MATH 1401 SPRING 2000 CHEAT SHEET
 FINAL

JAN MANDEL

1. Important formulas from algebra. $\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$, $\sin ^{2} x+\cos ^{2} x=1, a^{b+c}=a^{b} a^{c}, a^{m / n}=\sqrt[n]{a^{m}}, a^{b}=e^{(\log a) b}$. Solution of $a x^{2}+b x+c=0$ is $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
2. Limits and continuity. $\lim _{x \rightarrow c} f(x)=f(c) \Longleftrightarrow f$ is continuous at c $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1, \lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0, \lim _{x \rightarrow 0}(1+x)^{1 / x}=e$ $\lim _{x \rightarrow c} f(x)=L \Longleftrightarrow \lim _{x \rightarrow c^{-}}^{x} f(x)=\lim _{x \rightarrow c^{+}} f(x)=L$
Intermediate value theorem: If f is continuous on $[\mathrm{a}, \mathrm{b}]$ and k is between $f(a)$ and $f(b)$, then there exists $c \in[a, b]$ such that $f(c)=k$.
Infinite limits: The formulas for the limit of sum, product, and quotient apply unless they lead to undefined expressions of the form $\infty-\infty, \infty \cdot 0, L / 0, \infty / \infty$.
If $\lim _{x \rightarrow c} f(x) \neq 0$ and $\lim _{x \rightarrow c} g(x)=0$, with $g(x) \neq 0$ on a neighborhood of c, then the graph of f / g has vertical asymptote $x=c$.
3. Differentiation. The equation of the line passing through (x_{0}, y_{0}) with slope s is $y-y_{0}=s\left(x-x_{0}\right)$. The equation of the tangent to the graph of f at $\left(x_{0}, y_{0}\right), y_{0}=f\left(x_{0}\right)$, is $y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.
$f^{\prime}(c)=\lim _{x \rightarrow c}(f(x)-f(c)) /(x-c)$. If $f^{\prime}(c)$ exists, f is continuous at c.
$\left(x^{n}\right)^{\prime}=n x^{n-1},(\sin x)^{\prime}=\cos x,(\cos x)^{\prime}=-\sin x,(\ln x)^{\prime}=1 / x,\left(e^{x}\right)^{\prime}=e^{x}$
$\sin ^{\prime} x=\cos x, \cos ^{\prime} x=-\sin x,(\arctan x)^{\prime}=1 /\left(1+x^{2}\right), \arcsin ^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}, \operatorname{arcsec}^{\prime} x=$ $\frac{1}{|x| \sqrt{1-x^{2}}},(u v)^{\prime}=u^{\prime} v+u v^{\prime},(u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2}, f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
If $g=f^{-1}$ and $y=g(x), f^{\prime}(y) \neq 0$, then $g^{\prime}(x)=1 / f^{\prime}(y)$.
4. Applications and extrema. If f is continuous on $[a, b]$, then f attains maximum and minimum on $[a, b]$. f can attain extremum on $[a, b]$ only at endpoints or critical numbers (where f^{\prime} does not exist or $f^{\prime}=0$). f can attain relative extremum in (a, b) only at a critical number.
Mean value theorem: If f is continuous on $[a, b]$ and differentiable on (a, b) then there exists $c \in(a, b)$ such that $f^{\prime}(c)=(f(b)-f(a)) /(b-a)$. (The case when $f(a)=f(b)$ is Rolle's theorem.)
If $f^{\prime}>0$ in (a, b) and f is continuous on $[a, b]$, then f is increasing on $[a, b]$.
If f is continuous at $c, f^{\prime}(x)<0$ for $x<c$ and $f^{\prime}(x)>0$ for $x>c$, then f has relative minimum $(c, f(c)$). (Or, relative minimum $f(c)$ at $x=c$.)
If f^{\prime} in increasing in interval I, then f is concave upward in I.
If $f^{\prime \prime}>0$ in (a, b), then f is concave upward in (a, b).
If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has relative minimum at c.
5. Hyperbolic functions. $\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \cosh ^{2} x-\sinh ^{2} x=1$, $\cosh ^{\prime} x=\sinh x,\left(\tanh ^{-1}\right)^{\prime}=1 /\left(1-x^{2}\right)$
6. Integration. $\int f(x) d x=F(x)+C, F^{\prime}=f$.
$\int x^{n} d x=x^{n+1} /(n+1)+C, n \neq-1, \int f(g(x)) g^{\prime}(x) d x=\int f(u) d u, u=g(x)$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C, \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \frac{x}{a}+C$
$\int \frac{1}{\sqrt{a^{2}+x^{2}}}=\sinh ^{-1} \frac{x}{a}+C, \int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{a} \tanh ^{-1} \frac{x}{a}+C$
$\int_{a}^{b} f(x) d x=F(b)-F(a), F^{\prime}=f$.
$(d / d x) \int_{a}^{x} f(t) d t=f(x)$
