Rt=R1 + R2 + R3 1/Rt = 1/R1 + 1/R2 + 1/R3 + ...

Energy in Joules, J:

V = IR

Kinetic:	$1/2 \text{ mv}^2$ mass in kg, velocity in m/s
Gravitational Potential:	mgh mass in kg, acceleration of
	gravity (9.8 m/s2), height in meters
Thermal:	$\mathbf{s^*m^*\Delta t}$ specific heat water 4.18 J/g-deg,
	mass in g, temp Celsius
Work:	F*d Force in Newtons, distance in meters
Electric:	V*q Voltage, charge in Coulombs
All:	Power * Time Watts, seconds

Power in Watts, W:

All:	Energy/time Joules, seconds
Electrical:	I ² R amps, ohms
Electrical:	V*I volts, amps

Zeroth Law of Thermodynamics:

Heat energy spontaneously flows from a high temperature source to a low temperature source.

First Law of Thermodynamics:

Energy is conserved, however it may be converted from one form to another. The energy of the Universe is a constant.

Second Law of Thermodynamics:

During any energy transformation, some of the energy will result in heat. Necessary Losses.