TABLE OF INFORMATION FOR 2002

CONSTANTS AND CONVERSION FACTORS		UNITS		PREFIXES			
1	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$	<u>Name</u>	Symbol	<u>Factor</u>	<u>Prefix</u>	Symbol	
1 unified atomic mass unit,	$= 931 \text{ MeV/}c^2$	meter	m	10 ⁹	giga	G	
Proton mass,	$m_p = 1.67 \times 10^{-27} \text{ kg}$	kilogram	kg	10^{6}	mega	M	
Neutron mass,	$m_n = 1.67 \times 10^{-27} \text{ kg}$	second	s	10 ³	kilo	k	
Electron mass,	$m_e = 9.11 \times 10^{-31} \mathrm{kg}$	ampere	A	10^{-2}	centi	c	
Magnitude of the electron charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$	kelvin	K	10^{-3}	milli	m	
Avogadro's number,	$N_0 = 6.02 \times 10^{23} \mathrm{mol}^{-1}$	mole	mol	10^{-6}	micro	μ	
Universal gas constant, Boltzmann's constant.	$R = 8.31 \text{ J/(mol \cdot K)}$ $k_R = 1.38 \times 10^{-23} \text{ J/K}$	hertz	Hz	10 ⁻⁹	nano	n	
Speed of light,	$\kappa_B = 1.38 \times 10^{-4} \text{ J/K}$ $c = 3.00 \times 10^8 \text{ m/s}$	newton	N	10^{-12}	pico	p	
Planck's constant,	$h = 6.63 \times 10^{-34} \mathrm{J \cdot s}$	pascal	Pa	VALUES O	E TRICONOM	METRIC FUN	ICTIONS
	$= 4.14 \times 10^{-15} \mathrm{eV \cdot s}$	joule	J		OR COMMO		CHONS
	$hc = 1.99 \times 10^{-25} \mathrm{J} \cdot \mathrm{m}$	watt	W	θ	sin θ	cos θ	tan θ
	$= 1.24 \times 10^3 \text{eV} \cdot \text{nm}$	coulomb	C	0°	0	1	0
Vacuum permittivity,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 /\mathrm{N} \cdot \mathrm{m}^2$	volt	V			<i>F</i>	
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2$	ohm	Ω	30°	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} (\mathrm{T \cdot m}) / \mathrm{A}$	henry	Н	37°	3/5	4/5	3/4
Magnetic constant,	$k' = \mu_0 / 4\pi = 10^{-7} (T \cdot m) / A$	farad	F	0	/= ·-	/ - /-	
Universal gravitational constant,	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$	tesla	T	45°	$\sqrt{2}/2$	$\sqrt{2}/2$	1
Acceleration due to gravity at the Earth's surface,	$g = 9.8 \text{ m/s}^2$	degree Celsius	°C	53°	4/5	3/5	4/3
1 atmosphere pressure,	$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2$	electron- volt	eV	60°	$\sqrt{3}/2$	1/2	$\sqrt{3}$
	$= 1.0 \times 10^5 \text{Pa}$						
1 electron volt,	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$			90°	1	0	∞
						,	

The following conventions are used in this examination.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- *IV. For mechanics and thermodynamics equations, W represents the work done on a system.

^{*}Not on the Table of Information for Physics C, since Thermodynamics is not a Physics C topic.

NEWTONIAN MECHANICS

	υ	=	v_0	+	at
--	---	---	-------	---	----

a = acceleration

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

F = force

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

f = frequencyh = height

$$v^2 = {v_0}^2 + 2a(x - x_0)$$

J = impulseK = kinetic energy

k = spring constant

$$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$$

 $\ell = length$

$$F_{fric} \le \mu N$$

m = massN = normal force

$$a_c = \frac{v^2}{r}$$

P = power

$$a_c = \frac{1}{r}$$

p = momentum

$$\tau = rF \sin \theta$$

r = radius or distance

$$\tau = rF \sin \theta$$

 \mathbf{r} = position vector

$\mathbf{p} = m\mathbf{v}$

T = period

t = timeU = potential energy

$\mathbf{J} = \mathbf{F}\Delta t = \Delta \mathbf{p}$

v = velocity or speed

$$K = \frac{1}{2} m v^2$$

 $\Delta U_{g} = mgh$

W = work done on a system

$$x = position$$

 $\mu = \text{coefficient of friction}$

$$\theta = angle$$

$$\tau = \text{torque}$$

$$W = \mathbf{F} \cdot \Delta \mathbf{r} = F \Delta r \cos \theta$$

$$P_{avg} = \frac{W}{\Delta t}$$

$$P = \mathbf{F} \cdot \mathbf{v} = Fv \cos \theta$$

$$\mathbf{F}_{s} = -k\mathbf{x}$$

$$U_s = \frac{1}{2} kx^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{1}{f}$$

$$F_G = -\frac{Gm_1m_2}{r^2}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

A = area

$$\mathbf{E} = \frac{\mathbf{F}}{a}$$

B = magnetic fieldC = capacitanced = distanceE = electric field

$$\mathbf{E} = \frac{1}{q}$$

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

 $\varepsilon = \text{emf}$ F = force

$$E_{avg} = -\frac{V}{d}$$

I = current $\ell = length$ P = power

$$E_{avg} = -\frac{1}{d}$$

Q = charge

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

q = point chargeR = resistancer = distance

$$C = \frac{Q}{V}$$

t = time

$$C = \frac{\epsilon_0 A}{d}$$

U = potential (stored) energyV = electric potential or

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$$

potential difference

$$I_{avg} = \frac{\Delta Q}{\Delta t}$$

v = velocity or speed ρ = resistivity $\phi_m = \text{magnetic flux}$

$$R = \frac{\rho \ell}{A}$$

$$V = IR$$

$$P = IV$$

$$C_p = \sum_i C_i$$

$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

$$R_s = \sum_i R_i$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

$$F_B = qv B \sin \theta$$

$$F_B = BI\ell \sin \theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$\phi_m = \mathbf{B} \cdot \mathbf{A} = BA \cos \theta$$

$$\boldsymbol{\mathcal{E}}_{avg} = -\frac{\Delta \phi_{_{m}}}{\Delta t}$$

$$\varepsilon = B\ell v$$

FLUID MECHANICS AND THERMAL PHYSICS

$$p = p_0 + \rho g h$$

$$F_{buoy} = \rho V g$$

$$A_1 v_1 = A_2 v_2$$

$$p + \rho g y + \frac{1}{2} \rho v^2 = \text{const.}$$

$$p + \rho g y + \frac{1}{2} \rho v^2 = \text{const.}$$

 $\Delta \ell = \alpha \ell_0 \Delta T$

$$Q = mL$$

$$Q = mc\Delta T$$

$$p = \frac{F}{A}$$

$$pV = nRT$$

$$K_{avg} = \frac{3}{2} k_B T$$

$$v = \sqrt{3RT} - \sqrt{3k}$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$$

$$W = -p\Delta V$$

$$Q = nc\Delta T$$

$$\Delta U = Q + W$$

$$\Delta U = nc_V \Delta T$$

$$e = \left| \frac{W}{Q_H} \right|$$

$$e_c = \frac{T_H - T_C}{T_H}$$

 $\lambda = \frac{h}{p}$

E = hf = pc

 $K_{\text{max}} = hf - \phi$

 $\Delta E = (\Delta m)c^2$

ATOMIC AND NUCLEAR PHYSICS

A = area

$$e = efficiency$$

$$F =$$
force

$$h = \text{depth}$$

$$K_{avg}$$
 = average molecular kinetic energy

$$L = \text{heat of transformation}$$

$$\ell = length$$

$$M =$$
 molecular mass $m =$ mass of sample

$$n = \text{number of moles}$$

$$p = pressure$$

$$Q =$$
 heat transferred to a system

$$T =$$
temperature

$$U = internal energy$$

$$V = \text{volume}$$

$$v = \text{velocity or speed}$$

$$v_{rms}$$
 = root-mean-square

$$W =$$
 work done on a system

$$y = \text{height}$$

$$\alpha$$
 = coefficient of linear expansion

$$\mu = \text{mass of molecule}$$

$$\rho = \text{density}$$

E = energy

m = mass

f = frequency

K = kinetic energy

 $\phi = \text{work function}$

p = momentum λ = wavelength

WAVES AND OPTICS

$$v = f\lambda$$
$$n = \frac{c}{v}$$

$$n = \frac{c}{v}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\sin \theta_C = \frac{n_2}{n_1}$$

$$\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$$

$$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$$

$$f = \frac{R}{2}$$

$$d\sin\theta = m\lambda$$

$$x_m \approx \frac{m\lambda L}{d}$$

$$d = separation$$

$$f =$$
frequency or focal

$$h = \text{height}$$

$$L = \text{distance}$$

$$M = magnification$$

$$m =$$
an integer

$$n = \text{index of refraction}$$

 $R = \text{radius of curvature}$

$$s = \text{distance}$$

$$v = \text{speed}$$

$$x = position$$

$$\lambda$$
 = wavelength

$$\theta$$
 = angle

A = area

b = base

h = height

 $\ell = length$

w = width

r = radius

V = volume

C = circumference

S = surface area

Rectangle

$$A = bh$$

$$A = \frac{1}{2}bh$$

$$A = \pi r^2$$

$$A = \pi r^2$$

$$C = 2\pi r$$

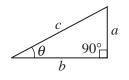
$$C =$$

$$V = \ell w h$$

$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

$$V = \frac{4}{3} \pi r^3$$


$$S = 4\pi r^2$$

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

CHANICS

ME
$v = v_0 + at$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$
$v^2 = {v_0}^2 + 2a(x - x_0)$
$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$
$\mathbf{F} = \frac{d\mathbf{p}}{dt}$
$\mathbf{J} = \int \mathbf{F} dt = \Delta \mathbf{p}$
$\mathbf{p} = m\mathbf{v}$
$F_{fric} \le \mu N$ $W = \int \mathbf{F} \cdot d\mathbf{r}$
•
$K = \frac{1}{2} m v^2$
$P = \frac{dW}{dt}$
$P = \mathbf{F} \cdot \mathbf{v}$
$\Delta U_g = mgh$
$a_c = \frac{v^2}{r} = \omega^2 r$
$\tau = \mathbf{r} \times \mathbf{F}$
$\sum \tau = \tau_{net} = I\alpha$
$I = \int r^2 dm = \sum mr^2$
$\mathbf{r}_{cm} = \sum m\mathbf{r}/\sum m$ $v = r\omega$
$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\mathbf{\omega}$
$K = \frac{1}{2} I \omega^2$
$\omega = \omega_0 + \alpha t$
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
$\mathbf{F}_{s} = -k\mathbf{x}$
$U_s = \frac{1}{2} kx^2$
$T = \frac{2\pi}{\omega} = \frac{1}{f}$
$T_s = 2\pi \sqrt{\frac{m}{k}}$
$T_p = 2\pi \sqrt{\frac{\ell}{g}}$
$\mathbf{F}_G = -\frac{Gm_1m_2}{r^2} \hat{\mathbf{r}}$

 $U_G = -\frac{Gm_1m_2}{r}$

a = accelerationF = forcef = frequencyh = heightI = rotational inertiaJ = impulseK = kinetic energyk = spring constant $\ell = length$ L = angular momentumm = massN = normal forceP = powerp = momentumr = radius or distance \mathbf{r} = position vector T = periodt = timeU = potential energyv = velocity or speedW =work done on a system x = position μ = coefficient of friction θ = angle $\tau = \text{torque}$ ω = angular speed

 α = angular acceleration

 $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$ $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0}$ $E = -\frac{dV}{dr}$ $V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$ $U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$ $C = \frac{\kappa \epsilon_0 A}{d}$ $C_p = \sum_i C_i$ $\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$ $I = \frac{dQ}{dt}$ $U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$ V = IR $R_s = \sum R_i$ $\frac{1}{R_n} = \sum_{i} \frac{1}{R_i}$ P = IV $\mathbf{F}_{\scriptscriptstyle M} = q\mathbf{v} \times \mathbf{B}$ $\oint \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I$ $\mathbf{F} = \int I \, d\boldsymbol{\ell} \times \mathbf{B}$ $B_s = \mu_0 nI$

 $\phi_m = \int \mathbf{B} \cdot d\mathbf{A}$

 $U_L = \frac{1}{2}LI^2$

ELECTRICITY AND MAGNETISM

Y AN	D MAGNETISM
A =	area
B =	magnetic field
C =	capacitance
d =	distance
E =	electric field
$\boldsymbol{\varepsilon}$ =	emf
F =	force
I =	current
L =	inductance
ℓ =	length
n =	number of loops of wire per
	unit length
P =	power

P = powerQ = chargeq = point chargeR = resistancer = distancet = time

U =potential or stored energy V = electric potential v = velocity or speed ρ = resistivity ϕ_m = magnetic flux κ = dielectric constant

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2002

GEOMETRY AND TRIGONOMETRY

Rectangle

A = area

A = bh

C = circumference

Triangle

V = volume

 $A = \frac{1}{2}bh$

S = surface area

C' 1

b = base

Circle

h = height

 $A = \pi r^2$

 $\ell = length$

 $C = 2\pi r$

w = width

Parallelepiped

r = radius

 $V = \ell w h$

 $v = \ell w$ Cylinder

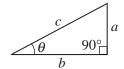
$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3} \pi r^3$$

$$S = 4\pi r^2$$


Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du} \frac{du}{dx}$$

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1$$

$$\int e^x dx = e^x$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \cos x \, dx = \sin x$$

$$\int \sin x \, dx = -\cos x$$