
BROUGHT TO YOU IN PARTNERSHIP WITH

Getting Started
With Quarkus

1

ALEX SOTO
DIRECTOR OF DEVELOPER EXPERIENCE, RED HAT

CONTENTS

∙ Key Benefits

∙ Getting Started

∙ Key Components

∙ JAX-RS

∙ Health Checks

∙ Security and JWT

∙ Docker and Native

∙ Container Images

∙ And more!

∙ Conclusion

Quarkus is a Kubernetes-Native Java stack tailored to GraalVM and

OpenJDK HotSpot, helping Java programs run 10X faster, while being

100X smaller. Improving the developer experience, Quarkus provides

additional features like live reloading and debugging as well as

persistence with Panache.

Its integration with the Eclipse MicroProfile specification also makes

it the perfect choice for developing microservices and deploying

them in Kubernetes.

KEY BENEFITS
Quarkus offers near-instant scale-up and high-density utilization in

container orchestration platforms such as Kubernetes. Many more

application instances can be run using the same hardware resources.

In Quarkus, classes used only at application startup are invoked at

build time and not loaded into the runtime JVM.

Quarkus also avoids reflection as much as possible. These design

principles reduce the size and memory footprint of an application

running on the JVM. Quarkus’ design accounts for native compilation

from the onset; optimization for using GraalVM, specifically its native

image capability, to compile JVM bytecode to a native machine

binary.

Additionally, Quarkus rests on a vast ecosystem of technologies,

standards, libraries, and APIs. Developers don’t have to spend lots

of time learning an entirely new set of APIs and technologies to take

advantage of the benefits Quarkus brings to the JVM or native images.

GETTING STARTED
To create a Quarkus service, you just need to run the next Maven goal

into an empty directory:

mvn io.quarkus:quarkus-maven-plugin:1.13.1.Final:create

\

-DprojectGroupId=org.acme \

-DprojectArtifactId=hello-world \

-DclassName="org.acme.quickstart.GreetingResource" \

-Dpath="/hello"

LIVE RELOAD

Quarkus applications come with a live reload feature that allows

the developer to make changes to their source code, which will be

directly reflected in the deployed code without having to recompile

or repackage the source code.

https://developers.redhat.com/about?sc_cid=7013a000002w2XfAAI

SPONSOR FULL-PAGE AD HERE

Join now

Build here.
Go anywhere.

https://developers.redhat.com/about?sc_cid=7013a000002w2XfAAI

3 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

./mvnw compile quarkus:dev

This service is started locally and you can use a curl command on

the http://localhost:8080/hello URL to get a response from

the service.

You can make any changes in the org.acme.quickstart.

GreetingResource source class, (i.e., change the return value from

hello to aloha), and you can execute a curl command on http://

localhost:8080/hello URL and get the updated response without

redeploying the service.

CONFIGURATION

Quarkus uses the Eclipse MicroProfile Configuration spec as its

configuration mechanism. Quarkus applications are fully configured

using a single configuration file, which is located at src/main/

resources/application.properties. You can create a custom

property using the following code:

greetings.message=Hello World!!

Then you can inject the configuration value into any class field:

@ConfigProperty(name = "greetings.message")

String message;

PROFILES

Quarkus has three different default profiles that can be set by starting

the property with %:

• dev when running in quarkus:dev mode

• test when running tests

• prod (the default one)

quarkus.http.port=9090

%dev.quarkus.http.port=8181

You can also create custom profiles by either setting the active

profile as a system property (quarkus.profile) or as an

environment variable (QUARKUS_PROFILE). For example, Dquarkus.

profile=staging:

%staging.quarkus.http.port=9999

Configuration values can be overridden at runtime (in decreasing

priority):

• Using system properties (-Dquarkus.http.port)

• Using environment variables (QUARKUS_HTTP_PORT)

• Creating an environment file named .env in the current

working directory (GREETING_MESSAGE=Namaste)

• Creating an external config directory under the current work-

ing directory (config/application.properties)

• Creating an application.properties file in the src/

main/resources directory within the project

You can set additional configuration files by using the smallrye.

config.locations property.

KEY COMPONTENTS

JAX-RS

Quarkus uses the JAX-RS spec for implementing RESTful web services,

as shown below:

@Path("/developer")

public class DeveloperResource {

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public List<Developer> getAllDevelopers() {}

 @POST

 @Produces(MediaType.APPLICATION_JSON)

 public Response createDeveloper(Developer

developer) {}

 @DELETE

 @Path("{id}")

 @Produces(MediaType.APPLICATION_JSON)

 public Response deleteDeveloper(@PathParam("id")

Long id) {}

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("search")

 public Response searchDeveloper(@

QueryParam("skills") String skills) {}

}

JSON MARSHALLING AND UNMARSHALLING

To marshal and unmarshal Java objects to JSON format, you need to

register either the JSON-B or Jackson extension:

./mvnw quarkus:add-extension -Dextensions="resteasy-

jsonb"

Or:

./mvnw quarkus:add-extension -Dextensions="resteasy-

jackson"

4 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

MICROPROFILE SPEC FOR CLOUD

(KUBERNETES)-NATIVE APPLICATIONS

RESTFUL WEB CLIENT

Quarkus integrates with MicroProfile REST clients to invoke other

RESTful web services.

./mvnw quarkus:add-extension -Dextensions="resteasy-

jsonb, rest-client-jsonb"

Below is the code for creating an interface for the RESTful web

endpoint accessing http://worldclockapi.com/api/json/cet/now:

package org.acme.greetings;

@Path("/api")

@RegisterRestClient

public interface WorldClockService {

 @GET

 @Path("/json/{where}/now")

 @Produces(MediaType.APPLICATION_JSON)

 WorldClock getNow(@PathParam("where") String

where);

}

Then you need to configure the URL of the service in application.

properties by using the fully qualified name of the class:

org.acme.greetings.WorldClockService/mp-rest/

url=http://worldclockapi.com

Last, you need to inject the interface into the classes that require this

client:

@Inject

@RestClient

WorldClockService worldClockService;

Tip: If the invocation happens within JAX-RS, you can

propagate the headers' value from the incoming request to the

outgoing response by specifying them in the org.eclipse.

microprofile.rest.client.propagateHeaders

parameter (i.e., org.eclipse.microprofile.rest.

client.propagateHeaders=Authorization).

The REST client also supports asynchronous calls by returning

CompletionStage<WorldClock> or Uni<WorldClock> (requires

the quarkus-rest-client-mutiny extension) instead of the POJO

directly.

FAULT TOLERANCE

It is really important to build fault-tolerant microservices when

they are deployed in Kubernetes where all communication happens

within the network. Quarkus integrates with the MicroProfile

fault-tolerance spec, which uses a CDI interceptor and can be

used in several elements, such as a CDI bean, JAX-RS resource, or

MicroProfile REST Client.

./mvnw

quarkus:add-extension -Dextensions="smallrye-fault-

tolerance"

Possible strategies are:

OPERATION PROPERTIES ANNOTATION

Retry Policy @Retry

maxRetries, delay,

delayUnit, maxDuration,

durationUnit, jitter,

jitterDelayUnit,

retryOn, abortOn

Fallback Action @Fallback fallbackMethod

Timeout @Timeout unit

Circuit Breaker @CircuitBreaker

failOn, skipOn,

delay, delayUnit,

requestVolumeThreshold,

failureRatio,

successThreshold

Bulkhead —
Thread Pool/
Semaphore

@Bulkhead
waitingTaskQueue (only

valid with @Asynchronous
semaphore mode)

AUTOMATIC RETRIES

An automatic retry is executed when the getNow method throws an

exception.

@Retry(maxRetries = 1)

@Fallback(fallbackMethod = "fallbackMethod")

WorldClock getNow(){}

public String fallbackMethod() {

 return WorldClock.now();

}

The fallbackMethod must have the same parameters and

return type as the annotated method, as well as an additional

ExecutionContext parameter.

Fallback logic can be implemented in a class instead of a method, as

shown below:

public class RecoverFallback implements

FallbackHandler<WorldClock> {

 @Override

 public WorldClock handle(ExecutionContext context) {

 }

}

http://worldclockapi.com/api/json/cet/now

5 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

This type of logic can then be set in the annotation as the value

@Fallback(RecoverFallback.class).

CIRCUIT BREAKER

Circuit breaker is used to detect failures and encapsulate the logic,

preventing a failure to occur repeatedly.

@CircuitBreaker(requestVolumeThreshold = 4,

failureRatio = 0.75, delay = 1000)

@Fallback(fallbackMethod = "fallbackMethod")

WorldClock getNow(){}

If three (4 x 0.75) failures occur among the rolling window of four

consecutive invocations, the circuit is opened for 1000 milliseconds

and then returns to a half open state.

BULKHEAD

Bulkhead pattern limits the number of concurrent calls to a

component.

@Bulkhead(5)

@Retry(maxRetries = 4, delay = 1000, retryOn =

BulkheadException.class)

WorldClock getNow(){}

CONFIGURATION

You can override annotation parameters via the configuration file

using the following property:

[classname/methodname/]annotation/parameter:

Method scope

org.acme.greetings.WorldClockService/getNow/Retry/

maxDuration=30

Class scope

org.acme.greetings.WorldClockService/Retry/

maxDuration=3000

Global

Retry/maxDuration=3000

HEALTH CHECKS

Kubernetes relies on the concept of liveness and readiness probes

to monitor the state of the pod and decide if it should be restarted

or, for example, if it should start accepting traffic. Quarkus integrates

with the MicroProfile Health spec to provide health checks to

Kubernetes.

./mvnw quarkus:add-extension -Dextensions="smallrye-

health"

To create a custom health check, you need to implement the

HealthCheck interface and annotate the class with @Readiness

and/or @Liveness.

@Liveness

@ApplicationScoped

public class DatabaseHealthCheck implements

HealthCheck {

 @Override

 public HealthCheckResponse call() {

 HealthCheckResponseBuilder responseBuilder =

 HealthCheckResponse.named("Database conn");

 try {

 checkDatabaseConnection();

 responseBuilder.withData("connection",

true);

 responseBuilder.up();

 }

 catch (IOException e) {

 // cannot access the database

 responseBuilder.down()

 .withData("error", e.getMessage());

 }

 return responseBuilder.build();

 }

}

Below is the code for accessing the /q/health endpoint to get a

JSON document describing the status of the application:

{

 "status": "UP",

 "checks": [

 {

 "name": "Database conn",

 "status": "UP",

 "data": {

 "connection": true

 }

 }

]

}

The status code is 200 OK if the global status is UP and 503 Service

Unavailable if the status is DOWN. The /q/health/ready and /q/

health/live endpoints can be used to get results individually from

readiness or liveness probes.

Since health checks are CDI beans, you can create health checks

directly in a class:

import javax.enterprise.inject.Produces;

import io.smallrye.health.HealthStatus;

public class ApplicationHealthChecks {

 @Liveness

 @ApplicationScoped

 @Produces

Continued on next page.

6 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

 public HealthCheck liveCheck() {

 return HealthStatus.up("App");

 }

 @Readiness

 @ApplicationScoped

 @Produces

 public HealthCheck dbHealthCheck() {

 return HealthStatus.state("db",

this::isDbUpAndRunning);

 }

 private boolean isDbUpAndRunning() {}

}

Some extensions provide readiness probes by default. To mention

some of them: DataSource, Kafka, Kafka-Streams, MongoDB,

Neo4J, Artemis, Vault, gRPC, Cassandra, and Redis.

METRICS

Quarkus can utilize the Micrometer metrics library for runtime and

application metrics.

./mvnw quarkus:add-extension -Dextensions="micrometer-

registry-prometheus"

With the Prometheus registry extension added, the generated output

format follows the Prometheus format.

By default, runtime metrics are generated automatically (i.e., HTTP

server connections, JVM memory, etc.), but application metrics can

be generated too.

You can use io.micrometer.core.instrument.MeterRegistry

to register metrics:

private final MeterRegistry registry;

public PrimeNumberResource(MeterRegistry) registry) {

 this.registry = registry;

 registry.gauge(“prime.number.max”, this,

 PrimeNumberResource::highestObservedPrimeNumber);

}

Micrometer uses MeterFilter instances to customize the metrics

emitted by MeterRegistry instances. Any MeterFilter CDI beans

are detected and used when initializing MeterRegistry instances.

@Singleton

public class CustomConfiguration {

 @Produces

 @Singleton

 public MeterFilter configureAllRegistries() {

 return MeterFilter.commonTags(Arrays.asList(

 Tag.of(“env”, deploymentEnv)));

 }

}

Metrics are accessible at /q/metrics/.

TRACING

Quarkus uses OpenTracing (the MicroProfile OpenTracing spec)

to provide distributed tracing for services distributed across a

Kubernetes cluster.

./mvnw quarkus:add-extension

-Dextensions="smallrye-opentracing"

The below code is used for tracing configuration:

quarkus.jaeger.service-name=myservice

quarkus.jaeger.sampler-type=const

quarkus.jaeger.sampler-param=1

quarkus.jaeger.endpoint=http://localhost:14268/api/

traces

By default, requests sent to any endpoint will be traced without any

code changes being required. You can customize traces by injecting

the Tracer class:

@Inject

Tracer tracer;

tracer.activeSpan().setBaggageItem("key", "value");

If you want to disable tracing at the class or method level, you can

use the @Traced annotation.

Quarkus provides additional tracers:

• JDBC Tracer: Adds a span for each JDBC query.

• You need to register the io.opentracing.

contrib:opentracing-jdbc dependency and

configure the datasource url parameter with
jdbc:tracing:postgresql://localhost:5432/

mydatabase and the driver parameter with

io.opentracing.contrib.jdbc.TracingDriver.

• Kafka Tracer: Adds a span for each message sent to, or

received from, a Kafka topic.

• You need to register the io.opentracing.

contrib:opentracing-kafka-client dependency

and configure incoming and outgoing interceptors

with io.opentracing.contrib.kafka.

TracingProducerInterceptor and io.opentracing.

contrib.kafka.TracingConsumerInterceptor.

SECURITY AND JWT

In microservices architectures, using stateless services is one of the

goals you'd like to achieve. For security and, more specifically, the

authorization process, Quarkus integrates with the MicroProfile JWT

RBAC spec.

7 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

./mvnw quarkus:add-extension -Dextensions="smallrye-jwt"

To send a token to the server-side, you should use the

Authorization header:

curl -H \"Authorization: Bearer eyJraWQiOi... \".

The minimum JWT required claims are: typ, alg, kid, iss, sub, exp,

iat, jti, upn, and groups.

Quarkus ensures that the given token is valid (i.e., not manipulated,

not expired, from the correct issuer, etc.). JWT tokens can be injected

into a JsonWebToken class in your code or using @Claim if a specific

claim is required.

@Inject

JsonWebToken jwt;

@Inject

@Claim(standard = Claims.preferred_username)

String name;

To inject claim values, the bean must be @RequestScoped CDI

scoped. If you need to inject claim values into the scope with a

lifetime greater than @RequestScoped, then you need to use the

javax.enterprise.inject.Instance interface.

An example of the minimal configuration parameters is:

mp.jwt.verify.publickey.location=META-INF/resources/

publicKey.pem

mp.jwt.verify.issuer=https://quarkus.io/using-jwt-rbac

PARAMETER DEFAULT DESCRIPTION

quarkus.smallrye-
jwt.enabled

true
Determine if the JWT
extension is enabled.

quarkus.smallrye-
jwt.rsa-sig-provider

SunRsaSign

The name of the java.
security.Provider
that supports
SHA256withRSA
signatures.

mp.jwt.verify.
publickey

Public Key text itself to
be supplied as a string.

mp.jwt.verify.
publickey.location

Relative path or URL of a
public key.

mp.jwt.verify.
issuer iss accepted as valid.

The JWT groups claim is directly mapped to roles used in security

annotations by using security annotations (i.e.,

@RolesAllowed("Subscriber"))

DOCKER AND NATIVE

Quarkus's scaffolding project comes with Dockerfiles to generate

Docker images for using Quarkus in JVM mode or in native mode.

JVM MODE

In this mode, no native compilation is required and you simply run

your application via a traditional jar.

./mvnw clean package

docker build -f src/main/docker/Dockerfile.jvm -t

quarkus/gettingstarted

.

NATIVE MODE

You can build a native image by using GraalVM. Quarkus can generate

a native executable of your application to be containerized into

Docker without having to install GraalVM in your local machine.

./mvnw package -Pnative -Dnative-image.dockerbuild=true

docker build -f src/main/docker/Dockerfile.native -t

quarkus/gettingstarted .

CONTAINER IMAGES

You can leverage Quarkus to generate and release container images.

Three methods are supported based on the registered extension:

• Jib (GoogleContainerTools/jib: Build container images for

your Java applications.)

• ./mvnw quarkus:add-extension -Dexten-

sions=”quarkus-container-image-jib”

• Docker

• ./mvnw quarkus:add-extension -Dexten-

sions=”quarkus-container-image-docker”

• S2I (openshift/source-to-image: A tool for building artifacts

from source and injecting into container images)

• ./mvnw quarkus:add-extension -Dexten-

sions=”quarkus-container-image-s2i”

PROPERTY DEFAULT DESCRIPTION

quarkus.container-
image.group

${user.name}
The group/repository of
the image.

quarkus.container-
image.name

The application
name

The name of the image.

quarkus.container-
image.tag

The application
version

The tag of the image.

Continued on next page.

https://github.com/GoogleContainerTools/jib
https://github.com/GoogleContainerTools/jib
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image

8 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

quarkus.container-
image.additional-
tags

Additional tags of the
container image.

quarkus.container-
image.registry

docker.io
The registry to use for
pushing.

quarkus.container-
image.username

The username to access
the registry.

quarkus.container-
image.password

The password to access
the registry.

quarkus.container-
image.insecure

false
Flag to allow insecure
registries.

quarkus.container-
image.build

false
Boolean to set if the
image should be built.

quarkus.container-
image.push

false
Boolean to set if the
image should be pushed.

To build and push a container image using the Quarkus extension,

you need to run the following command:

./mvnw package -Dquarkus.container-image.push=true

Tip: You can use native flags and container image

tags together to publish a container image containing

a native image.

KUBERNETES AND QUARKUS INTEGRATION

Quarkus can use the Dekorate project to generate Kubernetes

resources.

./mvnw quarkus:add-extension -Dextensions="quarkus-

kubernetes"

By running ./mvnw package, the Kubernetes resources are created

at the target/wiring-classes/META-INF/kubernetes directory.

Then the generated resources are integrated with the MicroProfile

Health and Metrics annotations.

You can customize the generated resources by setting new values in

application.properties:

quarkus.kubernetes.namespace=mynamespace

quarkus.kubernetes.replicas=3

quarkus.kubernetes.labels.foo=bar

quarkus.kubernetes.annotations.foo=bar

quarkus.kubernetes.readiness-probe.period-seconds=45

quarkus.kubernetes.mounts.github-token.path=/

deployment/github

quarkus.kubernetes.mounts.github-token.read-only=true

quarkus.kubernetes.secret-volumes.github-token.volume-

name=github-token

quarkus.kubernetes.secret-volumes.github-token.secret-

name=greeting-security

quarkus.kubernetes.secret-volumes.github-token.default-

mode=420

quarkus.kubernetes.config-map-volumes.github-token.

config-map-name=my-secret

quarkus.kubernetes.expose=true

quarkus.kubernetes.env.vars.my-env-var=foobar

quarkus.kubernetes.env.configmaps=my-config-

map,another-config-map

quarkus.kubernetes.env.secrets=my-secret,my-other-

secret

quarkus.kubernetes.resources.requests.memory=64Mi

quarkus.kubernetes.resources.limits.cpu=1000m

Resources can be added under the src/main/kubernetes directory.

PARAMETER DEFAULT DESCRIPTION

quarkus.kubernetes.
deploy

false
Generates and deploys the
resources to Kubernetes.

quarkus.kubernetes.
deployment-target

Kubernetes
Generates resources for
kubernetes, openshift, or
knative.

To generate a container image, push it to a registry, and deploy the

application, you can run the following command:

./mvnw clean package -Dquarkus.kubernetes.deploy=true

REMOTE LIVE RELOAD

Live reload also works with remote instances (even when deployed

inside a Kubernetes cluster) if it is configured properly in src/main/

resources/application.properties:

Mutable Jar configurations

quarkus.package.type=mutable-jar

quarkus.live-reload.password=changeit

quarkus.container-image.build=true

quarkus.kubernetes-client.trust-certs=true

quarkus.kubernetes.expose=true

quarkus.kubernetes.env-vars.quarkus-launch-devmode.

value=true

Notice the application is configured to start in dev mode — even

Continued on next column.

http://innovate.tricentis.com/forrester-devops

9 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH QUARKUS

in production mode — by setting the quarkus-launch-devmode

environment variable to true.

With application deployed in the cluster, get the public URL to access

the service and set it in the configuration file:

quarkus.live-reload.url=http://YOUR_APP_ROUTE_URL

Start the application in remote-dev mode:

./mvnw quarkus:remote-dev

Now any changes made locally will automatically be reloaded by the

application in the Kubernetes cluster.

CONCLUSION
Java has evolved since its introduction in 1995, but more importantly,

the environments hosting applications have evolved as well. Some

trade-offs made in Java’s design at the onset affect how Java is

perceived today. Things that were important in those days aren’t

as important anymore. Quarkus was invented given the challenges

and problems of today and aims to solve those challenges without

forcing developers to learn an entirely new programming language.

This Refcard has shown how to use some of the most common

extensions within the Quarkus ecosystem. Please visit https://code.

quarkus.io for a list of all extensions as well as https://qurkus.io/

guides/ for further information on building Quarkus applications.

WRITTEN BY ALEX SOTO,
DIRECTOR OF DEVELOPER EXPERIENCE, RED HAT

Alex is a Director of Developer Experience at Red Hat. He is passionate about Java and software automation, and he believes
in the open source software model.

Alex is the creator of the NoSQLUnit project, a member of the JSR374 (Java API for JSON Processing) Expert Group, the
co-author of the Testing Java Microservices book from Manning, and a contributor to several open source projects. A Java
Champion since 2017, international speaker and teacher at Salle URL University, he has talked about new testing techniques

for microservices and continuous delivery in the 21st century.

Devada, Inc.
600 Park Offices Drive
Suite 150
Research Triangle Park, NC 27709

888.678.0399 919.678.0300

Copyright © 2020 Devada, Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means of electronic,
mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

DZone, a Devada Media Property, is the resource software
developers, engineers, and architects turn to time and
again to learn new skills, solve software development
problems, and share their expertise. Every day, hundreds of
thousands of developers come to DZone to read about the
latest technologies, methodologies, and best practices. That
makes DZone the ideal place for developer marketers to
build product and brand awareness and drive sales. DZone
clients include some of the most innovative technology and
tech-enabled companies in the world including Red Hat,
Cloud Elements, Sensu, and Sauce Labs.

https://code.quarkus.io/
https://code.quarkus.io/
https://quarkus.io/guides/
https://quarkus.io/guides/

