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1 Introduction

If you fake it long enough, there comes a point where you aren’t faking it any more. Here are
some tips to help you along the way...

2 Calculus

Derivative The definition of a derivative is as follows. For some function f(x),

f ′(x) = lim
h→0

f(x + h)− f(x)
h

.

2.1 Differentiation Rules

It is useful to remember the following rules for differentiation. Let f(x) and g(x) be two functions

2.1.1 Linearity

d

dx
(af(x) + bg(x)) = af ′(x) + bg′(x)

for constants a and b.

2.1.2 Product rule
d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

2.1.3 Chain rule
d

dx
g(f(x)) = g′(f(x))f ′(x)
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2.1.4 Quotient Rule

d

dx

f(x)
g(x)

=
f ′(x)g(x)− f(x)g′(x)

g(x)2

2.1.5 Some Basic Derivatives
d

dx
xa = axa−1

d

dx

1
xa

= − a

xa+1

d

dx
ex = ex

d

dx
ax = ax log a

d

dx
log |x| = 1

x

2.1.6 Convexity and Concavity

It is very easy to get confused about the convexity and concavity of a function. The technical
mathematical definition is actually somewhat at odds with the colloquial usage. Let f(x) be a
twice differentiable function in an interval I. Then:

f ′′(x) ≥ 0 ⇒ f(x) convex (1)
f ′′(x) ≤ 0 ⇒ f(x) concave

If you think about a profit function as a function of time, a convex function would show
increasing marginal returns, while a concave function would show decreasing marginal returns.

This leads into an important theorem (particularly for stochastic demography), known as
Jensen’s Inequality. For a convex function f(x),

IE [f(X)] ≥ f(IE [X]).

2.2 Taylor Series

T (x) =
∞∑

k=0

f (k)(a)
k!

(x− a)k

where f (k)(a) denotes the kth derivative of f evaluated at a, and k! = k(k − 1)(k − 2) . . . (1).
For example, we can approximate er at a = 0:
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f(E[x])=f([A+B]/2)

f(x)

x

A BE[x]=(A+B)/2

E[f(x)]=[f(A)+f(B)]/2

Figure 1: Illustration of Jensen’s Inequality.

er ≈ 1 + r +
r2

2
+

r3

6
. . .

Expanding log(1 + x) around a = 0 yields:

log(1 + x) ≈ x− x2

2
+

x3

3
− . . .

2.3 Jacobian

For a system of equations, F (x) and G(λ), the Jacobian matrix is

J =
(

∂F/∂x ∂F/∂λ
∂G/∂x ∂G/∂λ

)
.

This is very important for the analysis of stability of interacting models such as those for
epidemics and predator-prey systems. The equilibrium of a system is stable if and only if the
real parts of all the eigenvalues of J are negative.

2.4 Integration

Linearity ∫
[af(x) + bg(x)] dx = a

∫
f(x)dx + b

∫
g(x)dx

Integration by Parts ∫
u · v′ dx = u · v −

∫
v · u′ dx
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Some Useful Facts About Integrals∫
f ′(x)
f(x)

dx = log |f(x)|

∫
xadx =

xa+1

a + 1
, a 6= −1

∫
exdx = ex

∫
dx

x
= log |x|

2.5 Definite Integrals ∫ b

a
f(x)dx = [F (x)]ba = F (b)− F (a)

2.5.1 Expectation

For a continuous random variable X with probability density function f(x), the expected value,
or mean, is

IE(X) =
∫

Ω
xf(x)dx

where the integral is taken over the set of all possible outcomes Ω.
For example, the average age of mothers of newborns in a stable population:

AB =
∫ β

α
ae−ral(a)m(a)da

Since (from the Euler-Lotka equation) the probability that a mother will be a years old in a
stable population is f(a) = e−ral(a)m(a).

Some Properties of Expectation

IE[aX] = aIE[X]

For two discrete random variables, X and Y ,

IE[X + Y ] = IE[X] + IE[Y ]
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2.5.2 Variance

For a continuous random variable X with probability density function f(x) and expected value
µ, the variance is

\V(X) =
∫

Ω
(x− µ)2f(x)dx

A useful formula for calculating variances:

\V[X] = IE[X2]− (IE[X])2

2.6 Exponents and Logarithms

Properties of Exponentials
xaxb = xa+b

xa

xb
= xa−b

xa = ea log x

Complex Case
ez = ea+bi = eaebi = ea(cos b + i sin b)

(xa)b = xab

x−a =
1
xa

The logarithm to the base e, where e is defined as

e = lim
n→∞

(
1 +

1
n

)n

Assume that log ≡ loge. Logarithms to other bases will be marked as such. For example:
log10, log2, etc.

This is an important for demography:

lim
n→∞

(
1 +

r

n

)n
= er

Properties of Logarithms
log xa = a log x

log ab = log a + log b

log
a

b
= log a− log b
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(a,b) = a + bi

Figure 2: Argand diagram representing a complex number z = a + bi.

Complex Numbers We encounter complex numbers frequently when we calculate the eigen-
values of projection matrices, so it is useful to know something about them. Imaginary number:
i =

√
−1. Complex number: z = a + bi, where a is the real part and b is a coefficient on the

imaginary part.
It is useful to represent imaginary numbers in their polar form. Define axes where the

abscissa represents the real part of a complex number and the ordinate represents the imaginary
part (these axes are known as an Argand diagram). This vector, a + bi can be represented by
the angle θ and the radius of the vector rooted at the origin to point (a, b). Using trigonometric
definitions, a = r sin θ and b = r cos θ, we see that

z = a + ib = r(cos θ + i sin θ).

Believe it or not, this comes in handy when we interpret the transient dynamics of a popu-
lation.

Let z be a complex number with real part a and imaginary part b,

z = a + bi

Then the complex conjugate of z is

z̄ = a− bi

Non-real eigenvalues of demographic projection matrices come in conjugate pairs.

3 Linear Algebra

A matrix is a rectangular array of numbers

A =
[

a11 a12

a21 a22

]
A vector is simply a list of numbers
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n(t) =

 n1

n2

n3


A scalar is a single number: λ = 1.05
We refer to individual matrix elements by indexing them by their row and column positions.

A matrix is typically named by a capital (bold) letter (e.g., A). An element of matrix A is
given by a lowercase a subscripted with its indices. These indices are subscripted following the
the lowercase letter, first by row, then by column. For example, a21 is the element of A which
is in the second row and first column.

Matrix Multiplication [
a11 a12

a21 a22

] [
n1

n2

]
=

[
a11n1 + a12n2

a21n1 + a22n2

]
Multiply each row element-wise by the column
For Example, [

2 3
4 5

] [
6
7

]
=

[
(2 · 6) + (3 · 7)
(4 · 6) + (5 · 7)

]
=

[
33
59

]
Matrix Addition or Subtraction[

a11 a12

a21 a22

]
+

[
b11 b12

b21 b22

]
=

[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
[

1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8
10 12

]
Multiplying a Matrix by a Scalar

λ

[
a11 a12

a21 a22

]
=

[
λa11 λa12

λa21 λa22

]

4
[

2 3
4 5

]
=

[
8 12
16 20

]
Systems of Equations Matrix notation was invented to make solving simultaneous equations
easier.

y1 = ax1 + bx2

y2 = cx1 + dx2

In matrix notation: [
y1

y2

]
=

[
a b
c d

] [
x1

x2

]
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3.1 Eigenvalues and Eigenvectors

A scalar λ is an eigenvalue of a square matrix A and w 6= 0 is its associated eigenvector if

Aw = λw.

Eigenvalues of A are calculated as the roots of the characteristic equation,

det(A− λI) = 0,

where I is the identity matrix, a square matrix with ones along the diagonal and zeros elsewhere.
For example, we can calculate the eigenvalues for the matrix,

A =
[

f1 f2

p1 0

]
.

Solve the characteristic equation det(A− λI) = 0:

(A− λI) =
[

f1 f2

p1 0

]
−

[
λ 0
0 λ

]
=

[
f1 − λ f2

p1 −λ

]
det(A− λI) = −(f1 − λ)λ− f2p1

λ2 − f1λ− f2p1 = 0

Use the quadratic equation to solve for λ:

−f1 ±
√

f2
1 − 4f2p1

2f1

Numerical Example Define:

A =
[

1.5 2
0.5 0

]
(2)

det(A− λI) =
[

1.5− λ 2
0.5 −λ

]
λ2 − 1.5λ− 1 = 0

(λ− 2)(λ + 0.5) = 0

The roots of this are λ = 2 and λ = −0.5. A k × k matrix will have k eigenvalues. If a
matrix is non-negative, irreducible, and primitive, one of these eigenvalues is guaranteed to be
real, positive, and strictly greater than all the others.
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Analytic Formula for Eigenvalues: The 2× 2 Case

A =
[

a b
c d

]
The eigenvalues are:

λ± =
T

2
±

√
(T/2)2 −D

where T = a + d is the trace and D = ad− bc is the determinant of matrix A.
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