Python Cheat Sheet: Object Orientation Terms

“A puzzle a day to learn, code, and play” =+ Visit finxter.com

Class

Object
(sinstance)

Instantiation

Method

Self

Encapsulation

Attribute

Class
attribute

Instance
attribute
(sinstance
variable)

Dynamic
attribute

Method
overloading

Inheritance

Description

A blueprint to create objects. It defines the data (attributes) and functionality
(methods) of the objects. You can access both attributes and methods via
the dot notation.

A piece of encapsulated data with functionality in your Python program that
is built according to a class definition. Often, an object corresponds to a
thing in the real world. An example is the object "Obama" that is created
according to the class definition "Person". An object consists of an arbitrary
number of attributes and methods, encapsulated within a single unit.

The process of creating an object of a class. This is done with the
constructor method __init__(self, ...).

A subset of the overall functionality of an object. The method is defined
similarly to a function (using the keyword "def") in the class definition. An
object can have an arbitrary number of methods.

The first argument when defining any method is always the self argument.
This argument specifies the instance on which you call the method.

self gives the Python interpreter the information about the concrete
instance. To define a method, you use self to modify the instance
attributes. But to call an instance method, you do not need to specify self.

Binding together data and functionality that manipulates the data.

A variable defined for a class (class attribute) or for an object (instance attribute). You
use attributes to package data into enclosed units (class or instance).

(=class variable, static variable, static attribute) A variable that is created
statically in the class definition and that is shared by all class objects.

A variable that holds data that belongs only to a single instance. Other instances do
not share this variable (in contrast to class attributes). In most cases, you create an
instance attribute x in the constructor when creating the instance itself using the self
keywords (e.g. self.x = <val>).

An instance attribute that is defined dynamically during the execution of the program
and that is not defined within any method. For example, you can simply add a new
attribute neew to any object o by calling o.neew = <val>.

You may want to define a method in a way so that there are multiple options
to call it. For example for class X, you define a method f{(...) that can be called
in three ways: f(a), f(a,b), or f(a,b,c). To this end, you can define the method
with default parameters (e.g. f(a, b=None, c=None).

Class A can inherit certain characteristics (like attributes or methods) from class B.
For example, the class "Dog" may inherit the attribute "number_of_legs" from the
class "Animal". In this case, you would define the inherited class "Dog" as follows:
"class Dog(Animal): ..."

finxter

Example

class Dog:

class attribute
is_hairy = True

constructor

def __init__ (self, name):
instance attribute
self.name = name

method
def bark(self):
print("Wuff")

bello = Dog("bello™)
paris = Dog("paris")

print(bello.name)
"bello"

print(paris.name)
"paris"
class Cat:
method overloading
def miau(self, times=1):
print("miau " * times)

fifi = Cat()

fifi.miau()
"miau "

fifi.miau(5)
"miau miau miau miau miau

Dynamic attribute

fifi.likes = "mice"
print(fifi.likes)
"mice"

Inheritance
class Persian_Cat(Cat):
classification = "Persian”

mimi = Persian_Cat()

print(mimi.miau(3))
"miau miau miau "

print(mimi.classification)

https://finxter.com/

