidrIp": "0.0.0.0/0"
}
1,
"UserIdGroupPairs": []
}
1,
"Description": "My security group"
"IpPermissions": [
{
"ToPort": 22,
"IpProtocol": "tcp",
"IpRanges": [
{
"CidrIp": "203.0.113.0/24"
}
]
"UserIdGroupPairs": [],
"FromPort": 22
}
1,
"GroupName": "my-sg",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"
}
]
}
EC2-Classic

The following command adds a rule for RDP to the EC2-Classic security group named my-sg.

$ aws ec2 authorize-security-group-ingress --group-name my-sg --protocol tcp --port 3389 --
cidr 203.0.113.0/24

The following command adds another rule for SSH to the same security group.

$ aws ec2 authorize-security-group-ingress --group-name my-sg --protocol tcp --port 22 --
cidr 203.0.113.0/24

To view the changes to your security group, run the describe-security-groups command.

$ aws ec2 describe-security-groups --group-names my-sg

{
"SecurityGroups": [
{
"IpPermissionsEgress": [],
"Description": "My security group"
"IpPermissions": [
{

110

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-security-groups.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-security-groups.html

AWS Command Line Interface User Guide
EC2 Instances

"ToPort": 22,
"IpProtocol": "tcp",
"IpRanges": [
{
"CidrIp": "203.0.113.0/24"
}
]

"UserIdGroupPairs": [],
"FromPort": 22

}
1,
"GroupName": "my-sg",
"OwnerId": "123456789012",

"GroupId": "sg-903004f8"

Delete Your Security Group

To delete a security group, run the delete-security-group command.

Note
You can't delete a security group if it's currently attached to an environment.

EC2-VPC

The following command deletes an EC2-VPC security group.

$ aws ec2 delete-security-group --group-id sg-903004f8

EC2-Classic

The following command deletes the EC2-Classic security group named my-sg.

$ aws ec2 delete-security-group --group-name my-sg

Launching, Listing, and Terminating Amazon EC2
Instances

You can use the AWS Command Line Interface (AWS CLI) to launch, list, and terminate Amazon Elastic
Compute Cloud (Amazon EC2) instances. You need a key pair (p. 105) and a security group (p. 107).
You also need to select an Amazon Machine Image (AMI) and make a note of the AMI ID. For more
information, see Finding a Suitable AMI in the Amazon EC2 User Guide for Linux Instances.

If you launch an instance that isn't within the AWS Free Tier, you are billed after you launch the instance
and charged for the time that the instance is running, even if it remains idle.

Note
The following examples assume that you have already configured your default
credentials (p. 105).

Topics
« Launch Your Instance (p. 112)
« Add a Block Device to Your Instance (p. 115)

https://docs.aws.amazon.com/cli/latest/reference/ec2/delete-security-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html

AWS Command Line Interface User Guide
EC2 Instances

« Add a Tag to Your Instance (p. 115)
« Connect to Your Instance (p. 116)
o List Your Instances (p. 116)

« Terminate Your Instance (p. 116)

Launch Your Instance

To launch an Amazon EC2 instance using the AMI you selected, use the run-instances command. You can
launch the instance into a virtual private cloud (VPC), or if your account supports it, into EC2-Classic.

Initially, your instance appears in the pending state, but changes to the running state after a few
minutes.

EC2-VPC

The following example shows how to launch a t2.micro instance in the specified subnet of a VPC.
Replace the italicized parameter values with your own.

$ aws ec2 run-instances --image-id ami-xxxxxxxx --count 1 --instance-type t2.micro --key-
name MyKeyPair --security-group-ids sg-903004f8 --subnet-id subnet-6e7f829e
{

"OwnerId": "123456789012",
"ReservationId": "r-5875ca20",
"Groups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"
}
1,
"Instances": [
{
"Monitoring": {
"State": "disabled"
I
"PublicDnsName": null,
"Platform": "windows",
"State": {
"Code": O,
"Name": "pending"
I
"EbsOptimized": false,
"LaunchTime": "2013-07-19T02:42:39.000Z",
"PrivateIpAddress": "10.0.1.114",

"ProductCodes": [],
"VpcId": "vpc-la2b3c4d",
"InstanceId": "i-5203422c",
"ImageId": "ami-173d747e",
"PrivateDnsName": ip-10-0-1-114.ec2.internal,
"KeyName": "MyKeyPair",
"SecurityGroups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"
}
1,
"ClientToken": null,
"SubnetId": "subnet-6e7£829%e",
"InstanceType": "t2.micro",
"NetworkInterfaces": [

{

112

https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html

AWS Command Line Interface User Guide
EC2 Instances

"Status": "in-use",
"SourceDestCheck": true,
"VpcId": "vpc-la2b3c4d",

"Description": "Primary network interface",
"NetworkInterfaceId": "eni-a7edblc9",
"PrivateIpAddresses": [
{
"PrivateDnsName": "ip-10-0-1-114.ec2.internal",
"Primary": true,
"PrivateIpAddress": "10.0.1.114"
}
1,
"PrivateDnsName": "ip-10-0-1-114.ec2.internal",
"Attachment": {
"Status": "attached",

"DeviceIndex": O,
"DeleteOnTermination": true,

"AttachmentId": "eni-attach-52193138",
"AttachTime": "2013-07-19T02:42:39.000Z"
}
"Groups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"
}
1,
"SubnetId": "subnet-6e7£829e",
"OwnerId": "123456789012",
"PrivateIpAddress": "10.0.1.114"

"SourceDestCheck": true,
"Placement": {
"Tenancy": "default",
"GroupName": null,
"AvailabilityZone": "us-west-2b"

"Hypervisor": "xen",
"BlockDeviceMappings": [

"DeviceName": "/dev/sdal",

"Ebs": {
"Status": "attached",
"DeleteOnTermination": true,
"VolumeId": "vol-877166c8",
"AttachTime": "2013-07-19T02:42:39.000Z"

"Architecture": "x86_64",

"StateReason": {
"Message": "pending",
"Code": "pending"

"RootDeviceName": "/dev/sdal",
"VirtualizationType": "hvm",
"RootDeviceType": "ebs",

[

"Value": "MyInstance",
"Key": "Name"

"AmiLaunchIndex": 0

113

AWS Command Line Interface User Guide
EC2 Instances

}

EC2-Classic

If your account supports it, you can use the following command to launch a t1.micro instance in EC2-
Classic. Replace the italicized parameter values with your own.

$ aws ec2 run-instances --image-id ami-173d747e --count 1 --instance-type tl.micro --key-
name MyKeyPair --security-groups my-sg
{
"OwnerId": "123456789012",
"ReservationId": "r-5875ca20",
"Groups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"

1,
"Instances": [
{

"Monitoring": {

"State": "disabled"
I
"PublicDnsName": null,
"Platform": "windows",
"State": {

"Code": O,

"Name": "pending"
I
"EbsOptimized": false,
"LaunchTime": "2013-07-19T02:42:39.000Z",
"ProductCodes": [],
"InstanceId": "i-5203422c",
"ImageId": "ami-173d747e",
"PrivateDnsName": null,
"KeyName": "MyKeyPair",
"SecurityGroups": [

{

"GroupName": "my-sg",
"GroupId": "sg-903004f8"

}
1.
"ClientToken": null,
"InstanceType": "tl.micro",
"NetworkInterfaces": [],
"Placement": {

"Tenancy": "default",
"GroupName": null,
"AvailabilityZone": "us-west-2b"
Iy
"Hypervisor": "xen",
"BlockDeviceMappings": [
{
"DeviceName": "/dev/sdal",
"Ebs": {
"Status": "attached",
"DeleteOnTermination": true,
"VolumeId": "vol-877166c8",
"AttachTime": "2013-07-19T02:42:39.000Z"
}
}
1.
"Architecture": "x86_64",

"StateReason": {

114

AWS Command Line Interface User Guide
EC2 Instances

"Message": "pending",
"Code": "pending"
Iy
"RootDeviceName": "/dev/sdal",
"VirtualizationType": "hvm",
"RootDeviceType": "ebs",
"Tags": [
{
"Value": "MyInstance",
"Key": "Name"
}
1,
"AmiLaunchIndex": 0

Add a Block Device to Your Instance

Each instance that you launch has an associated root device volume. You can use block device mapping
to specify additional Amazon Elastic Block Store (Amazon EBS) volumes or instance store volumes to
attach to an instance when it's launched.

To add a block device to your instance, specify the --block-device-mappings option when you use
run-instances.

The following example parameter provisions a standard Amazon EBS volume that is 20 GB in size, and
maps it to your instance using the identifier /dev/sdf.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdf\",\"Ebs\":{\"VolumeSize\":20,
\"DeleteOnTermination\":false}}]"

The following example adds an Amazon EBS volume, mapped to /dev/sdf, based on an existing
snapshot. A snapshot represents an image that is loaded onto the volume for you. When you specify a
snapshot, you don't have to specify a volume size; it will be large enough to hold your image. However, if
you do specify a size, it must be greater than or equal to the size of the snapshot.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdf\",\"Ebs\":{\"SnapshotId\":\"snap-
alb2c3d4\"}} 1"

The following example adds two volumes to your instance. The number of volumes available to your
instance depends on its instance type.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdf\",\"VirtualName\":\"ephemeralO\"},
{\"DeviceName\":\"/dev/sdg\",\"VirtualName\":\"ephemerall\"}]"

The following example creates the mapping (/dev/sdj), but doesn't provision a volume for the
instance.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdj\",\"NoDevice\":\"\"}]"

For more information, see Block Device Mapping in the Amazon EC2 User Guide for Linux Instances.

Add a Tag to Your Instance

A tag is a label that you assign to an AWS resource. It enables you to add metadata to your resources that
you can use for a variety of purposes. For more information, see Tagging Your Resources in the Amazon
EC2 User Guide for Linux Instances.

115

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/block-device-mapping-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html

AWS Command Line Interface User Guide
EC2 Instances

The following example shows how to add a tag with the key name "Name and the value "MyInstance" to
the specified instance, by using the create-tags command.

$ aws ec2 create-tags --resources i-5203422c --tags Key=Name,Value=MyInstance

Connect to Your Instance

When your instance is running, you can connect to it and use it just as you'd use a computer sitting in
front of you. For more information, see Connect to Your Amazon EC2 Instance in the Amazon EC2 User
Guide for Linux Instances.

List Your Instances

You can use the AWS CLI to list your instances and view information about them. You can list all your
instances, or filter the results based on the instances that you're interested in.

The following examples show how to use the describe-instances command.

The following command filters the list to only your t2.micro instances and outputs only the
InstanceId values for each match.

$ aws ec2 describe-instances --filters "Name=instance-type,Values=t2.micro" --query
"Reservations[].Instances[].InstanceId"
[
"i-05e998023d9c69f9a"
]

The following command lists any of your instances that have the tag Name=MyInstance.

$ aws ec2 describe-instances --filters "Name=tag:Name,Values=MyInstance"

The following command lists your instances that were launched using any of the following AMiIs: ami-
x0123456, ami-y0123456, and ami-z0123456.

$ aws ec2 describe-instances --filters "Name=image-id,Values=ami-x0123456,ami-y0123456,ami-
z0123456"

Terminate Your Instance

Terminating an instance deletes it. You can't reconnect to an instance after you've terminated it.

As soon as the state of the instance changes to shutting-down or terminated, you stop incurring
charges for that instance. If you want to reconnect to an instance later, use stop-instances instead of
terminate-instances. For more information, see Terminate Your Instance in the Amazon EC2 User
Guide for Linux Instances.

When you finish with an instance, you can use the command terminate-instances to delete it.

$ aws ec2 terminate-instances --instance-ids i-5203422c

{
"TerminatingInstances": [
{

"InstanceId": "i-5203422c",

"CurrentState": {
"Code": 32,
"Name": "shutting-down"

Iy

116

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/stop-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/terminate-instances.html

AWS Command Line Interface User Guide
Glacier

"PreviousState": {
"Code": 16,
"Name": "running"

Using Amazon S3 Glacier with the AWS CLI

You can access the features of Amazon S3 Glacier using the AWS Command Line Interface (AWS CLI). To
list the AWS CLI commands for S3 Glacier, use the following command.

aws glacier help

This topic shows examples of AWS CLI commands that perform common tasks for S3 Glacier. The
examples demonstrate how to use the AWS CLI to upload a large file to Glacier by splitting it into smaller
parts and uploading them from the command line.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

Note

This tutorial uses several command line tools that typically come preinstalled on Unix-like
operating systems, including Linux and macOS. Windows users can use the same tools by
installing Cygwin and running the commands from the Cygwin terminal. We note Windows
native commands and utilities that perform the same functions where available.

Topics
o Create an Amazon S3 Glacier Vault (p. 117)
 Prepare a File for Uploading (p. 117)
« Initiate a Multipart Upload and Upload Files (p. 118)
o Complete the Upload (p. 119)

Create an Amazon S3 Glacier Vault

Create a vault with the create-vault command.

$ aws glacier create-vault --account-id - --vault-name myvault
{

"location": "/123456789012/vaults/myvault"
}

Note

All S3 Glacier commands require an account ID parameter. Use the hyphen character (--
account-id -)to use the current account.

Prepare a File for Uploading

Create a file for the test upload. The following commands create a file named largefile that contains
exactly 3 MiB of random data.

Linux or macOS

117

https://www.cygwin.com/
https://docs.aws.amazon.com/cli/latest/reference/glacier/create-vault.html

AWS Command Line Interface User Guide
Initiate a Multipart Upload and Upload Files

$ dd if=/dev/urandom of=largefile bs=3145728 count=1
1+0 records in
1+0 records out
3145728 bytes (3.1 MB) copied, 0.205813 s, 15.3 MB/s

dd is a utility that copies a number of bytes from an input file to an output file. The previous example
uses the system device file /dev/urandom as a source of random data. fsutil performs a similar
function in Windows.

Windows

C:\> fsutil file createnew largefile 3145728
File C:\temp\largefile is created

Next, split the file into 1 MiB (1,048,576 byte) chunks.

$ split --bytes=1048576 --verbose largefile chunk
creating file “chunkaa'
creating file “chunkab'
creating file “chunkac'

Note
HJ-Split is a free file splitter for Windows and many other platforms.

Initiate a Multipart Upload and Upload Files

Create a multipart upload in Amazon S3 Glacier by using the initiate-multipart-upload
command.

$ aws glacier initiate-multipart-upload --account-id - --archive-description "multipart
upload test" --part-size 1048576 --vault-name myvault
{
"uploadId": "19gaRezEXAMPLES6Ry5YYdqthHOC_KGRCTO03L9yetr220UmPtBYKk-
OssZtLgyFu7sY1l_lR7vgFudVéNtcV5zpsJ",
"location": "/123456789012/vaults/myvault/multipart-

uploads/19gaRezEXAMPLES6Ry5YYdqthHOC KGRCTO3L9yetr220UmPtBYKK-
OssZtLgyFu7sY1l_1R7vgFuJV6NtcV5zpsJd"
}

S3 Glacier requires the size of each part in bytes (1 MiB in this example), your vault name, and an account
ID to configure the multipart upload. The AWS CLI outputs an upload ID when the operation is complete.
Save the upload ID to a shell variable for later use.

Linux or macOS

$ UPLOADID="19gaRezEXAMPLES6Ry5YYdqthHOC_ KGRCT03L9yetr220UmPtBYKKk-
OssZtLqyFu7sY1_LR7vgFuJV6NtcV5zpsJ"

Windows

C:\> set UPLOADID="19gaRezEXAMPLES6Ry5YYdqthHOC KGRCTO03L9yetr220UmPtBYKk-
OssZtLqyFu7sY1l_LR7vgFudV6NtcV5zpsJ"

Next, use the upload-multipart-part command to upload each of the three parts.

$ aws glacier upload-multipart-part --upload-id $UPLOADID --body chunkaa --range 'bytes
0-1048575/*%' --account-id - --vault-name myvault

118

http://www.hjsplit.org/
https://docs.aws.amazon.com/cli/latest/reference/glacier/initiate-multipart-upload.html
https://docs.aws.amazon.com/cli/latest/reference/glacier/upload-multipart-part.html

AWS Command Line Interface User Guide
Complete the Upload

{
"checksum": "elf2a7cd6e047fa606£fe2£f0280350£69b9f8cfab02097a9a026360a7edcl1£f553"
}
$ aws glacier upload-multipart-part --upload-id $UPLOADID --body chunkab --range 'bytes
1048576-2097151/*' --account-id - --vault-name myvault
{
"checksum": "elf2a7cd6e047fa606£fe2£f0280350£69b9f8cfab02097a9a026360a7edcl£f553"
}
$ aws glacier upload-multipart-part --upload-id $UPLOADID --body chunkac --range 'bytes
2097152-3145727/*%' --account-id - --vault-name myvault
{
"checksum": "elf2a7cd6e047fa606£fe2£f0280350£69b9f8cfab02097a9a026360a7edcl£f553"
}
Note

The previous example uses the dollar sign ($) to reference the contents of the UPLOADID shell
variable on Linux. On the Windows command line, use a percent sign (%) on either side of the
variable name (for example, ¥UPLOADID%).

You must specify the byte range of each part when you upload it so that Glacier can reassemble it in
the correct order. Each piece is 1,048,576 bytes, so the first piece occupies bytes 0-1048575, the second
1048576-2097151, and the third 2097152-3145727.

Complete the Upload

Amazon S3 Glacier requires a tree hash of the original file to confirm that all of the uploaded pieces
reached AWS intact.

To calculate a tree hash, you must split the file into 1 MiB parts and calculate a binary SHA-256 hash of
each piece. Then you split the list of hashes into pairs, combine the two binary hashes in each pair, and
take hashes of the results. Repeat this process until there is only one hash left. If there is an odd number
of hashes at any level, promote it to the next level without modifying it.

The key to calculating a tree hash correctly when using command line utilities is to store each hash in
binary format and convert to hexadecimal only at the last step. Combining or hashing the hexadecimal
version of any hash in the tree will cause an incorrect result.

Note
Windows users can use the type command in place of cat. OpenSSL is available for Windows at
OpenSSL.org.

To calculate a tree hash

1. If you haven't already, split the original file into 1 MiB parts.

$ split --bytes=1048576 --verbose largefile chunk
creating file ~chunkaa'
creating file ~chunkab'
creating file ~chunkac'

2. Calculate and store the binary SHA-256 hash of each chunk.

$ openssl dgst -sha256 -binary chunkaa > hashl
$ openssl dgst -sha256 -binary chunkab > hash2
$ openssl dgst -sha256 -binary chunkac > hash3

3. Combine the first two hashes and take the binary hash of the result.

$ cat hashl hash2 > hashl2

119

https://www.openssl.org/related/binaries.html

AWS Command Line Interface User Guide
1AM

$ openssl dgst -sha256 -binary hashl2 > hashi2hash

4. Combine the parent hash of chunks aa and ab with the hash of chunk ac and hash the result, this
time outputting hexadecimal. Store the result in a shell variable.

$ cat hashi2hash hash3 > hashi23

$ openssl dgst -sha256 hashi123

SHA256(hash123)= 9628195fcdbcbbe76cdde932d4646fa7de5£219fb39823836d81f0cc0el8aab7
$ TREEHASH=9628195fcdbcbbe76cdde932d4646fa7de5f219fb39823836d81f0ccOel8aa67

Finally, complete the upload with the complete-multipart-upload command. This command takes
the original file's size in bytes, the final tree hash value in hexadecimal, and your account ID and vault
name.

$ aws glacier complete-multipart-upload --checksum $TREEHASH --archive-size 3145728 --
upload-id $UPLOADID --account-id - --vault-name myvault
{
"archiveId": "d3AbWhEOYEIm6f_ fI1jPG82F8xzbMEEZmrAl1LGAAONJAZO5QdP-
N83MKgd96Unspoa5H51ItWX-sK8-0S0ZhwsyGiu9-R-kwWUyS1dSB1lmgPPWkEbeFfqDSav053rU7FvVLHfRc6hg",
"checksum": "9628195fcdbcbbe76cdde932d4646fa7de5£219fb39823836d81£f0cc0elB8aab7",
"location": "/123456789012/vaults/myvault/archives/
d3AbWhEOYE1Im6f_ fI1jPG82F8xzbMEEZmrAl1LGAAONJAZ05Q0dP-N83MKgd96Unspoa5H51ItWX-sK8—
0S0ZhwsyGiu9-R-kwWUyS1dSB1lmgPPWkEbeFfgqDSav053rU7FvVLHfRc6hg"

}

You can also check the status of the vault using the describe-vault command.

$ aws glacier describe-vault --account-id - --vault-name myvault
{
"SizeInBytes": 3178496,
"VaultARN": "arn:aws:glacier:us-west-2:123456789012:vaults/myvault",
"LastInventoryDate": "2018-12-07T00:26:19.0282",
"NumberOfArchives": 1,
"CreationDate": "2018-12-06T21:23:45.708Z",
"VaultName": "myvault"
¥
Note

Vault status is updated about once per day. See Working with Vaults for more information.

Now it's safe to remove the chunk and hash files that you created.

$ rm chunk* hash¥*

For more information on multipart uploads, see Uploading Large Archives in Parts and Computing
Checksums in the Amazon S3 Glacier Developer Guide.

Using AWS Identity and Access Management from
the AWS CLI

You can access the features of AWS Identity and Access Management (IAM) using the AWS Command
Line Interface (AWS CLI). To list the AWS CLI commands for IAM, use the following command.

aws iam help

120

https://docs.aws.amazon.com/cli/latest/reference/glacier/complete-multipart-upload.html
https://docs.aws.amazon.com/cli/latest/reference/glacier/describe-vault.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/working-with-vaults.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-archive-mpu.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/checksum-calculations.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/checksum-calculations.html

AWS Command Line Interface User Guide
Creating IAM Users and Groups

This topic shows examples of AWS CLI commands that perform common tasks for IAM.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

Topics
« Creating IAM Users and Groups (p. 121)
« Attaching an IAM Managed Policy to an IAM User (p. 122)
« Setting an Initial Password for an IAM User (p. 123)
« Create an Access Key for an IAM User (p. 123)

Creating IAM Users and Groups

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to create an AWS
Identity and Access Management (IAM) group and a new IAM user, and then add the user to the group.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

To create an IAM group and add a new IAM user to it

1. Use the create-group command to create the group.

$ aws iam create-group --group-name MyIamGroup

{
"Group": {
"GroupName": "MyIamGroup",
"CreateDate": "2018-12-14T03:03:52.8342",
"GroupId": "AGPAJNUJ2W4IJVEXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyIamGroup",
"Path": "/"
}
}

2. Usethe create-user command to create the user.

$ aws iam create-user --user-name MyUser

{
"User": {
"UserName": "MyUser",
"Path": "/",
"CreateDate": "2018-12-14T03:13:02.5812Z",
"UserId": "AIDAJY2PE5XUZ4EXAMPLE",
"Arn": "arn:aws:iam::123456789012:user/MyUser"
}
}

3. Usethe add-user-to-group command to add the user to the group.

$ aws iam add-user-to-group --user-name MyUser --group-name MyIamGroup

4. To verify that the MyIamGroup group contains the MyUser, use the get-group command.

$ aws iam get-group --group-name MyIamGroup
{
"Group": {
"GroupName": "MyIamGroup",

121

https://docs.aws.amazon.com/cli/latest/reference/iam/create-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-user-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html

AWS Command Line Interface User Guide
Attaching an IAM Managed Policy to an IAM User

"CreateDate": "2018-12-14T03:03:52Z",
"GroupId": "AGPAJNUJ2W4IJVEXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyIamGroup",
"Path": "/"
T
"Users": [
{
"UserName": "MyUser",
"Path": "/",
"CreateDate": "2018-12-14T03:13:02Z",
"UserId": "AIDAJY2PE5XUZ4EXAMPLE",
"Arn": "arn:aws:iam::123456789012:user/MyUser"
b
1.

"IsTruncated": "false"

Attaching an IAM Managed Policy to an IAM User

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to attach an AWS
Identity and Access Management (IAM) policy to an IAM user. The policy in this example provides the user
with "Power User Access".

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

To attach an IAM managed policy to an IAM user
1. Determine the Amazon Resource Name (ARN) of the policy to attach. The following command uses

list-policies to find the ARN of the policy with the name PowerUserAccess. It then stores
that ARN in an environment variable.

$ export POLICYARN=$(aws iam list-policies --query 'Policies[?
PolicyName=="PowerUserAccess"].{ARN:Arn}' --output text) ~
$ echo $POLICYARN

arn:aws:iam::aws:policy/PowerUserAccess

2. To attach the policy, use the attach-user-policy command, and reference the environment
variable that holds the policy ARN.

$ aws iam attach-user-policy --user-name MyUser --policy-arn $POLICYARN

3. Verify that the policy is attached to the user by running the 1ist-attached-user-policies

command.
$ aws iam list-attached-user-policies --user-name MyUser
{
"AttachedPolicies": [
{
"PolicyName": "PowerUserAccess",
"PolicyArn": "arn:aws:iam::aws:policy/PowerUserAccess"
¥
]
¥

For more information, see Access Management Resources. This topic provides links to an overview of
permissions and policies, and links to examples of policies for accessing Amazon S3, Amazon EC2, and
other services.

122

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-additional-resources.html

AWS Command Line Interface User Guide
Setting an Initial Password for an IAM User

Setting an Initial Password for an IAM User

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to set an initial
password for an AWS Identity and Access Management(IAM) user.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

The following command uses create-login-profile to set an initial password on the specified user. When
the user signs in for the first time, the user is required to change the password to something that only
the user knows.

$ aws iam create-login-profile --user-name MyUser --password My!UserlLogin8P@ssword --
password-reset-required

{
"LoginProfile": {
"UserName": "MyUser",
"CreateDate": "2018-12-14T17:27:1872",
"PasswordResetRequired": true
}
}

You can use the update-login-profile command to change the password for an IAM user.

$ aws iam update-login-profile --user-name MyUser --password My!UserlADifferentP@ssword

Create an Access Key for an IAM User

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to create a set of
access keys for an AWS Identity and Access Management (IAM) user.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

You can use the create-access-key command to create an access key for an IAM user. An access key is
a set of security credentials that consists of an access key ID and a secret key.

An IAM user can create only two access keys at one time. If you try to create a third set, the command
returns a LimitExceeded error.

$ aws iam create-access-key --user-name MyUser
{
"AccessKey": {
"UserName": "MyUser",
"AccessKeyId": "AKIAIOSFODNN7EXAMPLE",
"Status": "Active",
"SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
"CreateDate": "2018-12-14T17:34:16Z"

Use the delete-access-key command to delete an access key for an IAM user. Specify which access
key to delete by using the access key ID.

$ aws iam delete-access-key --user-name MyUser --access-key-id AKIAIOSFODNN7EXAMPLE

123

https://docs.aws.amazon.com/cli/latest/reference/iam/create-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html

AWS Command Line Interface User Guide
Amazon S3

Using Amazon S3 with the AWS CLI

You can access the features of Amazon Simple Storage Service (Amazon S3) using the AWS Command
Line Interface (AWS CLI).

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

The AWS CLI provides two tiers of commands for accessing Amazon S3:

« The s3 tier consists of high-level commands that simplify performing common tasks, such as creating,
manipulating, and deleting objects and buckets.

« The s3api tier behaves identically to other AWS services by exposing direct access to all Amazon S3
API operations. It enables you to carry out advanced operations that might not be possible with the
following tier's high-level commands alone.

To get a list of all of the commands available in each tier, use the help argument with the aws s3api or
aws s3 commands.

$ aws s3 help

$ aws s3api help

Note

The AWS CLI supports copying, moving, and syncing from Amazon S3 to Amazon S3 using the
server-side COPY operation provided by Amazon S3. This means that your files are kept in the
cloud, and are not downloaded to the client machine, then back up to Amazon S3.

When operations such as these can be performed completely in the cloud, only the bandwidth
necessary for the HTTP request and response is used.

Topics
« Using High-Level (s3) Commands with the AWS CLI (p. 124)
» Using API-Level (s3api) Commands with the AWS CLI (p. 128)

Using High-Level (s3) Commands with the AWS CLI

This topic describes how you can manage Amazon S3 buckets and objects using high-level aws s3
commands.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

Manage Buckets

High-level aws s3 commands support common bucket operations, such as creating, listing, and deleting
buckets.

Create a Bucket

Use the s3 mb command to create a bucket. Bucket names must be globally unique and should be DNS
compliant. Bucket names can contain lowercase letters, numbers, hyphens, and periods. Bucket names
can start and end only with a letter or number, and cannot contain a period next to a hyphen or another
period.

124

https://docs.aws.amazon.com/cli/latest/reference/s3/mb.html

AWS Command Line Interface User Guide
High-Level (s3) Commands

$ aws s3 mb s3://bucket-name

List Your Buckets

Use the s3 1s command to list your buckets. Here are some examples of common usage.

The following command lists all buckets.

$ aws s3 1s
2018-12-11 17:08:50 my-bucket
2018-12-14 14:55:44 my-bucket2

The following command lists all objects and folders (referred to in S3 as 'prefixes') in a bucket.

$ aws s3 ls s3://bucket-name
PRE path/
2018-12-04 19:05:48 3 MyFilel.txt

The previous output shows that under the prefix path/ there exists one file named MyFilel. txt.

You can filter the output to a specific prefix by including it in the command. The following command lists
the objects in bucket-name/path (that is, objects in bucket-name filtered by the prefix path/).

$ aws s3 1ls s3://bucket-name/path/
2018-12-06 18:59:32 3 MyFile2.txt

Delete a Bucket

To remove a bucket, use the s3 rb command.

$ aws s3 rb s3://bucket-name

By default, the bucket must be empty for the operation to succeed. To remove a non-empty bucket, you
need to include the --force option.

The following example deletes all objects and subfolders in the bucket and then removes the bucket.

$ aws s3 rb s3://bucket-name --force

Note
If you're using a versioned bucket that contains previously deleted—but retained—objects, this
command does not allow you to remove the bucket. You must first remove all of the content.

Manage Objects

The high-level aws s3 commands make it convenient to manage Amazon S3 objects. The object
commands include s3 cp, s3 1s,s3 mv,s3 rm,and s3 sync.

The ¢p, 1s, mv, and rm commands work similarly to their Unix counterparts and enable you to work
seamlessly across your local directories and Amazon S3 buckets. The sync command synchronizes the
contents of a bucket and a directory, or two buckets.

Note
All high-level commands that involve uploading objects into an Amazon S3 bucket (s3 cp, s3
mv, and s3 sync) automatically perform a multipart upload when the object is large.

125

https://docs.aws.amazon.com/cli/latest/reference/s3/ls.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysHierarchy.html
https://docs.aws.amazon.com/cli/latest/reference/s3/rb.html
https://docs.aws.amazon.com/cli/latest/reference/s3/cp.html
https://docs.aws.amazon.com/cli/latest/reference/s3/ls.html
https://docs.aws.amazon.com/cli/latest/reference/s3/mv.html
https://docs.aws.amazon.com/cli/latest/reference/s3/rm.html
https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html

AWS Command Line Interface User Guide
High-Level (s3) Commands

Failed uploads can't be resumed when using these commands. If the multipart upload fails due
to a timeout or is manually canceled by pressing Ctrl+C, the AWS CLI cleans up any files created
and aborts the upload. This process can take several minutes.

If the process is interrupted by a kill command or system failure, the in-progress multipart
upload remains in Amazon S3 and must be cleaned up manually in the AWS Management
Console or with the s3api abort-multipart-upload command.

The cp, mv, and sync commands include a -—grants option that you can use to grant permissions on
the object to specified users or groups. Set the --grants option to a list of permissions using following
syntax.

--grants Permission=Grantee_Type=Grantee_ID
[Permission=Grantee_Type=Grantee_ID ...]

Each value contains the following elements:

« Permission - Specifies the granted permissions, and can be set to read, readacl, writeacl, or
full.

« Grantee_Type - Specifies how to identify the grantee, and can be set to uri, emailaddress, or id.
e Grantee_ID - Specifies the grantee based on Grantee_Type.

o uri-The group's URI. For more information, see Who Is a Grantee?

o emailaddress - The account's email address.

e id-The account's canonical ID.

For more information on Amazon S3 access control, see Access Control.

The following example copies an object into a bucket. It grants read permissions on the object to
everyone and full permissions (read, readacl, and writeacl) to the account associated with
user@example . com.

$ aws s3 cp file.txt s3://my-bucket/ --grants read=uri=http://acs.amazonaws.com/groups/
global/AllUsers full=emailaddress=user@example.com

You can also specify a nondefault storage class (REDUCED_ REDUNDANCY or STANDARD_IA) for objects
that you upload to Amazon S3. To do this, use the --storage-class option.

$ aws s3 cp file.txt s3://my-bucket/ --storage-class REDUCED_REDUNDANCY

The s3 sync command uses the following syntax. Possible source-target combinations are:

Local file system to Amazon S3

Amazon S3 to local file system
Amazon S3 to Amazon S3

$ aws s3 sync <source> <target> [--options]

The following example synchronizes the contents of an Amazon S3 folder named path in my-bucket with
the current working directory. s3 sync updates any files that have a different size or modified time than
files with the same name at the destination. The output displays specific operations performed during
the sync. Notice that the operation recursively synchronizes the subdirectory MySubdirectory and its
contents with s3://my-bucket/path/MySubdirectory.

$ aws s3 sync . s3://my-bucket/path

126

https://docs.aws.amazon.com/cli/latest/reference/s3api/abort-multipart-upload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html#SpecifyingGrantee
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Command Line Interface User Guide
High-Level (s3) Commands

upload: MySubdirectory\MyFile3.txt to s3://my-bucket/path/MySubdirectory/MyFile3.txt
upload: MyFile2.txt to s3://my-bucket/path/MyFile2.txt
upload: MyFilel.txt to s3://my-bucket/path/MyFilel.txt

Typically, s3 sync only copies missing or outdated files or objects between the source and target.
However, you can also supply the --delete option to remove files or objects from the target that are
not present in the source.

The following example, which extends the previous one, shows how this works.

// Delete local file
$ rm ./MyFilel.txt

// Attempt sync without --delete option - nothing happens
$ aws s3 sync . s3://my-bucket/path

// Sync with deletion - object is deleted from bucket
$ aws s3 sync . s3://my-bucket/path --delete
delete: s3://my-bucket/path/MyFilel.txt

// Delete object from bucket
$ aws s3 rm s3://my-bucket/path/MySubdirectory/MyFile3.txt
delete: s3://my-bucket/path/MySubdirectory/MyFile3.txt

// Sync with deletion - local file is deleted
$ aws s3 sync s3://my-bucket/path . --delete
delete: MySubdirectory\MyFile3.txt

// Sync with Infrequent Access storage class
$ aws s3 sync . s3://my-bucket/path --storage-class STANDARD_IA

You can use the --exclude and --include options to specify rules that filter the files or objects

to copy during the sync operation. By default, all items in a specified folder are included in the sync.
Therefore, --include is needed only when you have to specify exceptions to the --exclude option
(that is, --include effectively means "don't exclude"). The options apply in the order that's specified, as
shown in the following example.

Local directory contains 3 files:

MyFilel.txt

MyFile2.rtf

MyFile88.txt

$ aws s3 sync . s3://my-bucket/path --exclude "*.txt"

upload: MyFile2.rtf to s3://my-bucket/path/MyFile2.rtf

$ aws s3 sync . s3://my-bucket/path --exclude "*.txt" --include "MyFile*.txt"

upload: MyFilel.txt to s3://my-bucket/path/MyFilel.txt

upload: MyFile88.txt to s3://my-bucket/path/MyFile88.txt

upload: MyFile2.rtf to s3://my-bucket/path/MyFile2.rtf

$ aws s3 sync . s3://my-bucket/path --exclude "*.txt" --include "MyFile*.txt" --exclude
"MyFile?.txt"

upload: MyFile2.rtf to s3://my-bucket/path/MyFile2.rtf

upload: MyFile88.txt to s3://my-bucket/path/MyFile88.txt

The --exclude and --include options also filter files or objects to be deleted during an s3 sync
operation that includes the --delete option. In this case, the parameter string must specify files to
exclude from, or include for, deletion in the context of the target directory or bucket. The following
shows an example.

Assume local directory and s3://my-bucket/path currently in sync and each contains 3 files:

127

AWS Command Line Interface User Guide
API Level (s3api) Commands

MyFilel.txt

MyFile2.rtf

MyFile88.txt

// Delete local .txt files
$ rm *.txt

// Sync with delete, excluding files that match a pattern. MyFile88.txt is deleted, while
remote MyFilel.txt is not.

$ aws s3 sync . s3://my-bucket/path --delete --exclude "my-bucket/path/MyFile?.txt"
delete: s3://my-bucket/path/MyFile88.txt

// Delete MyFile2.rtf

$ aws s3 rm s3://my-bucket/path/MyFile2.rtf

// Sync with delete, excluding MyFile2.rtf - local file is NOT deleted
$ aws s3 sync s3://my-bucket/path . --delete --exclude "./MyFile2.rtf"
download: s3://my-bucket/path/MyFilel.txt to MyFilel.txt

// Sync with delete, local copy of MyFile2.rtf is deleted

$ aws s3 sync s3://my-bucket/path . --delete

delete: MyFile2.rtf

The s3 sync command also accepts an --ac1l option, by which you may set the access permissions for
files copied to Amazon S3. The —-ac1 option accepts private, public-read, and public-read-
write values.

$ aws s3 sync . s3://my-bucket/path --acl public-read

As previously mentioned, the s3 command set includes cp, mv, 1s, and rm, and they work in similar ways
to their Unix counterparts. The following are some examples.

// Copy MyFile.txt in current directory to s3://my-bucket/path
$ aws s3 cp MyFile.txt s3://my-bucket/path/

// Move all .jpg files in s3://my-bucket/path to ./MyDirectory
$ aws s3 mv s3://my-bucket/path ./MyDirectory --exclude "*" --include "*.jpg" --recursive

// List the contents of my-bucket
$ aws s3 1ls s3://my-bucket

// List the contents of path in my-bucket
$ aws s3 1ls s3://my-bucket/path/

// Delete s3://my-bucket/path/MyFile.txt
$ aws s3 rm s3://my-bucket/path/MyFile.txt

// Delete s3://my-bucket/path and all of its contents
$ aws s3 rm s3://my-bucket/path --recursive

When you use the --recursive option on a directory or folder with cp, mv, or rm, the command
walks the directory tree, including all subdirectories. These commands also accept the --exclude, --
include, and --acl options as the sync command does.

Using API-Level (s3api) Commands with the AWS
CLI

The API-level commands (contained in the s3api command set) provide direct access to the Amazon
Simple Storage Service (Amazon S3) APIs, and enable some operations that are not exposed in the high-

128

AWS Command Line Interface User Guide
API Level (s3api) Commands

level s3 commands. These commands are the equivalent of the other AWS services that provide API-
level access to the services' functionality.

This topic provides examples that demonstrate how to use the lower-level commands that map to
the Amazon S3 APIs. In addition, you can find examples for each S3 APl in the s3api section of the CLI
Reference Guide.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

Apply a Custom ACL

With high-level commands, you can use the --ac1 option to apply predefined access control lists (ACLs)
to Amazon S3 objects. But you can't use that command to set bucket-wide ACLs. However, you can do
this with the API-level command, put-bucket-acl.

The following example shows how to grant full control to two AWS users (user1@example.com and
user2@example.com) and read permission to everyone. The identifier for "everyone" comes from a
special URI that you pass as a parameter.

$ aws s3api put-bucket-acl --bucket MyBucket --grant-full-control
'emailaddress="userl@example.com",emailaddress="user2@example.com"' --grant-read
'uri="http://acs.amazonaws.com/groups/global/AllUsers""’

For details about how to construct the ACLs, see PUT Bucket acl in the Amazon Simple Storage Service
API Reference. The s3api ACL commands in the CLI, such as put-bucket-acl, use the same shorthand
argument notation.

Configure a Logging Policy

The APl command put-bucket-logging configures bucket logging policy.

In the following example, the AWS user user@example.com is granted full control over the log files, and
all users have read access to them. Notice that the put-bucket-acl command is also required to grant
the Amazon S3 log delivery system (specified by a URI) the permissions needed to read and write the
logs to the bucket.

$ aws s3api put-bucket-acl --bucket MyBucket --grant-read-acp 'URI="http://
acs.amazonaws.com/groups/s3/LogDelivery"' --grant-write 'URI="http://acs.amazonaws.com/
groups/s3/LogDelivery"’'

$ aws s3api put-bucket-logging --bucket MyBucket --bucket-logging-status file://
logging.json

The file logging. json in the previous command has the following content.

{
"LoggingEnabled": {
"TargetBucket": "MyBucket",
"TargetPrefix": "MyBucketLogs/",
"TargetGrants": [
{
"Grantee": {
"Type": "AmazonCustomerByEmail",
"EmailAddress": "user@example.com"
Iy
"Permission": "FULL_CONTROL"
Iy
{

129

https://docs.aws.amazon.com/cli/latest/reference/s3api/
https://docs.aws.amazon.com/cli/latest/reference/s3api/
https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-acl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-shorthand.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-shorthand.html

AWS Command Line Interface User Guide

Amazon SNS
"Grantee": {
"Type": "Group",
"URI": "http://acs.amazonaws.com/groups/global/AllUsers"
I
"Permission": "READ"

}
]
¥
¥

Using Amazon SNS with the AWS CLI

You can access the features of Amazon Simple Notification Service (Amazon SNS) using the AWS
Command Line Interface (AWS CLI). To list the AWS CLI commands for Amazon SNS, use the following
command.

aws sns help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

This topic shows examples of CLI commands that perform common tasks for Amazon SNS.

Topics
 Create a Topic (p. 130)
« Subscribe to a Topic (p. 130)
 Publish to a Topic (p. 131)
o Unsubscribe from a Topic (p. 131)
« Delete a Topic (p. 131)

Create a Topic

To create a topic, use the create-topic command and specify the name to assign to the topic.

$ aws sns create-topic --name my-topic

{

"TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic"

}

Make a note of the response's TopicArn, which you use later to publish a message.

Subscribe to a Topic

To subscribe to a topic, use the subscribe command.

The following example specifies the email protocol and an email address for the notification-
endpoint.

$ aws sns subscribe --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic --
protocol email --notification-endpoint saanvieexample.com

{

"SubscriptionArn": "pending confirmation"

130

https://docs.aws.amazon.com/cli/latest/reference/sns/create-topic.html
https://docs.aws.amazon.com/cli/latest/reference/sns/subscribe.html

AWS Command Line Interface User Guide
Publish to a Topic

}

AWS immediately sends a confirmation message by email to the address you specified in the subscribe
command. The email message has the following text.

You have chosen to subscribe to the topic:

arn:aws:sns:us-west-2:123456789012:my-topic

To confirm this subscription, click or visit the following link (If this was in error no
action is necessary):

Confirm subscription

After the recipient clicks the Confirm subscription link, the recipient's browser displays a notification
message with information similar to the following.

Subscription confirmed!
You have subscribed saanvie@example.com to the topic:my-topic.

Your subscription's id is:
arn:aws:sns:us-west-2:123456789012:my-topic:1328£f057-de93-4c15-512e-8bb22EXAMPLE

If it was not your intention to subscribe, click here to unsubscribe.

Publish to a Topic

To send a message to all subscribers of a topic, use the publish command.

The following example sends the message "Hello World!" to all subscribers of the specified topic.

$ aws sns publish --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic --message "Hello
World!"
{
"MessageId": "4e41661d-5eec-5ddf-8dab-2c867EXAMPLE"
¥

In this example, AWS sends an email message with the text "Hello World!" to saanvieexample.com.

Unsubscribe from a Topic

To unsubscribe from a topic and stop receiving messages published to that topic, use the unsubscribe
command and specify the ARN of the topic you want to unsubscribe from.

$ aws sns unsubscribe --subscription-arn arn:aws:sns:us-west-2:123456789012:my-
topic:1328f057-de93-4c15-512e-8bb22EXAMPLE

To verify that you successfully unsubscribed, use the list-subscriptions command to confirm that the ARN
no longer appears in the list.

$ aws sns list-subscriptions

Delete a Topic

To delete a topic, run the delete-topic command.

131

https://docs.aws.amazon.com/cli/latest/reference/sns/publish.html
https://docs.aws.amazon.com/cli/latest/reference/sns/unsubscribe.html
https://docs.aws.amazon.com/cli/latest/reference/sns/list-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/sns/delete-topic.html

AWS Command Line Interface User Guide
Amazon SWF

$ aws sns delete-topic --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic

To verify that AWS successfully deleted the topic, use the list-topics command to confirm that the topic
no longer appears in the list.

$ aws sns list-topics

Using Amazon SWF with the AWS CLI

You can access the features of Amazon Simple Workflow Service (Amazon SWF) using the AWS
Command Line Interface (AWS CLI).

To list the AWS CLI commands for Amazon SWF, use the following command.

aws swf help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 33).

The following topics show examples of CLI commands that perform common tasks for Amazon SWF.

Topics
o List of Amazon SWF Commands by Category (p. 132)
« Working with Amazon SWF Domains Using the AWS CLI (p. 135)

List of Amazon SWF Commands by Category

You can use the AWS Command Line Interface (AWS CLI) to create, display, and manage workflows in
Amazon Simple Workflow Service (Amazon SWF).

This section lists the reference topics for Amazon SWF commands in the AWS CLI, grouped by functional
category.

For an alphabetic list of commands, see the Amazon SWF section of the AWS CLI Command Reference, or
use the following command.

$ aws swf help

You can also get help for an individual command, by placing the help directive after the command
name. The following shows an example.

$ aws swf register-domain help

Topics
« Commands Related to Activities (p. 133)
« Commands Related to Deciders (p. 133)
o Commands Related to Workflow Executions (p. 133)
« Commands Related to Administration (p. 133)

132

https://docs.aws.amazon.com/cli/latest/reference/sns/list-topics.html
https://docs.aws.amazon.com/cli/latest/reference/swf

AWS Command Line Interface User Guide
List of Amazon SWF Commands

« Visibility Commands (p. 134)

Commands Related to Activities

Activity workers use poll-for-activity-task to get new activity tasks. After a worker receives an
activity task from Amazon SWF, it performs the task and responds using respond-activity-task-
completed if successful or respond-activity-task-failed if unsuccessful.

The following are commands that are performed by activity workers:

« poll-for-activity-task

» respond-activity-task-completed
 respond-activity-task-failed

» respond-activity-task-canceled
« record-activity-task-heartbeat

Commands Related to Deciders

Deciders use poll-for-decision-task to get decision tasks. After a decider receives a decision task
from Amazon SWF, it examines its workflow execution history and decides what to do next. It calls
respond-decision-task-completed to complete the decision task and provides zero or more next
decisions.

The following are commands that are performed by deciders:

« poll-for-decision-task
« respond-decision-task-completed

Commands Related to Workflow Executions

The following commands operate on a workflow execution:

 request-cancel-workflow-execution
« start-workflow-execution

« signal-workflow-execution

« terminate-workflow-execution

Commands Related to Administration

Although you can perform administrative tasks from the Amazon SWF console, you can use the
commands in this section to automate functions or build your own administrative tools.

Activity Management

« register-activity-type

» deprecate-activity-type
Workflow Management

« register-workflow-type
 deprecate-workflow-type

133

https://docs.aws.amazon.com/cli/latest/reference/swf/poll-for-activity-task.html
https://docs.aws.amazon.com/cli/latest/reference/swf/respond-activity-task-completed.html
https://docs.aws.amazon.com/cli/latest/reference/swf/respond-activity-task-failed.html
https://docs.aws.amazon.com/cli/latest/reference/swf/respond-activity-task-canceled.html
https://docs.aws.amazon.com/cli/latest/reference/swf/record-activity-task-heartbeat.html
https://docs.aws.amazon.com/cli/latest/reference/swf/poll-for-decision-task.html
https://docs.aws.amazon.com/cli/latest/reference/swf/respond-decision-task-completed.html
https://docs.aws.amazon.com/cli/latest/reference/swf/request-cancel-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/start-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/signal-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/terminate-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/register-activity-type.html
https://docs.aws.amazon.com/cli/latest/reference/swf/deprecate-activity-type.html
https://docs.aws.amazon.com/cli/latest/reference/swf/register-workflow-type.html
https://docs.aws.amazon.com/cli/latest/reference/swf/deprecate-workflow-type.html

AWS Command Line Interface User Guide
List of Amazon SWF Commands

Domain Management
« register-domain

« deprecate-domain

For more information and examples of these domain management commands, see Working with
Amazon SWF Domains Using the AWS CLI (p. 135).

Workflow Execution Management

« request-cancel-workflow-execution
» terminate-workflow-execution

Visibility Commands

Although you can perform visibility actions from the Amazon SWF console, you can use the commands in
this section to build your own console or administrative tools.

Activity Visibility
o list-activity-types
« describe-activity-type

Workflow Visibility

o list-workflow-types
 describe-workflow-type

Workflow Execution Visibility

« describe-workflow-execution

o list-open-workflow-executions

o list-closed-workflow-executions

« count-open-workflow-executions
« count-closed-workflow-executions
« get-workflow-execution-history

Domain Visibility
« list-domains

 describe-domain

For more information and examples of these domain visibility commands, see Working with Amazon
SWF Domains Using the AWS CLI (p. 135).

Task List Visibility

» count-pending-activity-tasks
« count-pending-decision-tasks

134

https://docs.aws.amazon.com/cli/latest/reference/swf/register-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/deprecate-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/request-cancel-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/terminate-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-activity-types.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-activity-type.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-workflow-types.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-workflow-type.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-workflow-execution.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-open-workflow-executions.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-closed-workflow-executions.html
https://docs.aws.amazon.com/cli/latest/reference/swf/count-open-workflow-executions.html
https://docs.aws.amazon.com/cli/latest/reference/swf/count-closed-workflow-executions.html
https://docs.aws.amazon.com/cli/latest/reference/swf/get-workflow-execution-history.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-domains.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/count-pending-activity-tasks.html
https://docs.aws.amazon.com/cli/latest/reference/swf/count-pending-decision-tasks.html

AWS Command Line Interface User Guide
Working with Amazon SWF Domains

Working with Amazon SWF Domains Using the AWS
CLI

You can use the AWS Command Line Interface (AWS CLI) to manage your Amazon Simple Workflow
Service (Amazon SWF) domains.

Topics
« List Your Domains (p. 135)
« Get Information about a Domain (p. 135)
» Register a Domain (p. 136)
« Deprecate a Domain (p. 136)

List Your Domains

To list the Amazon SWF domains that you have registered for your AWS account, you can use swf
list-domains. You mustinclude --registration-status and specify either REGISTERED or
DEPRECATED.

Here's a minimal example.

$ aws swf list-domains --registration-status REGISTERED

{
"domainInfos": [
{
"status": "REGISTERED",
"name": "ExampleDomain"
}!
{
"status": "REGISTERED",
"name": "mytest"
}
]
}
Note

For an example of using DEPRECATED, see Deprecate a Domain (p. 136).
For more information, see list-domains in the AWS CLI Command Reference.
Get Information about a Domain
To get detailed information about a particular domain, use swf describe-domain. There is one

required parameter, -—-name, which takes the name of the domain you want information about, as shown
in the following example.

$ aws swf describe-domain --name ExampleDomain

{
"domainInfo": {
"status": "REGISTERED",
"name": "ExampleDomain"
Y
"configuration": {
"workflowExecutionRetentionPeriodInDays": "1"
¥
¥

135

https://docs.aws.amazon.com/cli/latest/reference/swf/list-domains.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-domains.html
https://docs.aws.amazon.com/cli/latest/reference/swf/list-domains.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-domain.html

AWS Command Line Interface User Guide
Working with Amazon SWF Domains

For more information, see describe-domain in the AWS CLI Command Reference.

Register a Domain

To register new domains, use swf register-domain.

There are two required parameters: -—-name and --workflow-execution-retention-period-
in-days. The -—-name parmeter takes the domain name to register. The --workflow-execution-
retention-period-in-days parameter takes an integer to specify the number of days to retain
workflow execution data on this domain, up to a maximum period of 90 days (for more information, see
the Amazon SWF FAQ).

If you specify zero (0) for this value, the retention period is automatically set at the maximum duration.
Otherwise, workflow execution data isn't retained after the specified number of days have passed. The
following example shows how to register a new domain.

$ aws swf register-domain --name MyNeatNewDomain --workflow-execution-retention-period-in-
days O

The command doesn't return any output, but you can use swf list-domains or swf describe-
domain to see the new domain, as shown in the following example.

$ aws swf describe-domain --name MyNeatNewDomain

{
"domainInfo": {
"status": "REGISTERED",
"name": "MyNeatNewDomain"
T
"configuration": {
"workflowExecutionRetentionPeriodInDays": "0"
}
}

For more information, see register-domain in the AWS CLI Command Reference.

Deprecate a Domain

To deprecate a domain (you can still see it, but cannot create new workflow executions or register types
on it), use swf deprecate-domain. It has a sole required parameter, --name, which takes the name of
the domain to deprecate.

$ aws swf deprecate-domain --name MyNeatNewDomain

As with register-domain, no output is returned. If you use 1ist-domains to view the registered
domains, however, you will see that the domain no longer appears among them. You can also use --
registration-status DEPRECATED.

$ aws swf list-domains --registration-status DEPRECATED

{
"domainInfos": [
{
"status": "DEPRECATED",
"name": "MyNeatNewDomain"
}
]
¥

For more information, see deprecate-domain in the AWS CLI Command Reference.

136

https://docs.aws.amazon.com/cli/latest/reference/swf/describe-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/register-domain.html
http://aws.amazon.com/swf/faqs/#retain_limit
https://docs.aws.amazon.com/cli/latest/reference/swf/list-domains.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/describe-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/register-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/deprecate-domain.html
https://docs.aws.amazon.com/cli/latest/reference/swf/deprecate-domain.html

AWS Command Line Interface User Guide
Data Protection

Security in the AWS Command Line
Interface

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

« Security of the cloud - AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To
learn about the compliance programs that apply to AWS Command Line Interface, see AWS Services in
Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using the
AWS Command Line Interface (AWS CLI). The following topics show you how to configure the AWS CLI
to meet your security and compliance objectives. You also learn how to use the AWS CLI to help you to
monitor and secure your AWS resources.

Topics
« Data Protection in the AWS CLI (p. 137)
« ldentity and Access Management for the AWS CLI (p. 138)
o Compliance Validation for the AWS CLI (p. 139)

Data Protection in the AWS CLI

The AWS Command Line Interface (AWS CLI) conforms to the AWS shared responsibility model,

which includes regulations and guidelines for data protection. AWS is responsible for protecting

the global infrastructure that runs all the AWS services. AWS maintains control over data hosted on

this infrastructure, including the security configuration controls for handling customer content and
personal data. AWS customers and APN partners, acting either as data controllers or data processors, are
responsible for any personal data that they put in the AWS Cloud.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM), so that each user is given only
the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the
following ways:

« Use multi-factor authentication (MFA) with each account.

o Use SSL/TLS to communicate with AWS resources.

« Set up API and user activity logging with AWS CloudTrail.

« Use AWS encryption solutions, along with all default security controls within AWS services.

« Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

137

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/

AWS Command Line Interface User Guide
Data Encryption

We strongly recommend that you never put sensitive identifying information, such as your customers'
account numbers, into free-form fields such as a Name field. This includes when you work with the AWS
CLI or other AWS services using the console, API, or AWS SDKs. Any data that you enter into the AWS
CLI or other services might get picked up for inclusion in diagnostic logs. When you provide a URL to an
external server, don't include credentials information in the URL to validate your request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

Data Encryption

A key feature of any secure service is that information is encrypted when it is not being actively used.

Encryption at Rest

The AWS CLI does not itself store any customer data other than the credentials it needs to interact with
the AWS services on the user's behalf.

If you use the AWS CLI to invoke an AWS service that transmits customer data to your local computer for
storage, then refer to the Security & Compliance chapter in that service's User Guide for information on
how that data is stored, protected, and encrypted.

Encryption in Transit

By default, all data transmitted from the client computer running the AWS CLI and AWS service
endpoints is encrypted by sending everything through a HTTPS/TLS connection.

You don't need to do anything to enable the use of HTTPS/TLS. It is always enabled unless you explicitly
disable it for an individual command by using the --no-verify-ssl command line option.

ldentity and Access Management for the AWS CLI

The AWS Command Line Interface (AWS CLI) uses the same users and roles to access your AWS resources
and their services. The policies that grant permissions are the same because the AWS CLI calls the same
API operations that are used by the service console. For more information, see the "ldentity and Access
Management" section in the "Security" chapter of the AWS service that you want to use.

The only major difference is how you authenticate when using a standard IAM user and long-term
credentials. Although an IAM user requires a password to access an AWS service's console, that same IAM
user requires an access key pair to perform the same operations using the AWS CLI. All other short-term
credentials are used in the same way they are used with the console.

The credentials used by the AWS CLI are stored in plaintext files and are not encrypted.

o The $HOME/ .aws/credentials file stores long-term credentials required to access your AWS
resources. These include your access key ID and secret access key.

« Short-term credentials, such as those for roles that you assume, or that are for AWS Single Sign-
On services, are also stored in the $HOME/ . aws /c1i/cache and $HOME/.aws/sso/cache folders,
respectively.

Mitigation of Risk

« We strongly recommend that you configure your file system permissions on the $HOME/ . aws folder
and its child folders and files to restrict access to only authorized users.

138

http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Command Line Interface User Guide
Compliance Validation

« Use roles with temporary credentials wherever possible to reduce the opportunity for damage if the
credentials are compromised. Use long-term credentials only to request and refresh short-term role
credentials.

Compliance Validation for the AWS CLI

Third-party auditors assess the security and compliance of AWS services as part of multiple AWS
compliance programs. Using the AWS Command Line Interface (AWS CLI) to access a service does not
alter that service's compliance.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using the AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS CLI is determined by the sensitivity of your data, your
company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

« Security and Compliance Quick Start Guides — These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

« Architecting for HIPAA Security and Compliance Whitepaper - This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

« AWS Compliance Resources — This collection of workbooks and guides might apply to your industry
and location.

« Evaluating Resources with Rules in the AWS Config Developer Guide — The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

« AWS Security Hub - This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

139

http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Command Line Interface User Guide
General: Ensure you're running
a recent version of the AWS CLI.

Troubleshooting AWS CLI Errors

General: Ensure you're running a recent version of
the AWS CLI.

If you receive an error that indicates that a command doesn't exist, or that it doesn't recognize a
parameter that the documentation says is available, we recommend that the first thing you do (after
checking your command for spelling errors!) is to upgrade to the most recent version of the AWS CLI.
Updated versions of the AWS CLI are released almost every business day. New AWS services, features,
and parameters are introduced in those new versions of the AWS CLI. The only way to get access to those
new services, features, or parameters is to upgrade to a version that was released after that element was
first introduced.

How you update your version of the AWS CLI depends on how you originally installed it. For example, if
you installed the AWS CLI using pip, run pip install --upgrade, as described in Upgrading to the
Latest Version of the AWS CLI version 1 (p. 16).

If you used one of the bundled installers, you should remove the existing installation and download and
install the latest version of the bundled installer for your operating system.

General: Use the --debug option.

One of the first things you should do when the AWS CLI reports an error that you don't immediately
understand, or produces results that you don't expect, is get more detail about the error. You can do

this by running the command again and including the --debug option at the end of the command line.
This causes the AWS CLI to report details about every step it takes to process your command, send the
request to the AWS servers, receive the response, and process the response into the output you see. The
details in the output can help you to determine in which step the error occurs and to get context that can
provide clues about what triggered it.

You can send the output to a text file to capture it for later review or to send it to AWS support when
asked for it.

Here's an example of a command run with and without the --debug option.

$ aws iam list-groups --profile MyTestProfile
{
"Groups": [
{
"Path": "/",
"GroupName": "MyTestGroup",
"GroupId": "AGPA0123456789EXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyTestGroup",
"CreateDate": "2019-08-12T19:34:042"
}
1
}

When you include the --debug option, details include (among other things):

140

AWS Command Line Interface User Guide
General: Use the --debug option.

« Looking for credentials

« Parsing the provided parameters

« Constructing the request sent to AWS servers
« The contents of the request sent to AWS

« The contents of the raw response

o The formatted output

$ aws iam list-groups --profile MyTestProfile --debug

2019-08-12 12:36:18,305 - MainThread - awscli.clidriver - DEBUG - CLI version: aws-

cli/1.16.215 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.12.205

2019-08-12 12:36:18,305 - MainThread - awscli.clidriver - DEBUG - Arguments entered to CLI:
['iam', 'list-groups', '--debug']

2019-08-12 12:36:18,305 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function add_scalar_parsers at 0x7fdf173161e0>

2019-08-12 12:36:18,305 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function register_uri_param handler at 0x7fdf17dec400>

2019-08-12 12:36:18,305 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function inject_assume_role_provider_cache at 0x7fdf17da9378>

2019-08-12 12:36:18,307 - MainThread - botocore.credentials - DEBUG - Skipping environment
variable credential check because profile name was explicitly set.

2019-08-12 12:36:18,307 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function attach_history_ handler at 0x7fdf173ed9d8>

2019-08-12 12:36:18,308 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/iam/2010-05-08/service-2.json
2019-08-12 12:36:18,317 - MainThread - botocore.hooks - DEBUG - Event building-command-

table.iam: calling handler <function add_waiters at 0x7fdf1731a840>

2019-08-12 12:36:18,320 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/iam/2010-05-08/waiters-2.json
2019-08-12 12:36:18,321 - MainThread - awscli.clidriver - DEBUG - OrderedDict([('path-

prefix', <awscli.arguments.CLIArgument object at 0x7fdf171ac780>), ('marker',
<awscli.arguments.CLIArgument object at 0x7£fdf171b09e8>), ('max-items',
<awscli.arguments.CLIArgument object at 0x7£df171b09b0>)1])

2019-08-12 12:36:18,322 - MainThread - botocore.hooks - DEBUG - Event building-

argument-table.iam.list-groups: calling handler <function add_streaming output_arg at
0x7£df17316510>

2019-08-12 12:36:18,322 - MainThread - botocore.hooks - DEBUG - Event building-argument-

table.iam.list-groups: calling handler <function add_cli_input_json at 0x7fdf17da9d90>
2019-08-12 12:36:18,322 - MainThread - botocore.hooks - DEBUG - Event building-argument-

table.iam.list-groups: calling handler <function unify_ paging params at 0x7£df17328048>
2019-08-12 12:36:18,326 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/lib/python3.7/site-packages/botocore/data/iam/2010-05-08/paginators-1.json
2019-08-12 12:36:18,326 - MainThread - awscli.customizations.paginate - DEBUG - Modifying
paging parameters for operation: ListGroups

2019-08-12 12:36:18,326 - MainThread - botocore.hooks - DEBUG - Event building-argument-

table.iam.list-groups: calling handler <function add_generate_skeleton at 0x7fdf1737eae8>
2019-08-12 12:36:18,326 - MainThread - botocore.hooks - DEBUG - Event
before-building-argument-table-parser.iam.list-groups: calling handler

<bound method OverrideRequiredArgsArgument.override_required_args of
<awscli.customizations.cliinputjson.CliInputJSONArgument object at 0x7fdf171b0a58>>
2019-08-12 12:36:18,327 - MainThread - botocore.hooks - DEBUG - Event
before-building-argument-table-parser.iam.list-groups: calling handler

<bound method GenerateCliSkeletonArgument.override_required_args of
<awscli.customizations.generatecliskeleton.GenerateCliSkeletonArgument object at
0x7£df171c5978>>

2019-08-12 12:36:18,327 - MainThread - botocore.hooks - DEBUG - Event operation-

args-parsed.iam.list-groups: calling handler functools.partial(<function
check_should_enable_pagination at 0x7£df17328158>, ['marker', 'max-items'], {'max-
items': <awscli.arguments.CLIArgument object at 0x7fdf171b09b0>}, OrderedDict([('path-

prefix', <awscli.arguments.CLIArgument object at 0x7fdf171ac780>), ('marker',
<awscli.arguments.CLIArgument object at 0x7£fdf171b09e8>), ('max-items',
<awscli.customizations.paginate.PageArgument object at 0x7£fdf171c58d0>), ('cli-
input-json', <awscli.customizations.cliinputjson.CliInputJSONArgument object at

141

AWS Command Line Interface User Guide
General: Use the --debug option.

0x7fdf171b0a58>), ('starting-token',6 <awscli.customizations.paginate.PageArgument

object at 0x7fdf171b0a20>), ('page-size', <awscli.customizations.paginate.PageArgument
object at 0x7fdf171c5828>), ('generate-cli-skeleton',
<awscli.customizations.generatecliskeleton.GenerateCliSkeletonArgument object at
0x7£df171c5978>)1))

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-

arg.iam.list-groups.path-prefix: calling handler <awscli.paramfile.URIArgumentHandler
object at 0x7fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-

arg.iam.list-groups.marker: calling handler <awscli.paramfile.URIArgumentHandler object at
0x7£df1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-

arg.iam.list-groups.max-items: calling handler <awscli.paramfile.URIArgumentHandler object
at 0x7£fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-

arg.iam.list-groups.cli-input-json: calling handler <awscli.paramfile.URIArgumentHandler
object at 0x7fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-

arg.iam.list-groups.starting-token: calling handler <awscli.paramfile.URIArgumentHandler
object at 0x7fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-

arg.iam.list-groups.page-size: calling handler <awscli.paramfile.URIArgumentHandler object
at 0x7£fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event
load-cli-arg.iam.list-groups.generate-cli-skeleton: calling handler
<awscli.paramfile.URIArgumentHandler object at 0x7£df1725c978>

2019-08-12 12:36:18,329 - MainThread - botocore.hooks - DEBUG

- Event calling-command.iam.list-groups: calling handler

<bound method CliInputJSONArgument.add_to_call_parameters of
<awscli.customizations.cliinputjson.CliInputJSONArgument object at 0x7fdf171b0a58>>
2019-08-12 12:36:18,329 - MainThread - botocore.hooks - DEBUG -

Event calling-command.iam.list-groups: calling handler <bound

method GenerateCliSkeletonArgument.generate_json_skeleton of
<awscli.customizations.generatecliskeleton.GenerateCliSkeletonArgument object at
0x7£df171c5978>>

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - DEBUG - Looking for
credentials via: assume-role

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - DEBUG - Looking for
credentials via: assume-role-with-web-identity

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - DEBUG - Looking for
credentials via: shared-credentials-file

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - INFO - Found credentials in
shared credentials file: ~/.aws/credentials

2019-08-12 12:36:18,330 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/endpoints. json

2019-08-12 12:36:18,334 - MainThread - botocore.hooks - DEBUG - Event choose-service-name:
calling handler <function handle_service_name_alias at 0x7£df1898eb70>

2019-08-12 12:36:18,337 - MainThread - botocore.hooks - DEBUG - Event creating-client-

class.iam: calling handler <function add_generate_presigned_url at 0x7fdf18a028c8>
2019-08-12 12:36:18,337 - MainThread - botocore.regions - DEBUG - Using partition endpoint
for iam, us-west-2: aws-global

2019-08-12 12:36:18,337 - MainThread - botocore.args - DEBUG - The s3 config key is not a
dictionary type, ignoring its value of: None

2019-08-12 12:36:18,340 - MainThread - botocore.endpoint - DEBUG - Setting iam timeout as
(60, 60)

2019-08-12 12:36:18,341 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/_retry.json

2019-08-12 12:36:18,341 - MainThread - botocore.client - DEBUG - Registering retry handlers
for service: iam

2019-08-12 12:36:18,342 - MainThread - botocore.hooks - DEBUG - Event before-parameter-

build.iam.ListGroups: calling handler <function generate_idempotent_uuid at 0x7£df189b10d0>
2019-08-12 12:36:18,342 - MainThread - botocore.hooks - DEBUG - Event before-

call.iam.ListGroups: calling handler <function inject_api_version_header_if needed at
0x7£df189b2a60>

2019-08-12 12:36:18,343 - MainThread - botocore.endpoint - DEBUG - Making

request for OperationModel(name=ListGroups) with params: {'url_path': '/',

142

AWS Command Line Interface User Guide
General: Use the --debug option.

'query_string': '', 'method': 'POST', 'headers': {'Content-Type': 'application/x-
www—-form-urlencoded; charset=utf-8', 'User-Agent': 'aws-cli/1.16.215 Python/3.7.3
Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.12.205'}, 'body': {'Action':
'ListGroups', 'Version': '2010-05-08'}, 'url': 'https://iam.amazonaws.com/', 'context':
{'client_region': 'aws-global', 'client_config': <botocore.config.Config object at

0x7fdfl6e9a4a8>, 'has_streaming_input': False, 'auth_type': None}}
2019-08-12 12:36:18,343 - MainThread - botocore.hooks - DEBUG - Event request-
created.iam.ListGroups: calling handler <bound method RequestSigner.handler of
<botocore.signers.RequestSigner object at 0x7fdf16e9a470>>
2019-08-12 12:36:18,343 - MainThread - botocore.hooks - DEBUG - Event choose-
signer.iam.ListGroups: calling handler <function set_operation_specific_signer at
0x7£df18996£28>
2019-08-12 12:36:18,343 - MainThread - botocore.auth - DEBUG - Calculating signature using
v4 auth.
2019-08-12 12:36:18,343 - MainThread - botocore.auth - DEBUG - CanonicalRequest:
POST
/

content-type:application/x-www-form-urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20190812T1936187%

content-type;host;x-amz-date

5£776d91EXAMPLE9b8cb5eb5d6d4a787a33ae41c8cd6eEXAMPLECa69080elelf

2019-08-12 12:36:18,344 - MainThread - botocore.auth - DEBUG - StringToSign:

AWS4-HMAC-SHA256

20190812T193618Z

20190812 /us-east-1/iam/aws4_request

ab7e367eEXAMPLE2769f178e€a509978c£8bfa054874b3EXAMPLE8d043fab6écc9

2019-08-12 12:36:18,344 - MainThread - botocore.auth - DEBUG - Signature:

d85a0EXAMPLEb40164f2f539cdc76d4£294fe822EXAMPLE18adlddf58ala3ce?

2019-08-12 12:36:18,344 - MainThread - botocore.endpoint - DEBUG - Sending http request:
<AWSPreparedRequest stream_output=False, method=POST, url=https://iam.amazonaws.com/,
headers={'Content-Type': b'application/x-www-form-urlencoded; charset=utf-8',
'User-Agent': b'aws-cli/1.16.215 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64
botocore/1.12.205', 'X-Amz-Date': b'20190812T193618Z', 'Authorization': b'AWS4-HMAC-

SHA256 Credential=AKIA01234567890EXAMPLE-east-1/iam/aws4_request, SignedHeaders=content-

type;host;x-amz-date, Signature=d85a07692aceb401EXAMPLEalbl8adlddf58ala3ce7EXAMPLE',
'Content-Length': '36'}>

2019-08-12 12:36:18,344 - MainThread - urllib3.util.retry - DEBUG - Converted retries
value: False -> Retry(total=False, connect=None, read=None, redirect=0, status=None)

2019-08-12 12:36:18,344 - MainThread - urllib3.connectionpool - DEBUG - Starting new HTTPS
connection (1): iam.amazonaws.com:443

2019-08-12 12:36:18,664 — MainThread - urllib3.connectionpool - DEBUG - https://

jiam.amazonaws.com: 443 "POST / HTTP/1.1" 200 570

2019-08-12 12:36:18,664 - MainThread - botocore.parsers - DEBUG - Response headers: {'x-

amzn-RequestId': '74cl11606-bd38-11e9-9c82-559da0adb349', 'Content-Type': 'text/xml',
'Content-Length': '570', 'Date': 'Mon, 12 Aug 2019 19:36:18 GMT'}

2019-08-12 12:36:18,664 — MainThread - botocore.parsers - DEBUG - Response body:

b'<ListGroupsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">\n
<ListGroupsResult>\n <IsTruncated>false</IsTruncated>\n <Groups>\n

<member>\n <Path>/</Path>\n <GroupName>MyTestGroup</GroupName>

\n <Arn>arn:aws:iam::123456789012:group/MyTestGroup</Arn>\n
<GroupId>AGPA1234567890EXAMPLE</GroupId>\n <CreateDate>2019-08-12T19:34:042Z</

CreateDate>\n </member>\n </Groups>\n </ListGroupsResult>\n <ResponseMetadata>\n

<RequestId>74c11606-bd38-11e9-9c82-559da0adb349</RequestId>\n </ResponseMetadata>\n</

ListGroupsResponse>\n'

2019-08-12 12:36:18,665 - MainThread - botocore.hooks - DEBUG - Event needs-

retry.iam.ListGroups: calling handler <botocore.retryhandler.RetryHandler object at
0x7£fdf16e9a780>

2019-08-12 12:36:18,665 — MainThread - botocore.retryhandler - DEBUG - No retry needed.

2019-08-12 12:36:18,665 - MainThread - botocore.hooks - DEBUG - Event after-

call.iam.ListGroups: calling handler <function json_decode_policies at 0x7fdf189b1d90>

{

"Groups": [

{

143

AWS Command Line Interface User Guide
I get the error "command not found" when | run aws.

| get
aws.

| get

"Path": "/",
"GroupName": "MyTestGroup",

"GroupId": "AGPA123456789012EXAMPLE",

"Arn": "arn:aws:iam::123456789012:group/MyTestGroup",
"CreateDate": "2019-08-12T19:34:04Z"

the error "command not found" when | run

Possible cause: The operating system "path" was not
updated during installation.

This error means that the operating system can't find the AWS CLI program. The installation might be
incomplete.

If you use pip to install the AWS CLI, you might need to add the folder that contains the aws program to
your operating system's PATH environment variable, or change its mode to make it executable.

You might need to add the aws executable to your operating system's PATH environment variable.
Follow the steps in the appropriate procedure:

« Windows — Add the AWS CLI version 1 Executable to Your Command Line Path (p. 24)
« macOS - Add the AWS CLI version 1 Executable to Your macOS Command Line Path (p. 21)
o Linux — Add the AWS CLI version 1 Executable to Your Command Line Path (p. 17)

"access denied" errors.

Possible cause: The AWS CLI program file doesn't
have "run" permission.

On Linux or macOS§, ensure that the aws program has run permissions for the calling user. Typically, the
permissions are set to 755.

To add run permission for your user, run the following command, substituting ~/. local/bin/aws with
the path to the program on your computer.

$ chmod +x ~/.local/bin/aws

Possible cause: Your IAM identity doesn't have
permission to perform the operation.

When you run a AWS CLI command, AWS operations are performed on your behalf, using credentials
that associate you with an IAM user or role. The policies attached to that IAM user or role must grant you
permission to call the API actions that correspond to the commands that you run with the AWS CLI.

144

AWS Command Line Interface User Guide
I get an "invalid credentials" error.

| get

Most commands call a single action with a name that matches the command name. However, custom
commands like aws s3 sync call multiple APIs. You can see which APIs a command calls by using the
--debug option.

If you are sure that the user or role has the proper permissions assigned by policy, ensure that your AWS
CLI command is using the credentials you expect. See the next section about credentials (p. 145) to
verify that the credentials the AWS CLI is using are the ones you expect.

For information about assigning permissions to 1AM users and roles, see Overview of Access
Management: Permissions and Policies in the IAM User Guide.

an "invalid credentials" error.

Possible cause: The AWS CLlI is reading credentials
from an unexpected location.

The AWS CLI might be reading credentials from a different location than you expect. You can run aws
configure list to confirm which credentials are used.

The following example shows how to check the credentials used for the default profile.

$ aws configure list

Name Value Type Location
profile <not set> None None
access_key kkkkkkkkxkxkxk**XYVA shared-credentials-file
secret_key kkkkkkkkxkxkxk**ZAGY shared-credentials-file
region us-west-2 config-file ~/.aws/config

The following example shows how to check the credentials of a named profile.

$ aws configure list --profile saanvi

Name Value Type Location
profile saanvi manual --profile
access_key *kkkkkkkkkkxkkxk* shared-credentials-file
secret_key *kkkkkkkkkkkkxk* shared-credentials-file
region us-west-2 config-file ~/.aws/config

Possible cause: Your computer's clock is out of sync.

If you are using valid credentials, your clock may be out of sync. On Linux or macOS, run date to check
the time.

$ date

If your system clock is not correct within a few minutes, use ntpd to sync it.

sudo service ntpd stop
sudo ntpdate time.nist.gov
sudo service ntpd start
ntpstat

® B B W

145

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html

AWS Command Line Interface User Guide
I get a "signature does not match" error.

| get

On Windows, use the date and time options in the Control Panel to configure your system clock.

a "signature does not match" error.

When the AWS CLI runs a command, it sends an encrypted request to the AWS servers to perform the
appropriate AWS service operations. Your credentials (the access key and secret key) are involved in the
encryption and enable AWS to authenticate the person making the request. There are several things that
can interfere with the correct operation of this process, as follows.

Possible cause: Your clock is out of sync with the AWS
servers.

To help protect against replay attacks, the current time can be used during the encryption/decryption
process. If the time of the client and server disagree by more than the allowed amount, the process can
fail and the request is rejected. This can also happen when you run a command in a virtual machine
whose clock is out of sync with the host machine's clock. One possible cause is when the virtual machine
hibernates and takes some time after waking up to resync the clock with the host machine.

On Linux or macQOS, run date to check the time.

$ date

If your system clock is not correct within a few minutes, use ntpd to sync it.

sudo service ntpd stop
sudo ntpdate time.nist.gov
sudo service ntpd start
ntpstat

® w W W

On Windows, use the date and time options in the Control Panel to configure your system clock.

Possible cause: Your operating system is mishandling
AWS secret keys that contain certain special
characters.

If your AWS secret key includes certain special characters, such as -, +, /, or %, some operating system
variants process the string improperly and cause the secret key string to be interpreted incorrectly.

If you process your access keys and secret keys using other tools or scripts, such as tools that build the
credentials file on a new instance as part of its creation, those tools and scripts might have their own
handling of special characters that causes them to be transformed into something that AWS no longer
recognizes.

The easy solution is to regenerate the secret key to get one that does not include the special character.

146

https://wikipedia.org/wiki/Replay_attack

AWS Command Line Interface User Guide

AWS CLI User Guide Document
History

The following table describes important additions to the AWS Command Line Interface User Guide,
beginning in January 2019. For notification about updates to this documentation, you can subscribe to

the RSS feed.

update-history-change

Developer preview release for
AWS CLI version 2

Added support for AWS Single
Sign-On to AWS CLI named
profiles

Announcing deprecation of
support for Python 2.6 and
Python 3.3

New MFA section

Update to "Using the CLI"
section

Update to "Installing the CLI"
section

Update to "Configuring the CLI"
section

update-history-description

Announcing preview release
of AWS CLI version 2. Added
instructions about installing
version 2. Add Migration topic
to discuss differences between
versions 1 and 2.

AWS CLI version 2 adds support
for creating a named profile that
can directly login to an AWS
SSO user account and get AWS
temporary credentials for use in
subsequent AWS CLI commands.

Added notices about the
upcoming deprecation of
support for Python versions 2.6
and 3.3. Starting with version
1.17 to be released on January
10th, 2020, the CLI will require
Python 2.7, Python 3.4, or a
newer version of Python to
operate.

Added a new section describing
how to access the CLI using
multi-factor authentication and
roles.

Major improvements and
additions to the usage
instructions and procedures.

Major improvements and
additions to the CLI installation
instructions and procedures.

Major improvements

and additions to the CLI
configuration instructions and
procedures.

update-history-date
November 7, 2019

November 7, 2019

October 9, 2019

May 3, 2019

March 7, 2019

March 7, 2019

March 7, 2019

147

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/deprecate-python-26-33.html
https://docs.aws.amazon.com/cli/latest/userguide/deprecate-python-26-33.html
https://docs.aws.amazon.com/cli/latest/userguide/deprecate-python-26-33.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html#cli-configure-role-mfa
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-using.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-using.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

	AWS Command Line Interface
	Table of Contents
	What Is the AWS Command Line Interface?
	Using the Examples
	About Amazon Web Services

	Installing the AWS CLI
	AWS CLI version 2
	AWS CLI version 1
	Migrating from AWS CLI version 1 to version 2
	Installing the AWS CLI version 2
	Installing the AWS CLI version 2 on Linux or macOS
	Prerequisites
	Installing
	Upgrading
	Uninstalling
	Verifying the Integrity and Authenticity of the Downloaded Files

	Installing AWS CLI version 2 on Windows
	Prerequisites for Windows
	Installing on Windows
	Upgrading on Windows
	Removing from Windows

	Installing the AWS CLI version 1
	Installing the AWS CLI Using the Bundled Installer
	Installing the AWS CLI Using pip
	Installing the current AWS CLI Version
	Upgrading to the latest version of the AWS CLI

	Installing the AWS CLI in a Virtual Environment
	Steps to Take after Installation
	Setting the Path to Include the AWS CLI
	Configure the AWS CLI with Your Credentials
	Upgrading to the Latest Version of the AWS CLI
	Uninstalling the AWS CLI

	Detailed Instructions for Each Environment
	Install the AWS CLI version 1 on Linux
	Install pip
	Install the AWS CLI version 1 with pip
	Upgrading to the Latest Version of the AWS CLI version 1
	Add the AWS CLI version 1 Executable to Your Command Line Path
	Installing Python on Linux
	Install the AWS CLI version 1 on Amazon Linux

	Install the AWS CLI version 1 on macOS
	Prerequisites
	Install the AWS CLI version 1 Using the Bundled Installer
	Install the AWS CLI version 1 on macOS Using pip
	Add the AWS CLI version 1 Executable to Your macOS Command Line Path

	Install the AWS CLI version 1 on Windows
	Install the AWS CLI version 1 Using the MSI Installer
	Updating an MSI Installation
	Uninstalling the AWS CLI version 1

	Install the AWS CLI version 1 Using Python and pip on Windows
	Add the AWS CLI version 1 Executable to Your Command Line Path

	Install the AWS CLI version 1 in a Virtual Environment
	Install the AWS CLI version 1 Using the Bundled Installer (Linux or macOS)
	Prerequisites
	Install the AWS CLI version 1 Using the Bundled Installer
	Install the AWS CLI version 1 without Sudo (Linux or macOS)
	Uninstall the AWS CLI version 1

	Using the AWS CLI version 1 with Python 2.6 or Python 3.3

	Migrating from AWS CLI version 1 to version 2
	AWS CLI version 2 no longer automatically retrieves http:// or https:// URLs for parameters
	AWS CLI version 2 now returns all timestamp output values in ISO 8601 format
	AWS CLI version 2 no longer supports "hidden" aliases
	AWS CLI version 2 uses Amazon S3 keys more consistently
	AWS CLI version 2 currently does not support the [plugins][plugins] section in the AWS config file

	Configuring the AWS CLI
	Quickly Configuring the AWS CLI
	Access Key and Secret Access Key
	Region
	Output Format

	Creating Multiple Profiles
	Configuration Settings and Precedence
	Configuration and Credential File Settings
	Where Are Configuration Settings Stored?
	Supported config File Settings
	Global Settings
	S3 Custom Command Settings

	Named Profiles
	Using Profiles with the AWS CLI

	Configuring the AWS CLI to use AWS Single Sign-On
	Configuring a Named Profile to Use AWS SSO
	Automatic Configuration
	Manual Configuration

	Using an AWS SSO Enabled Named Profile
	Signing In and Getting Temporary Credentials
	Running a Command with Your AWS SSO Enabled Profile
	Signing Out of Your AWS SSO Sessions

	Environment Variables To Configure the AWS CLI
	Command Line Options
	Sourcing Credentials with an External Process
	Getting Credentials from EC2 Instance Metadata
	Using an HTTP Proxy
	Authenticating to a Proxy
	Using a Proxy on Amazon EC2 Instances

	Using an IAM Role in the AWS CLI
	Configuring and Using a Role
	Using Multi-Factor Authentication
	Cross-Account Roles and External ID
	Specifying a Role Session Name for Easier Auditing
	Assume Role with Web Identity
	Clearing Cached Credentials

	Command Completion
	Identify Your Shell
	Locate the AWS Completer
	Add the Completer's Folder to Your Path
	Enable Command Completion
	Test Command Completion

	Using the AWS CLI
	Getting Help with the AWS CLI
	AWS CLI Documentation
	API Documentation

	Command Structure in the AWS CLI
	Specifying Parameter Values for the AWS CLI
	Common Parameter Types
	Using JSON for Parameters
	Using Quotation Marks with Strings
	Loading Parameters from a File
	Binary Files
	Remote Files

	Generating AWS CLI Skeleton and Input Parameters from a JSON or YAML Input File
	Controlling Command Output from the AWS CLI
	How to Select the Output Format
	JSON Output Format
	YAML Output Format
	Text Output Format
	Table Output Format
	How to Filter the Output with the --query Option

	Using Shorthand Syntax with the AWS CLI
	Structure Parameters
	Using Shorthand Syntax with the AWS Command Line Interface

	Using AWS CLI Pagination Options
	Understanding Return Codes from the AWS CLI

	Using the AWS CLI to Work with AWS Services
	Using Amazon DynamoDB with the AWS CLI
	Using Amazon EC2 with the AWS CLI
	Creating, Displaying, and Deleting Amazon EC2 Key Pairs
	Create a Key Pair
	Display Your Key Pair
	Delete Your Key Pair

	Creating, Configuring, and Deleting Security Groups for Amazon EC2
	Create a Security Group
	EC2-VPC
	EC2-Classic

	Add Rules to Your Security Group
	EC2-VPC
	EC2-Classic

	Delete Your Security Group
	EC2-VPC
	EC2-Classic

	Launching, Listing, and Terminating Amazon EC2 Instances
	Launch Your Instance
	EC2-VPC
	EC2-Classic

	Add a Block Device to Your Instance
	Add a Tag to Your Instance
	Connect to Your Instance
	List Your Instances
	Terminate Your Instance

	Using Amazon S3 Glacier with the AWS CLI
	Create an Amazon S3 Glacier Vault
	Prepare a File for Uploading
	Initiate a Multipart Upload and Upload Files
	Complete the Upload

	Using AWS Identity and Access Management from the AWS CLI
	Creating IAM Users and Groups
	Attaching an IAM Managed Policy to an IAM User
	Setting an Initial Password for an IAM User
	Create an Access Key for an IAM User

	Using Amazon S3 with the AWS CLI
	Using High-Level (s3) Commands with the AWS CLI
	Manage Buckets
	Create a Bucket
	List Your Buckets
	Delete a Bucket

	Manage Objects

	Using API-Level (s3api) Commands with the AWS CLI
	Apply a Custom ACL
	Configure a Logging Policy

	Using Amazon SNS with the AWS CLI
	Create a Topic
	Subscribe to a Topic
	Publish to a Topic
	Unsubscribe from a Topic
	Delete a Topic

	Using Amazon SWF with the AWS CLI
	List of Amazon SWF Commands by Category
	Commands Related to Activities
	Commands Related to Deciders
	Commands Related to Workflow Executions
	Commands Related to Administration
	Activity Management
	Workflow Management
	Domain Management
	Workflow Execution Management

	Visibility Commands
	Activity Visibility
	Workflow Visibility
	Workflow Execution Visibility
	Domain Visibility
	Task List Visibility

	Working with Amazon SWF Domains Using the AWS CLI
	List Your Domains
	Get Information about a Domain
	Register a Domain
	Deprecate a Domain

	Security in the AWS Command Line Interface
	Data Protection in the AWS CLI
	Data Encryption
	Encryption at Rest
	Encryption in Transit

	Identity and Access Management for the AWS CLI
	Compliance Validation for the AWS CLI

	Troubleshooting AWS CLI Errors
	General: Ensure you're running a recent version of the AWS CLI.
	General: Use the --debug option.
	I get the error "command not found" when I run aws.
	Possible cause: The operating system "path" was not updated during installation.

	I get "access denied" errors.
	Possible cause: The AWS CLI program file doesn't have "run" permission.
	Possible cause: Your IAM identity doesn't have permission to perform the operation.

	I get an "invalid credentials" error.
	Possible cause: The AWS CLI is reading credentials from an unexpected location.
	Possible cause: Your computer's clock is out of sync.

	I get a "signature does not match" error.
	Possible cause: Your clock is out of sync with the AWS servers.
	Possible cause: Your operating system is mishandling AWS secret keys that contain certain special characters.

	AWS CLI User Guide Document History

