Precise Definition: We say \(\lim_{x \to a} f(x) = L \) if for every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that whenever \(0 < |x - a| < \delta \) then \(|f(x) - L| < \varepsilon \).

“Working” Definition: We say \(\lim_{x \to a} f(x) = L \) if we can make \(f(x) \) as close to \(L \) as we want by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) without letting \(x = a \).

Right hand limit: \(\lim_{x \to a^+} f(x) = L \). This has the same definition as the limit except it requires \(x > a \).

Left hand limit: \(\lim_{x \to a^-} f(x) = L \). This has the same definition as the limit except it requires \(x < a \).

Relationship between the limit and one-sided limits
\[
\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L \iff \lim_{x \to a} f(x) = L
\]

Properties
Assume \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) both exist and \(c \) is any number then,

1. \(\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x) \)
2. \(\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \)
3. \(\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \)
4. \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) provided \(\lim_{x \to a} g(x) \neq 0 \)
5. \(\lim_{x \to a^} f(x)^n = [\lim_{x \to a^} f(x)]^n \)
6. \(\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \)

Basic Limit Evaluations at \(\pm \infty \)

Note: \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).

1. \(\lim_{x \to \infty} e^x = \infty \) & \(\lim_{x \to -\infty} e^x = 0 \)
2. \(\lim_{x \to \infty} \ln(x) = \infty \) & \(\lim_{x \to -\infty} \ln(x) = -\infty \)
3. \(\text{If } r > 0 \text{ then } \lim_{x \to \infty} \frac{b}{x^r} = 0 \)
4. \(\text{If } r > 0 \text{ and } x \) is real for negative \(x \)
 \[\lim_{x \to -\infty} \frac{b}{x^r} = 0 \]
5. \(n \) even: \(\lim_{x \to \infty} x^n = \infty \)
6. \(n \) odd: \(\lim_{x \to \infty} x^n = \infty \) & \(\lim_{x \to -\infty} x^n = -\infty \)
7. \(n \) even: \(\lim_{x \to \infty} ax^n + \cdots + bx + c = \text{sgn}(a)\infty \)
8. \(n \) odd: \(\lim_{x \to \infty} ax^n + \cdots + bx + c = \text{sgn}(a)\infty \)
9. \(n \) odd: \(\lim_{x \to -\infty} ax^n + \cdots + cx + d = -\text{sgn}(a)\infty \)

Some Continuous Functions
Partial list of continuous functions and the values of \(x \) for which they are continuous.

1. Polynomials for all \(x \).
2. Rational function, except for \(x \)'s that give division by zero.
3. \(\sqrt[n]{x} \) (odd) for all \(x \).
4. \(\sqrt[n]{x} \) (even) for all \(x \geq 0 \).
5. \(e^x \) for all \(x \).
6. \(\ln(x) \) for \(x > 0 \).
7. \(\cos(x) \) and \(\sin(x) \) for all \(x \).
8. \(\tan(x) \) and \(\sec(x) \) provided \(x \neq \cdots, -\pi, -\frac{3\pi}{2}, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{3\pi}{2}, \cdots \)
9. \(\cot(x) \) and \(\csc(x) \) provided \(x \neq \cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots \)

Intermediate Value Theorem
Suppose that \(f(x) \) is continuous on \([a, b]\) and let \(M \) be any number between \(f(a) \) and \(f(b) \).
Then there exists a number \(c \) such that \(a < c < b \) and \(f(c) = M \).